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ARTICLE INFO  ABSTRACT 
 

 

The contribution of this work is focused on presenting a new approach to dispersion models of 
radioactive pollutants, that is, pollutants that undergo chemical reactions. The model uses the two-
dimensional advection-diffusion-reaction equation to represent the dispersion of the pollutant in 
the Atmospheric Boundary Layer and to denote the chemical reaction that the pollutant suffers is 
included a source term in the advection-diffusion equation. This study presents a new analytical 
solution for the transient two-dimensional advection-diffusion-reaction equation by the 
combination of the methods of separating variables with the Generalized Integral Laplace 
Transform Technique (GILTT). The validation of the new model is made using experiment data 
carried out close to the site of Angra dos Reis nuclear power plant, in Brazil.  The results of the 
three-dimensional pollutant concentrations are compared with the ones obtained by the GILTT 
method with a Gaussian assumption in the y direction (called here as GILTTG). The numerical 
results show that the predicted concentrations of the proposed model are close to the GILTTG 
concentrations, with the gain of not having to perform a numerical inversion in the time variable, 
resulting in a fast time response, which is very important in the prevention of environmental 
impacts. 
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INTRODUCTION 
 

Prediction models of radioactive substances in the atmosphere is a matter of great importance for the prevention of environmental 
impacts in the event of an accident. Emergency plans are formulated on the basis of possible air concentration scenarios, and 
therefore they use mathematical models of contaminant dispersion in the atmosphere, which are able to relate causes (sources) to 
relative effects (pollutant concentration). This type of problem is represented by the classical advection-diffusion equation 
(Seinfeld and Pandis, 1998). The major analytical solutions in the literature for the advection-diffusion equation are for very 
specific cases, generally considering constant or simple turbulent diffusivity coefficients, for some references see the work of 
(Moreira et al., 2009). However, many advances were obtained using the GILTT method (Wortmann et al., 2005; Moreira et al., 
2006, Buske et al., 2012a, 2012b Vilhena et al., 2012). For the solution of partial differential problems, this integral transformation 
technique combines an expansion in series with an integration. In the expansion a trigonometric, obtained from an auxiliary 
Sturm-Liouville problem, is used.  
 

Integration is done over the whole range of the transformed variable, taking advantage of orthogonality property of the basis used 
in the expansion. This procedure results in an ordinary differential equations system, which, once solved, is easily inverted to 
obtain the result of the original equation. The transformed problem is solved analytically by the Laplace transform technique and 
diagonalization. The final concentration is obtained with a numerical inversion (Gauss quadrature) in the time variable. In this 
work, the analytical solution obtained by the GILTT method is improved, and for this the two-dimensional non-stationary 
advection-diffusion equation is solved, avoiding the numerical inversion made in the previous works that use the GILTT method. 
The solution is obtained through a combination of the methods of separating variables and GILTT.  
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The great advantage is that, thus, the final concentration of pollutants is obtained much more quickly and efficiently because there 
are no numerical inversions in the new solution. The article is organized as follows: in section 2, we present the proposed solution 
to the advection-diffusion-reaction equation; in section 3, we find the turbulent parameterizations used in the simulations; Section 
4 briefly describes the experiment used and shows the numerical simulations obtained by the proposed methodology. The results 
are compared with the experimental data and the GILTTG model (model that uses a numerical inversion to obtain the final 
solution). Finally, in section 5, an analysis of the proposed methodology is made. 

 
Solution of the Advection-Diffusion-Reaction Equation 
 
In order to describe the concentration field of a radioactive pollutant, the advection-diffusion-reaction equation is used. This 
equation is the basis for the majority dispersion models of pollutants in the atmosphere and allows to investigate the influence of 
the turbulent parameters in the concentration. In this work, we use the advection-diffusion-reaction equation in the transient two-
dimensional form, shown below: 
 

z

C C C
u K S

t x z z

    
   

    

                                                                            …………………………………………..(1) 

 
where C(x,z,t) is the mean pollutant concentration, u is the mean velocity component in the longitudinal direction, Kz is the 
turbulent diffusion coefficient in the vertical direction and S is the source term (representing the chemical reaction of the 
pollutant). In the proposed problem, it is considered that the pollutant undergoes a first order reaction, thus, the term is represented 
by: 
 

( , , )S C x z t                                                                                 ………………………………………….(2) 

 
Being λ the decay constant of the pollutant under analysis in the model. 
 
The problem under study is subject to the following boundary and initial conditions, given below: 
 
Boundary condition in z: 
 

hz
z

C
K z ,  0at  0 




                                        ...........................................................(3.a) 

 

Source condition: 
 

     , 0, suC t z Q t z H                                                                 ..……………………………………….(3.b) 

 

Initial condition: 
 

       0, , 0 su C x z Q x z H                                                                               …………………………………………(3.c) 

 
where h is the height of the boundary layer, Hs is the height of the source and Q the emission pollutant rate. 
 

In order to obtain the solution, a variable separation (Özisik, 1993) is applied, as ( , , ) ( ) ( ) ( )C x z t X x Z z T t . Replacing this 

function in equation (1) and separating the variables, we obtain the following system of ordinary differential equations (ODE): 
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By rewriting the eigenvalues (ν and η) in a more convenient way, and solving the ODE's (4) and (5), we have as solutions: 
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in which α = η - ν. The solution to equation (6) is obtained by the GILTT method, a well-known technique in the literature 
(Moreira et al., 2009). 
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Thus, one can rewrite the solution by grouping terms that have the same eigenvalues: 
 

, ( , , ) [ ( ) ( )][ ( ) ( )].C x z t T t X x X x Z z                                   ………………………………………(9) 

 

Note that each factor of equation (9), can be defined as: 
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( , ) ( ) ( ),x z X x Z z                                                       ……………………………………….(11) 

 

where ( , )x z is the solution obtained by the equation: 
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The concentration for each eigenvalue is: 
 

, ( , , ) ( , ) ( , ).C x z t x t x z                                               …………………………………….(13) 

 
Since the domain at x is infinite, the eigenvalue ν is continuous, therefore the final concentration is given by: 
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Note that the eigenvalue ν (1/s) is considered continuous in [0,∞), so the final concentration is expressed as: 
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being: 
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To determine the functions φ(x,t) and GILTT(x,z), conditions (3a) to (3c) are used. 
 

Applying the source condition (3b) in the final solution (15), yields: 
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In equation (18), it can be established the following relations: 
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To determine the constant B(ν), is used: 
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and by the source condition equation (19), follows: 
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To obtain B(ν) the inverse Laplace transform is applied in equation (22): 
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The constant B(ν) in equation (21) is replaced, resulting in: 
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Therefore, the final solution is: 
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Where the function ( , )

n
x z  is obtained applying the GILTT method (Moreira et al., 2009). Thus, the final solution is well 

determined. 
 

Application of the source in the problem 
 
To obtain the solution of the proposed problem, the Green solution for equation (1) will be presented. With the known Green 
solution, it is possible to find solutions for different forms of sources depending on the time (Q(t)), and the principle of 
superposition guarantees solutions for different types of source, since the problems are linear operators. 
 

Initially, to determine the Green solution, it is considered a source with Dirac delta distribution, that is, ( ) ( )cQ t Q t . Using this 

type of source in equation (25), we have: 
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A highly concentrated function is considered: 
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applying 
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Assuming that 
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4 xK t
b

u
  and doing 0xK  , one can rewrite equation (28) as follows: 
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Therefore, the final solution is: 
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In order to find solutions for different types of time-dependent sources, is considered ( )t   in equation (29): 
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Ready, Green’s solution is: 
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For the experiment addressed in this work, the emission source is continuous and represented by the following function: 
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being cQ the constant emission rate. Applying the source (33) in the Green solution (32), one comes to: 
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Turbulent Parameterizations 
 
In this work, to calculate the three-dimensional concentration, it is assumed that in the lateral direction the concentration is 
dispersed in the form of a Gaussian distribution. Thus, the three-dimensional concentration must take into account the dispersion 
parameter σy. Therefore, the concentration at the ground level (z = 0) is calculated by the following expression: 
 

( ,0, )
( ,0,0, )

2 y

C x t
C x t


                                                  …………………………………..(35) 

where the concentration C(x,0,t) is calculated by equation (34) and for the lateral dispersion parameter σy, for small variations in 
the wind direction in relation to the position of the receivers, the expression presented by (Degrazia, 1998) is used: 
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where 
*xw

X
uh

  is the nondimensional distance and 
1

3 0.97   the dissipation function. For the case of great variation of the wind 

direction is considered the following expression for σy: 
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where 15   for unstable conditions (Blackadar, 1997). 

 
In order to compare the approach presented in this work with the classical GILTTG technique, the same parameters of the 
turbulent diffusion coefficients and wind profile of Weymar (2012) will be used. By this way, the parameterizations of the vertical 
and longitudinal diffusion coefficients (Degrazia et al., 1997) are represented by the following expressions: 
 

4 81/3 1/3

*

0.22 1 1 e 0.0003e

z z

h hzK z z

w h h h

   
   

   
            
      

                                                 ……………………………………(38) 

 

4 2
3 32

2 3
13 * 13 *

22
31

3
13 * *

0.583h c 1.03 0.55

2.06 0.55

i i

x

i

z z
fi w X c fi fm X

h h
K

z
c fi fm X fm

h

             
        

                                          ……………………………………(39) 

 
where fi13 is the reduced maximum frequency, fm* is the normalized frequency of the spectral peak and ci = 0.3. 
For the wind field the power profile is used (Panofsky and Dutton, 1984): 
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in which uz and u1 are the mean horizontal velocities of the wind at z and z1 heights, and α is an exponent that is related to the 
turbulence intensity (Irwin, 1979). 
 
Experimental data and Numerical Results 
 
For model validation was used a controlled release of radioactive material performed in 1985 at the Itaorna Beach, close to the 
nuclear reactor site Angra dos Reis in the Rio de Janeiro state, Brazil. Details of the dispersion experiment is described by Biagio 
et al. (1985). The experiment consisted in a controlled releases of radioactive tritium loaded water vapor from a meteorological 
tower of 100m height during five days (November 28 to December 4, 1984). During the whole experiment, four meteorological 
towers collected the relevant meteorological data. Wind speed and direction were measured at three levels (10m, 60m, and 100m) 
together with the temperature gradients between 10m and 100m. Some additional data of relative humidity were available in some 
of the sampling sites, and were used to calculate the concentration of radioactive tritium loaded water in the air (after measuring 
the radioactivity of the collected samples). All relevant details, as well as the synoptic meteorological conditions during the 
dispersion campaign are described in (Biagio et al., 1985). The data from the 5 experiments were used to obtain the numerical 
results and are presented in Table 1. The total time of emission was of 90min for each experiment, being all the cases around noon. 
Water vapor collection was performed on aluminum plates in numbered locations (according to Figure 1) in three subsequent 
periods of 20min each, 30min after the start of the release. The same meteorological data were used in the work of Weymar 
(2012). In Table 1, u10 is the reference velocity at 10 meters in height (m/s), u* represents the friction velocity (m/s), w* is the 
vertical convective velocity scale (m/s), h is the boundary layer height (m) and Q is the emission rate of the source (MBq/s). 
Figure 2 shows the scatter plots of predicted concentrations, for the GILTTG model (with numeric inversion) and the proposed 
approach (without numeric inversion), with the observed concentrations for the 5 experiments. 
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Table 1. Meteorological parameters and emission rate for the Angra dos Reis experiment (Biagio et al., 1985) 
 

Exp. Period (10)u  

(m/s) 
*u  

(m/s) 
*w  

(m/s) 

h  

(m) 

Q  

(MBq/s) 

1 1 1.83 .32 .46 965.09 20.46 
 2 2.43 .42 .60 1259.98 20.46 
 3 2.76 .48 .69 1447.64 20.46 
2 1 2.59 .44 .63 1321.64 25.34 
 2 2.21 .38 .55 1152.75 25.34 
 3 2.18 .38 .54 1133.98 25.34 
3 1 2.21 .38 .55 1152.75 20.46 
 2 1.97 .34 .49 1026.75 20.46 
 3 2.61 .46 .66 1367.21 20.46 
4 1 1.23 .21 .31 643.40 24.34 
 2 1.01 .18 .25 525.44 24.34 
 3 1.05 .18 .26 544.21 24.34 
5 1 1.95 .34 .49 1018.71 31.32 
 2 1.54 .27 .39 804.24 31.32 
 3 2.61 .45 .65 1356.49 31.32 

 

 
 

Figure 1. Topographic map of the Angra dos Reis experiment (Biagio et al., 1985) 
 
The ideal for the model is that the generated concentration is the same as the measurement experimentally. Thus, the points of this 
graph would be on the straight identity. It is noticed in the scatter plots that the concentrations generated by the proposed model 
are very close to the concentrations generated by the GILTTG model, in some cases they have the same values. The present model 
(without numerical inversion) can reproduce results very close to the GILTTG model (with numerical inversion) and in a much 
faster way. In order to verify the proximity of the predicted concentrations of the models with and without numerical inversion, the 
graphs of the absolute and relative errors for each of the concentrations are presented in Figure 3. From the graphs it is noticed that 
in some cases the absolute and relative errors are equal to zero, showing that the concentrations are the same, in general the errors 
made are considered acceptable. With the results presented in the graphs, we obtain an average absolute error of approximately 4% 
and an average relative error of 10%, showing a compatibility between the models. To make a statistical comparison of the models 
with the experimental data, the following statistical indices are used: normalized mean square error (NMSE); correlation 
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coefficient (COR); factor of two (FAT2); factor of five (FAT5); fractional bias (FB) and standard fractional deviation (FS), 
described in Hanna (1989). Table 2 shows the results of the statistical indices for the two models in experiments 1-2; 3; 4; 5 and all 
experiments.  
 

 
 

Figure 2. Scatter plot of the methods without (present) and with numerical inversion (GILTTG). In the graphs the predicted 
concentrations generated by the methods are compared with the observed concentration for the five experiments 

 

Table 2. Results of statistical indexes of models with numerical inversion (GILTTG) and without numerical inversion (present). 
 

Exp. model NMSE COR FAT2 FAT5 FB FS 

2-Jan Present 0.96 0.87 0.62 0.9 0.15 0.25 
 GILTTG 0.88 0.88 0.67 0.86 0.12 0.21 
3 Present 1.25 0.35 0.29 0.76 -0.18 0.09 
 GILTTG 1.31 0.33 0.31 0.76 -0.2 0.04 
4 Present 2.34 0.42 0.2 0.68 -0.9 -0.83 
 GILTTG 2.53 0.37 0.2 0.66 -0.86 -0.88 
5 Present 4.45 0.7 0.26 0.42 -0.84 -1.04 
 GILTTG 4.69 0.68 0.26 0.45 -0.83 -1.05 
All Present 2.66 0.49 0.3 0.68 -0.65 -0.67 
 GILTTG 2.82 0.46 0.32 0.67 -0.62 -0.69 

 

Again, the agreement between GILTTG (with numerical inversion) and the proposed model (without numerical inversion). The 
results of the statistical indexes of the models are very close to each other, both in the cases of individual experiments and in the 
case considering all experiments. It is also noticed that in some cases the indexes become equal. It is worth mentioning once again 
that the proposed model is able to reproduce the predicted concentrations of the GILTTG model (this model uses a numerical 
inversion to obtain the final solution) with the great advantage of not having to do a numerical inversion, by this way, making that 
the proposed model has a much faster response, which is of great value in mitigating actions in the event of an accident. 
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Figure 3. Comparison between the methods without (present) and with (GILTTG) numerical inversion. The graphs show the absolute 
and relative errors for the five experiments 

 
Conclusion 
 
With this work, it can be said that the proposed model is an evolution of the analytical models that use the GILTT method, because 
the presented methodology uses the GILTT technique and improves its performance. In addition, the results presented by the 
proposed model represent, in a very similar way, the results of the GILTTG model. It should be noted that the final solution 
obtained in this work does not have to make a numerical inversion in the time variable, different from the previous works. 
The methodology developed in this work shows that the presented technique can also be applied in the advection-diffusion-
reaction equation, that is, it extends its application to problems involving first-order chemical reactions. 
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