Moringa oleifera oil and polymer in mixtures with commercial polymers – comparing study

×

Error message

User warning: The following theme is missing from the file system: journalijdr. For information about how to fix this, see the documentation page. in _drupal_trigger_error_with_delayed_logging() (line 1138 of /home2/journalijdr/public_html/includes/bootstrap.inc).

International Journal of Development Research

Volume: 
08
Article ID: 
13934
7 pages
Research Article

Moringa oleifera oil and polymer in mixtures with commercial polymers – comparing study

Cristiane M. Finzi-Quintão, Ana Cláudia Bernardes-Silva, Tânia Márcia S. Melo, Lucas E. S. Moreira, Thais D. Silva and Kátia M. Novack

Abstract: 

Composites may be obtained by the mixture of two materials, which one of them is a polymer, with the objective of produced a material with a specific characteristics. Vegetable oils (VO) are mixture with conventional polymer to improve biodegradation capacity without loss mechanical properties. VOs polymers are an alternative to conventional polymers on composites. Previous studies showed that the mixture of Moringa oleifera polymer (PMO) with polyethylene (PE) and biodegradable polymer (PB) producing a composite with high biodegrading capacity maintaining mechanical properties. M. oleifera oil (MO) was obtained from extraction of seeds in and presents higher concentration of instauration fatty acids as oleic acid (71%) which has high stability and favors the polymerization process. The polymerization assisted by microwaves technology can be used in organic synthesis as a function of the process efficiency and the increase in the selective heating rate. The polymerization of MO assisted by microwaves produced a polymer (PMO) with molecular weight higher than 50,000 g.mol-1.This manuscript shows comparing results for biodegradation behavior and mechanical properties of mixtures by MO or PMO with low density polyethylene and the commercial biopolymer composed by poly (butylene adipate-co-terephthalate) (PBAT) with poly(lactic acid) (PLA). It was verified that MO presented a plasticizer behavior on mixture LDPE/PBAT/PLA (PM) and PMO presented a compatibilizer behavior with PM. It was also verified that mixtures with PMO presented better biodegradation and mechanical properties than those composed by MO.

Download PDF: