EFFECTS OF DROUGHT STRESS AND FIELD TREATMENTS ON SEED GERMINATION AND EARLY GROWTH TRAITS OF PARENTAL BERSEEM CLOVER SEEDS

1Farnaz Daneshnia and 2Mohammad Reza Chaichi

1Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Iran
2Department of Crop Science, Huntley College of Agriculture, California State Polytechnics University, Pomona, USA

ABSTRACT

Improving seed resistance to water shortage can enhance forage production and sustainability in arid and semi-arid agricultural lands. This three-year field, laboratory and greenhouse study proposes applying surfactant to effectively prevent the detrimental impacts of severe drought conditions on early plant development. Seeds retrieved from six parental plants of berseem clover (Trifolium alexandrinum L.) developed under I100 (100% irrigation water), I100+s (irrigation water plus surfactant), I75+175+s and I50+150+s treatments in the field. In a germination experiment, drought stress was imposed through seven osmotic potentials (0, -0.2, -0.4, -0.6, -0.8, -1, and -1.2 MPa) created by using polyethylene glycol (PEG-6000). Comparative analyses evaluated the interaction between field treatments effects by drought stress and surfactant application on seed germination and early growth stage of berseem clover seedlings. Seeds developed in the field from moderately limited irrigation with surfactant (I75+s) attained a favorable seed germination percentage (78%) under a drought stress of -0.4 MPawhich achieved 24.3% increase in germination percentage compared to control (I100) without surfactant. Surfactant application across all field irrigation treatments had a constructive effect on the weighted germination index compared to counterpart treatments. Under -0.4 MPadrought stress + surfactant at germination project, the highest seedling height (10.2 cm) was obtained from the seeds retrieved from I75 and 150 field treatments. Seeds retrieved from I75+shada better performance under drought stress with the highest seedling height of 11.2 cm from irrigation water+surfactant. These results support the idea that adding surfactant to irrigation water can support the agricultural sustainability in arid and semi-arid regions.

INTRODUCTION

Water deficit can seriously reduce the herbage and seed production (Chaichi et al., 2015) and decrease crop quality and quantity in dry and semi-dry agricultural lands (Flexas et al., 2010). Water stress, which originates from water shortage, can impact the crop growth. Responses of different crops to drought can vary depending on the intensity and duration of drought, growth stage, physiology, and genotype of crop specie (Costa et al., 2012).

The authors reported that as the severity of limited irrigation increases, all the growth and development traits, e.g., seed yield, follow a decreasing trend (Daneshnia et al., 2015). Consequently, a fruitful crop production in dry regions mainly depends on the effective seed germination, which is strictly associated with the ability of seeds to germinate without adequate water (Arjenaki et al., 2011). Harsh parental environments can influence the seed development during the formation and maturation stages, performance and phenotypes of offspring in numerous plants (Herman and Sultan, 2016; Donohue et al., 2005). In some cases, stressed parents produce offspring with specific developmental alterations that mitigate that stress (Galloway and Ettersen, 2007; Holeski, 2007; Salinas and Munch, 2012; Walsh, 2016). When these off
springs encounter similar conditions, such alterations result in a heritable environmentally induced adaptation. There is currently great interest in the extent to which environmentally induced phenotypic change is adaptive. Development of the optimum phenotype may be constrained by environmental circumstances, for example, where low resource availability during prenatal or offspring development gives rise to a stunted, poorly performing individual. The authors reported that drought stress can improve the tolerance of barley (Hordeum vulgare) seeds against osmotic stress in the grain filling stage (Maleki Farahani et al., 2010). Although water availability has direct effects on the quantitative and qualitative resources provisioned to seeds (Goody et al., 2003), studies on offspring tolerance to water stress have not yet been systematically conducted (Herman et al., 2012). Berseem clover (Trifolium alexandrinum L.) is a high-quality forage legume with a high growth rate and low bloating potential. It is widely cultivated in the Mediterranean region, Central Asia, and the United States (Amato et al., 2013). Berseem clover is considered as an important ‘strategic resource’ within sustainable forage systems due to its low input farming requirements (Iannucci et al., 2001). Consequently, major studies have directed towards the yield improvement of Trifolium alexandrinum L. in dry and semi dry regions (Ghollarat and Raiesi, 2007).

Polyethylene glycol (PEG 6000) is used as an osmotic agent to create the drought stress and verify the effects of irrigation water deficit during the germination process. Reports show that high concentrations of PEG reduce the final germination percentages of lentil (Siahser et al. 2010) and root length in Pantellera and Ustica (Frazer et al. 1990), correlating with the suppression of cellular division and elongation during the germination. The adverse effects of osmotic pressure induced by PEG on germination has been reported for other crops such as wheat (Dhanda et al., 2004), sugar beet (Sadeghian and Yavari, 2003), sorghum (Gill et al., 2002), and sunflower (Mohammad et al., 2002). Da Silva et al. (2016) reported that as the water stress (induced by PEG solutions) increases, the percentage and germination index of Tamarindus indica L. reduces; thus, the germination process is halted under the potentials of ≥ -0.6 MPa. There have been numerous reports on the effects of drought stress on different stages of plant growth (Erda et al., 2011; Bajehbai, 2011), including seed germination and seedling establishment (Fethi et al., 2011; Wu et al., 2011). However, investigation about the parental effects (drought stress along with surfactant application) on subsequent drought tolerance at the seed germination stage and seedling establishment of legume forage crops, i.e., berseem clover is under evaluation. Thus, systematic experimental studies are required for such plants to increase water stress tolerance in arid and semi-arid environmental conditions for strategic farming. The objective of the three-year study is to determine whether application of surfactant can effectively enhance berseem clover seed germination and early seedling growth under drought stress conditions.

MATERIALS AND METHOD

Seed materials

Berseem clover (Trifolium alexandrinum L.) seeds were obtained from field experiments during the 2013-2015 growing seasons at the Research Farm of the College of Agriculture, University of Tehran, Karaj, Iran (N 35°56’, E 50°58’; Daneshnia et al., 2015; Daneshnia et al., 2016). The climate at this site is considered as arid to semi-arid with a long-term (50 years) mean air temperature of 13.5°C, soil temperature of 14.5°C, and 262 mm of mean annual rainfall. In the two years field experiments, three levels of irrigation were applied to the main plots, including: normal irrigation I100 (replenishment of 100% of weekly evaporation and plant water requirement), and limited irrigation including I15 and I50. Two types of water treatment, including water and water+surfactant (added at a rate of 1 ppm), were applied to the sub plots.

Seed quality tests under drought stress

The interaction of field treatments effects on six parental plants (three irrigation levels and two water treatments) under different drought conditions was systematically studied during the germination process. These experiments were performed at the Seed Research Laboratory of the College of Agriculture, University of Tehran. The drought stresses of seven osmotic potentials (0, -0.2, -0.4, -0.6, -0.8, -1, and -1.2 MPa) were created by respectively using 0, 112.232, 169.425, 213.64, 251.023, 284.021, 313.881 g of PEG-6000 in demineralized water (Patane et al., 2016). 50 seeds from each field treatment group were placed in 9 cm sterile Petri dishes containing two Whatman No.1 filter papers; they were moistened either with 13 ml of sterile demineralized water (control) or the same solution plus PEG-6000 contents (drought stress), and kept in a seed germinator at 20°C. The 42 treatments (6 parental treatments and 7 PEG levels) were arranged on a factorial base with a completely randomized design and three replications. During daily monitoring, demineralized water or PEG solution was added to the petri dishes as needed to maintain water and osmotic pressure near the targeted levels. The number of seeds that germinated was recorded at 24 hours intervals for two weeks. A seed was considered to have germinated when its emerging radicle was longer than 2 mm. In laboratory study, germination parameters, such as final germination percentage (G%) and weighted germination index (WGI) (Buet al., 2009), were measured and calculated with higher weights assigned to the seeds that germinated early and less to those that germinated late. The final values (after 14 days) were calculated by:

$$WGI = \frac{N \times n_1 + (N-1) \times n_2 + \ldots + 1 \times n_{14}}{N \times N'} \quad \text{(1)}$$

Here, n_1, n_2, \ldots, n_{14} are the number of seeds that germinated on the 1^{st}, 2^{nd}, and subsequent days until the 10^{th} day, respectively. N is the total number of days of the germination process, and N' is the total number of seeds placed in an incubator. In Eq. 1, the final WGI value is the product of the experimental value of WGI and the percentage of alive seeds in each treatment.

Early growth characterization of berseem clover seedlings under drought condition

Following the germination tests, a series of pot experiments were conducted to evaluate the interaction between parental growth condition and effects of limited irrigation on the early growth and development of berseem clover seedlings. The greenhouse temperature, humidity and Photosynthetic Photon Flux Density (PPFD) of daily/night were in the range 25±5°C, 65±5% and 300-600 µmol m⁻²s⁻¹, respectively. The pots were sprinkled with fresh water either with or without surfactant to determine whether surfactant has a modifying effect on the
adverse effects of drought stress during early berseem clover seedling growth. The experimental treatments comprised of six parental seeds of berseem clover obtained from the field experiments (Daneshnia et al., 2015) and the drought treatment was selected as -0.4 MPa, based on the optimum results of osmotic potential treatments from drought stress in the germination tests. All the pots were filled with 2.43 kg of air-dried soil collected from the field site. The soil was sieved (with a mesh diameter of 1 cm) and loaded in plastic pots with a diameter of 15 cm and height of 12 cm. The field soil texture was clay loam with the following physico-chemical characteristics: pH = 7.8, EC = 2.31 dSm⁻¹, total nitrogen (N) = 0.09%, available phosphorus (P) = 8.87 mgkg⁻¹ and available potassium (K) = 225 mgkg⁻¹. The soil in each pot was fertilized with 1 liter of basal nutrient solution which mainly consisted of both ammonium (NH₄) and nitrate (NO₃) as the sources of nitrogen (Wu et al., 2003). The irrigation treatments were based on maximum allowable depletion or deficiency (MAD) over a soil depth (Behera and Panda, 2009). MADs were calculated using Eq. 2 (Mokhtassi-Bidgoli et al., 2013):

\[MAD = \frac{1}{n} \sum_{i=1}^{n} \frac{FCi - \theta_i}{FCi - PWPi} \]

\[n \] is the number of layers in the effective rooting depth used for the soil moisture sampling, \(FCi \) is the soil volumetric moisture (calculated from the pressure plate test) at a field capacity of \(i^{th} \) layer, \(\theta_i \) is the soil volumetric moisture in the \(i^{th} \) layer which (calculated from the pressure plate test), and \(PWPi \) is the soil volumetric moisture at the permanent wilting point of the \(i^{th} \) layer. The amount of \(FCi, \theta_i \) and \(PWPi \) were calculated as 18.78, 14.43 and 8.92 (%), respectively. Based on the predefined MAD, the percentage of maximum allowable depletion of available soil water (ASW) and the volume of required water in the effective root zone (\(V_d \)) were estimated by Eqs. 3 and 4:

\[ASW = \frac{1}{n} \sum_{i=1}^{n} FCi - PWPi \]

\[V_d = MAD \times ASW \times R_e \times 10 \]

Here, ASW is equal to 9.86 cm m⁻³, \(V_d \) is in mm, \(R_e \) is the effective rooting depth (0.12 m), and 10 is the cm to mm conversion coefficient. A non-ionic surfactant with the commercial name of Golden Irrig. Aid was added to the irrigation water at the rate of 1 mg per liter (1 ppm). The surfactant was provided by Aquatrols Corporation, New Jersey, USA, with the following chemical components: 10% Alkoxylatedpolyols, 7% Glucoethers, and inter ingredient 83% water (Mitra et al., 2006; Karcher and Landrerth, 2003).

Statistical Analysis

For statistical analysis, the ANOVA technique for a randomized design with three replications was used through the Proc. GLM procedure SAS (SAS, 1996). Mean comparison was implemented using Duncan’s test at the 95% level of probability. All calculated differences are significant at \(p \leq 0.05 \) unless otherwise stated.

RESULTS

Germination test under drought conditions

The results showed that germination was suppressed at -0.8, -1 and -1.2 MPa drought stress induced by the PEG solution. The seeds produced from limited irrigation treatments under various water treatments (with/without surfactant application) were influenced by PEG levels. The highest G% (94.7) was for the parental seeds developed at the moderately limited irrigation of I₀.9+s under the normal condition (without stress) (Fig.1). As the severity of the stress increased, the G% followed a decreasing trend in all parental seed treatments. Either with or without surfactant, as the severity of osmotic pressure increased, the seeds subjected to moderate or severe stress became more tolerant to stress conditions during the seed development, compared to those produced under full irrigation. This observation showed that the subsequent seeds produced from the fields under drought stress develop the tolerance against drought stress. By increasing the PEG concentration from the normal condition to -0.6 MPa, a better G% was observed among the parental seeds treated by surfactant (across all drought stress levels), compared with no surfactant treatment (Fig. 1). Under a drought stress of -0.4 MPa, seeds developed by moderately limited irrigation were more tolerant to osmotic pressure upon adding the surfactant to the system (I₀.9+s) and a reasonable G% (78) was obtained. As shown in Fig. 2a-d, seeds developed with surfactant in full and

Fig. 1.

moderately limited irrigation treatments (I$_{100}$ and I$_{75}$) under moderate drought stress (-0.4 MPa) had higher germination percentages of 20 and 25%, respectively, compared to their counterparts. For the highest osmotic potential (-0.6 MPa), the measured values of G(%) showed a decreasing trend in all parental treatments in the absence of surfactant; byusing the surfactant, a higher G(%)was created which reflects a favorable level of resistance against drought stress. In the germination tests, WGI values followed a decreasing trend across all parental treatments, in response to the drought stress at higher levels, e.g., -0.6 MPa (Fig. 3). As the severity of stress increased, the WGI values followed a decreasing trend in all parental seed treatments, although, the application of surfactant in parental plants during the grain filling periodinduced a higher WGI compared to the non-surfactant setup. The highest WGI values (0.84) belonged to the parental seeds developed under I$_{75}+s$ and normal condition (without stress). In Fig. 3, for the drought stress of -0.6 MPa, the surfactant application had notable and constructive effects on

Table 1. Parental effects (water stress along with water treatment: I$_{100}$/I$_{100}+s$, I$_{75}$/I$_{75}+s$ and I$_{50}$/I$_{50}+s$) on berseem clover seedling establishment and early growth characteristics under saline condition of -0.4 MPa

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Normal condition plant height (cm)</th>
<th>Drought stress (-0.4 MPa) plant height (cm)</th>
<th>Normal condition shoot/root (ratio)</th>
<th>Drought stress (-0.4 MPa) shoot/root (ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation treatment on parental plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>6.6 b</td>
<td>8.9 b</td>
<td>6.82 a</td>
<td>1.99 b</td>
</tr>
<tr>
<td>75%</td>
<td>7.74 a</td>
<td>9.9 a</td>
<td>5.28 b</td>
<td>2.24 a</td>
</tr>
<tr>
<td>50%</td>
<td>7.82 a</td>
<td>9.8 a</td>
<td>3.96 c</td>
<td>2.52 a</td>
</tr>
<tr>
<td>Water treatment on parental plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>6.80 b</td>
<td>8.0 b</td>
<td>6.25 a</td>
<td>2.30 a</td>
</tr>
<tr>
<td>Water+ surfactant</td>
<td>8.14 a</td>
<td>10.02 a</td>
<td>4.69 b</td>
<td>2.90 a</td>
</tr>
<tr>
<td>Water treatment on seeds from parental plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>6.71 b</td>
<td>9.0 b</td>
<td>5.92 a</td>
<td>3.43 a</td>
</tr>
<tr>
<td>Water+ surfactant</td>
<td>8.24 a</td>
<td>10.83 a</td>
<td>5.03 a</td>
<td>1.77 b</td>
</tr>
</tbody>
</table>

Mean comparison was implemented using Duncan’s test at the 95% level of probability. Different letters in each column indicate significant differences.
the WGI values in medium (I75) and severely limited (I50) irrigation treatments.

Field treatment effects on berseem clover seedling establishment and growth under drought stress of -0.4 MPa

Results indicated that plant height and shoot/root ratio were significantly affected by field treatments and seedling growth conditions (Table 1).

Despite the fact that in our pot experiments significant differences were not observed between parental water treatments, but utilization of water + surfactant in pots irrigation resulted in the remediation of adverse effects of drought stress (-0.4 MPa). Consequently, plant height increased by 16.9%, when pots irrigated with water+surfactant compared with the control (sprinkling with water) (Table 1). As shown in Fig.4, seeds produced under limited irrigation (I75 and I50) had a better performance under drought stress when
the pots were sprinkled with water + surfactant, and consequently, the highest height of 10.2 cm was recorded for both I75 and I50 irrigation treatments. Fig. 5 showed that the application of surfactant (whether developing plants in the field or sprinkling the seeds in pots using surfactant/water compound) under drought stress conditions significantly increased the berseem clover height across all field treatments compared with the control. The highest height (11.2 cm) was obtained from the seeds, produced by I75+s, when their corresponding pots were irrigated with water + surfactant. In general, declines were seen in the shoot/root ratio of plants developed from seeds under limited irrigation treatments (I50 and I75), compared with plants produced from full irrigation treatments in both normal and drought conditions (Fig. 6).

