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ARTICLE INFO  ABSTRACT 
 
 

This work evaluated the antiadhesive activity of two microbial exometabolites: indole and 
pyocyanin. The in vitro quantitative microtiter adherence assay was carried out with 
Pseudomonas aeruginosa exposed to concentrations of 0.5 and 1.0 mM of indole and Escherichia 
coli exposed to 0.2 mM of pyocyanin. The incubation took place for 48 hours at 30ºC. 
Afterwards, the violet crystal test was performed and optical density measurements (590 nm) 
were used to calculate the percentage of adhesion relative to the control tube, in which the cells 
were cultured in the absence of exometabolites. Indole and pyocyanindisturbed cell adhesion in 
all isolates. However, E. coli was more sensitive to pyocyanin than P. aeruginosa to indole. The 
percentage of E. coli adherence registered an average of around 15%. For P. aeruginosa, the 
percentage of adherence varied from 21 to 54%, with greater activity in the concentration of 1.0 
mM of indole. However, adherent cells were detected when the percentage of adherence was 
close to 20%, suggesting that in an eventual competition between E. coli and P. aeruginosa, the 
latter appears to be more tolerant to indole than E. coli to pyocyanin. 
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INTRODUCTION 
 

Microbes are dispersed in natural ecosystems and typically live 
in complex dense communities characterized by distinct 
patterns of spatial organization, resulting in many benefits 
(Vasconcelos et al., 2020). Nature contains a wide spectrum of 
possible biotic interactions and microorganisms are no 
different. Interspecies relationships allow balance to complex 
heterogeneous communities and are mandatory for the 
persistence of these organisms in an environment characterized 
by gradient differences (Zhang, 2019; Godsoe et al., 2017). 
Spatial distribution is an important factor for interspecific 
bacterial relationships. Natural environments are governed by 
multiple factors leading to the persistence of dominant groups. 
In the greater intensity of the disturbance, there is expected to 
be more stability in the microbial composition (Dohi and 
Mougi, 2018). In natural environments, bacteria usually 
compete for space and resources. Thus, ecological interactions 
of competition and more recently cooperation are recognized 
as essential factors in regulating the structure and function of 
microbial communities (Nadell et al., 2016, Hibbing et al., 
2010).  

 
Microbial coexistence is widespread in the natural 
environment, which makes us assume that synergistic 
interactions between microbial communities are dominant over 
antagonistic interactions: competition and not cooperation is 
recognized as predominant (Sun et al., 2019). As a result, the 
competitor's resilience can contribute to increasing population 
stability (Coyte et al., 2015) even though both inter-specific 
relationships play important roles in maintaining diversity and 
population stability (Liu et al., 2016). Antagonistic 
relationships between Escherichia coli and Pseudomonas 
aeruginosa when they share the same environment have been 
identified. They seem to experience amensalism as the most 
obvious strategy in the competition for resources (Vasconcelos 
et al., 2010). In terms of ecological typing, amensalism occurs 
when the growth of E. coli is restrained by the coexistence of 
the two species, while P. aeruginosa remains unaffected. 
Amensalism can still be strong enough to cause the death of E. 
coli (Viana et al., 2017). In their stationary phase, E. coli and 
P. aeruginosa can synthesize diffusible exometabolites, such 
as indole and pyocyanin, who mutually inhibit the exposed 
cells at a given site (Arruda et al., 2019). Generally, the 
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molecules included in the natural competition processes for 
growth inhibition are broad-spectrum antibiotics or 
bacteriocins (Smid and Lacroix, 2013). The synthesis of these 
compounds is influenced by the variety of environmental 
factors, for example limited carbon gradients, as well as by 
biotic interactions, especially interspecific competition. 
Despite this, the understanding the physical-chemical and 
biological properties of these secondary metabolites, as well as 
the factors that govern their production, is a recent topic of 
study (Tyc et al., 2017). Indole is one of the most important 
exometabolites produced by E. coli strains from the 
metabolism of tryptophan (Chu et al., 2012). It modulates 
important physiological characteristics, such as chemotaxis 
(Bansal et al., 2007), motility (Lopes et al., 2011) and 
adhesion to surfaces (Hirakawa et al., 2009).  
 
Concentrations between 0.5 to 1 mM can regulate the 
bacteria's responses to cell stress conditions exerted by 
coexistence with P. aeruginosa (Gaimster et al., 2014). Indole 
is toxic and can cause membrane derangement. Higher 
concentrations of indole can even inhibit energy production 
and protein folding (Kim et al., 2013). Pyocyanin is a brilliant 
blue-colored phenazine pigment, synthesized exclusively by 
90-95% of P. aeruginosa strains, acting on iron uptake in 
pseudomonads (Oliveira et al., 2019), as well as serving as a 
signaling molecule in response to environmental stress exerted 
on the bacteria (Dietrich et al., 2006). In addition, the 
exometabolite exhibits antimicrobial activity (Ferguson et al., 
2007, Abu et al., 2013, Jayseelan et al., 2014), whose 
mechanism involving oxide-reduction reactions promoting the 
production and accumulation of peroxide and superoxide ions 
(O'Malley et al., 2003; Bahari et al., 2017). The antagonistic 
relationships between E. coli and P. aeruginosa that result in 
disturbances in the formation of biofilms of both species is a 
relatively well explored theme (Kusnetsova et al., 2013; 
Molina-Santiago et al., 2017), however the limitations of the 
studies occur in how they address the role of indole and 
pyocyanin in inhibiting the formation of these biofilms. 
Assuming that both molecules are the most important 
exometabolites produced by P. aeruginosa and E. coli, this 
present study verified the degree of inhibition of cell adhesion 
from isolates of indole and pyocyanin separately. 
 