Highlights
- Surfactant enhanced parental seeds tolerance to drought conditions
- Seeds from I75+s attained a favorable germination (78%) under -0.4 MPa
- Highest seedling height (11.2 cm) obtained from I75+s, sprinkled by water + surfactant
- Shoot/root ratio enhanced in seeds irrigated with surfactant under drought stress
This phenomenon explained the higher potential of seeds developed by I_{50} to increase the plants vegetative growth (Fig. 7). However, in the presence of surfactant, the plant’s roots can find water in a wider soil profile which leads to better vegetative and generative growths. Figs. 8a and b clearly proved the favorable effects of sparkling with water+surfactant on increasing the root growth under the stress condition of -0.4 MPa, resulting in lower ratio values. Fig. 9 showed that seeds from deficit irrigation plus surfactant produced plants with a higher shoot/root ratio in comparison with the seeds from full irrigation conditions. Moreover, the shoot/root ratio decreased in drought stress condition upon adding the surfactant to the system. However, in normal condition, the application of surfactant had no effect on shoot/root ratio across all field treatments. Under the drought condition of -0.4 MPa, the root weight noticeably improved for the parental seeds developed by surfactant, especially when irrigated by surfactant, compared with their counterpart treatments (Fig. 10). Despite, the root weight showed no differences when pots irrigated with surfactant in the normal condition.

DISCUSSION

Offspring germination and drought tolerance

Growing plants (usually maternal) in environments with severe drought stress (Lack of moisture in soil) can remarkably influence some traits in offspring; in some cases, resulting in phenotypes that are more adaptive to the induced stress (Herman et al., 2012). The harsh parental growth conditions (usually maternal) were initially expected to directly reflect resource levels, and consequently, the production of offspring is obtained with low quality (Falconer 1981; Roach and Wolff 1987; Donohue and Schmitt 1998). However, in this study (either with or without surfactant), as the severity of osmotic pressure increased (induced by PEG solution), the seeds from the plants subjected to moderate or severe stress became more tolerant to stress conditions during the seed development, compared to those produced under full irrigation. These results correspond with recent findings by authors, in which drought stress led to more drought tolerance in seeds during the grain filling stage (Maleki Farahani et al., 2010). At the early stages of imbibition, the seed respiration and metabolic processes are highly correlated with water uptake (Patanë et al., 2006). It has been identified that among various mechanisms, osmotic adjustment and induction of dehydrin may confer tolerance against drought injuries by maintaining a high tissue water potential (Turner et al., 2001).

With the accumulation of solutes, the osmotic potential of the cell is lowered; this attracts water into the cell and helps with turgor maintenance. The osmotic adjustment maintains the cell water balance with an active accumulation of solutes in the cytoplasm, thereby minimizing the harmful effects of drought (Farooq et al., 2009). Our previous field study suggested that developing plants with surfactant can be considered a promising strategy, which may help to modify the adverse effects of drought stress on growth and development of crops (Daneshnia et al., 2015). We are assuming that the offspring of those plants treated by surfactant are more tolerant to drought stress conditions in terms of both germination and seedling growth establishment stages. As the osmotic potential increased from control to -0.6 MPa, the measured values of G (%) showed a decreasing trend in all parental treatments in the absence of surfactant, however by using the surfactant a higher G (%) is gained which assumes a favorable level of resistance against drought stress. The authors have shown that the surfactant decreases the surface tension of water and, in this way, the penetration of water through the soil surface becomes easier under a larger wetting area in soil (Mehrvarz et al., 2013). Therefore, the plant roots find water in a wider soil profile which helps to lessen the adverse effects of drought stress (Daneshnia et al., 2015). Results clearly proves the idea that eliciting the plant development with surfactant can guarantee the reasonable germination and subsequently convincing yield in arid and semi-arid regions. As shows in Figure 3, for higher levels drought stress, e.g., -0.6 MPa, the surfactant application has notable and constructive effects on plants developed under medium (I_{50}) and severely limited (I_{75}) irrigation treatments, resulted in more tolerant seeds and higher WGI values compared to the non-surfactant setup. Under osmotic pressure, the seed imbibition proceeds slower, thus, seed’s metabolism activation is delayed, and seed germination is postponed (Cavallaraoet et al., 2016). Fenner (2000) proposed that, during the seed maturation stage, drought may affect seed germinability by changing the properties of the maternal tissues around the seed. This can cause seeds to switch from the seed-developing stage to the seed-germinating stage (Kermodeet et al., 1986). In this stage, the germination is suppressed by osmotic stress probably because of a higher inhibition in seed hydration under higher osmotic potentials (-0.4 and -0.6 MPa) (Maleki Farahani et al., 2010). Thus, upon increasing the internal osmotic potential, more water is absorbed which leads to more germination under high osmotic potentials (Heikal and Shaddad, 1982; Dodd and Donovan, 1991; Huang and Redman, 1995; Almansouri et al., 2001).