MATERIALS AND METHODS 
 
Microorganisms: Five wild isolates were used: two 
Pseudomonas aeruginosa (TGC02 and TGC04) recovered 
from gas station soils (Cavalcanti et al., 2017) and three 
Escherichia coli (AV02, AV12 and AV14) originated from 
sink drains in beauty salons (Viana et al., 2017). Two type of 
cultures, P. aeruginosa UFPEDA 416 and E. coli UFPEDA 
224 were used for comparison purposes. Wild isolates were 
selected because they meet the criteria of environmental origin 
with a high degree of selective pressures. These were 
registered in the National System for the Management of 
Genetic Heritage and the Associated Traditional Knowledge – 
SisGen (numbers A6B80BD and ABDD69C). 
 
Exometabolites: High purity indole (Merck KGaA, 
Darmstadt, Germany) and pyocyanin, produced and extracted 
from the P. aeruginosa TGC04 were used, according to the 
methodology described by Arruda et al. (2019). Briefly, 
recently cultured cells of TGC04 were suspended in 0.85% 
NaCl solution (w/v), standardizing the turbidity with tube #1 
of the MacFarland scale. Then, 5 mL of the suspension was 

transferred to flasks containing 50mL of King A broth (King et 
al., 1954). The flasks were incubated for 72h (150 rpm at 
29±1°C). Then, 10 mL was transferred to 3 mL of chloroform. 
After 1h, 1.5 mL of the chloroform phase was acidified with 1 
mL of HCl 0.2 M. After 1h, the acidic phase was neutralized 
with tris-HCl (pH = 7.2) and the concentration of pyocyanin 
was estimated by measuring the optical density at λ=520 nm 
(U2M chemistry), based on a standard curve prepared with 
98% pure pyocyanin (Merck KGaA, Darmstadt, Germany) (r = 
0.9999). 
 
In vitro quantitative microtiter adherence assay: A crystal 
violet assay with minor adaptations was used (Khare and 
Arora, 2011). Briefly, 1.5 µL polystyrene microdilution tubes 
were filled with 1000 μL of nutrient broth containing the 
diluted exometabolites and 10 μL of suspension of P. 
aeruginosa or E. coli prepared with NaCl 0.85% (w/v) and 
turbidity standardized with the tube #1 from the MacFarland 
scale. All tests were performed in triplicate and the controls 
used nutrient broth without adding exometabolites. Microtubes 
were statically incubated for 48h at 30°C. After, the broth was 
discarded and the walls washed 3-5 times with distilled water 
in order to remove any deposited planktonic cells. The tubes 
were dried at room temperature for 1h. Afterwards, 1.5 ml of 
the 1% crystal violet solution (Newprov, Brazil) was added 
and 20 minutes later, the solution was discarded and the crystal 
violet excess was removed with vigorous rinsing with distilled 
water. After the tubes had been dried at room temperature for 
1h, 1.5 ml of 95% ethanol was added (Química Moderna, 
Brazil). Then, 30 minutes later, the optical density of the 
crystal violet-ethanol solution was measured at 590nm 
(Shimadzu, UV -1601-1601 PC). Based on the concentrations 
of indole naturally produced by strains of E. coli with activity 
against P. aeruginosa, concentrations of 0.5 and 1.0 mM were 
tested (Gaimster et al., 2014). On the other hand, the activity 
of pyocyanin against E. coli was based on the determination of 
the minimum inhibitory concentration. 
 
Determination of the Minimum Inhibitory Concentration 
(MIC) of pyocyanin on E. coli: The test was performed using 
the microdilution technique (Balouriet al., 2016) in order to 
establish the concentration used in the in vitro quantitative 
microtiter adherence assay with wild and UFPEDA 224 E. 
coli. Briefly, in microdilution plates, a solution of 100 μL 
pyocyanin was serially diluted in 100 μL of nutrient broth to 
obtain concentrations from 1.4 to 0.1 mM. Then, 10 μL of the 
E. coli inoculum, prepared in 0.85% NaCl solution, 
standardized with tube #1 on the MacFarland scale, was added. 
The plates were incubated at 37°C for 72 hours (with 
observations every 24 hours). MIC values were determined by 
visual inspection of turbidity compared to the control (Pffaler 
et al., 1995). MIC was defined as the lowest concentration at 
which no bacterial growth was observed. The experiment was 
carried out in triplicate. 
 