Survival of seedlings in drought stress under field treatments and utilizing surfactant

Developing seeds with surfactant resulted in more resistance to the stress conditions throughout the course of their growth and development (Table 1). Under deficit irrigation treatments, surfactants increase water retention which can be explained by the mechanism which is done when the surfactant is applied to the system. Surfactants reduce the surface tension of water and help water infiltrate into the pore spaces of soil which are not generally accessible without the surfactants (Leinauer, 2002). Consequently, when the surfactant is added to the system the crops can explore a wider soil profile; this brings higher efficiency in the use of resources (e.g., light) by plant (Daneshnia et al., 2016). Developing the plant under limited irrigation (I_{50} and I_{75}) resulted in a seed’s better performance under drought stress when the pots were sprinkled with surfactant+water (Fig. 4). In the recent study by authors, seeds produced under severe stress during development gminated faster and displayed a shorter mean germination time (MGT) compared with seeds produced under full irrigation (Maleki Farahani et al., 2010). The treatment with surfactant had a positive effect on soil water movement and increased water storage in soil, which improved the plant growth (Demie et al., 2007). Soldat et al. (2010) concluded that surfactants in drought conditions had a positive effect on increasing the uniformity of water content in soil. By utilizing the seeds produced from I_{50}, the highest height (11.2 cm) was obtained when surfactant was added to the pots. Our results are in agreement with those of Herman et al. (2012) and Germain et al. (2013), who explained that offspring’s performance improved under drought stresses when parents already
experienced the same conditions. Reductions are seen in the shoot/root ratio of seeds from plants treated under limited irrigation treatments (I₅₀ and I₃₅), compared with plants produced from full irrigation treatments in both normal and drought conditions (Fig. 6). When the water content was inadequate to facilitate nutrient uptake by roots, plants faced difficulties in absorbing essential nutrients such as nitrogen and phosphorus, which resulted in a reduction in seed yield (Garcia et al., 2008). The authors have found that, by using the surfactant, water movement through the soil becomes easier because of the reduction in water tension (Chaichi et al., 2015). Thus, the plant roots can find water in a wider soil profile which leads to better vegetative and generative growth. Utilizing surfactant along with applying deficit irrigations (I₃₅ and I₅₀) during the growth season, produced seed with a characteristic higher shoot/root ratio in comparison with the seeds from full irrigation conditions. When the soil wettability is less than optimal, surfactants in combination with appropriate irrigation can improve soil hydrological behavior, resulting in an improved irrigation efficiency and water conservation (Kostka et al., 2007), uniformity of soil moisture distribution, and root zone moisture holding capacity (Wolkowski et al., 1985). Moreover, the shoot/root ratio decreased in drought stress condition upon sprinkling pots with water+surfactant (Fig. 9). This fact confirms that the effective delivery of water to the root zone is the result of surfactant usage (Brumbaugh and Petersen, 2001); consequently, developed plant roots caused a reduction in the shoot/root ratio. Due to the need to conduct physiological studies, the authors are currently investigating the contribution of surfactants in the metabolism of plants and seeds under drought stress conditions.

Conclusion

According to the results of this project, surfactant application at the field experiment enabled berseem clover seeds to efficiently cope with limited irrigation levels in the germination mode. In other words, seeds developed under water shortage conditions were more tolerant to fluctuating environmental conditions when surfactant was added to irrigating water.

Acknowledgements: The financial support of the University of Tehran is gratefully acknowledged.

REFERENCES