Interpretation criteria: The percent of adhesion was 
calculated by the difference between the averages of the 
measurement (triplicate) of the optical densities of the test and 
the control, divided by the average of the optical density 
obtained in the control, multiplied by 100. The value found 
was used to classify the biofilm formation as weak (<40%), 
moderate (40-80%) or strong (> 80%) (Rodrigues et al., 2010). 
The interpretative breakpoint value denoting adherent cells 
was an OD590 reading of >0.186. Three times above the mean 
value of the optical density in the uninoculated medium is 
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considered to indicate the presence of adherent cells (Pagano 
et al., 2004). In this study the average optical density of the 
uninoculated medium was 0.062. 
  
Statisticalanalysis: One-way analysis of variance was 
performed followed by Dunnet's post-test in order to assess the 
difference in adherence in the presence of exometabolites, 
compared with the control, considering significant if 
Student t test analysis of variance was used to assess biofilm 
formation data, considering significant if p < 0.01.
 

RESULTS  
 

Pyocyanin activity on Escherichia coli 
production of 685.0 μg/mL (3.25 mM) of pyocyanin was 
obtained. All E. coli isolates, in contrast, including the strain 
UFPEDA 224, exhibited sensitivity to the same concentration 
of the exometabolite, 0.2 mM, at intervals t=24h, t=48h and 
t=72h. In addition, the inhibitory concentration of pyocyanin 
significantly interfered with the adhesion of planktonic cells to 
the polystyrene surface for all E. coli tested (Figure 1).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The adherence percentages of wild 
(11.5±5.9%), AV12 (15.6±3.9%) and AV14 (15.3±6.9%), as 
well as the UFPEDA 224 (10.5±3.1%) were statistically 
similar. In all cases, adherence was classified as weak. 
Interestingly, the OD590 averages measured in the assays for 
AV02 (0.172), AV12 (0.128) and UFPEDA 224 (0.137) were 
below the breakpoint value used to designate adherent cells 
(OD590 reading of >0.186). For the AV14 isolate (0.189), there 
was a faint presence of adherent cells. In summary, adherence 
percentages less than about 20% indicated a greater 
susceptibility of E. coli to pyocyanin, inhibiting either cell
surface attachment or cell-cell aggregation. In the test control, 

Figure 1. Effect of treatment with the inhibitory concentration of pyocyanin (0.2 mM) on the adhesion of 
AV12 (B), AV14 (C) and AV02 (D) on the polystyrene surface after 48 hours. Significant differences in control are indicated w
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the adhesion of planktonic cells to 
tested (Figure 1). 

The adherence percentages of wild isolates AV02 
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well as the UFPEDA 224 (10.5±3.1%) were statistically 
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reading of >0.186). For the AV14 isolate (0.189), there 
n summary, adherence 

percentages less than about 20% indicated a greater 
to pyocyanin, inhibiting either cell-

In the test control, 

the percentages of adhesion in wild isolates and UFPED
were similar, obtaining an average of 54.8±6.9%. 
Comparatively, when correlating this percentage with the 
results found in the treatments with pyocyanin, the reduction 
of the adhesion of E. coli was significantly different in the 
inhibitory concentration of the exometabolite.
 

Indole activity on Pseudomonas aeruginosa
was a disturbance in the adhesion of 
concentration of indole, however, the activity of indole was 
less harmful to P. aeruginosa when compared to the activity of 
pyocyanin on the adhesion of E. coli
of indole, the adhesion of wild 
classified as moderate (TGC02=54.4±2.2% and 
TGC04=43.9±6.8%), to the detriment of the concentration o
1.0 mM (TGC02=25.4±1.5% and TGC04=38.5±2.4%), which 
led to low adherence, as observed in the strain UFPEDA 416, 
whose adherence percentages were 21.1±1.2% and 32.3±2.2%, 
respectively when exposed to 0.5 and 1.0 mM of indole. It is 
noteworthy that, under all conditions tested, adherent growth 
was observed (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the absence of indole, the percentages of adherence of wild 
isolates, relative to control were particularly different between 
TGC02 (60.2±3.1%) and TGC04 (93.3±2.3%). Comparatively, 
when correlating the percentage of adherence of the control 
with the results found in the treatments with indole, the 
adhesion of TGC02 was significantly different only in the 
treatment with 1.0 mM. For TGC04, the percentage of 
adherence was significantly different regardless of the 
concentration of indole. A similar value wa
the control test of the P. aeruginosa
(93.5±2.0%). 
 

 

Effect of treatment with the inhibitory concentration of pyocyanin (0.2 mM) on the adhesion of 
AV12 (B), AV14 (C) and AV02 (D) on the polystyrene surface after 48 hours. Significant differences in control are indicated w

asterisk (** p <0.01 and *** p <0.005) 
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the percentages of adhesion in wild isolates and UFPEDA 224 
were similar, obtaining an average of 54.8±6.9%. 
Comparatively, when correlating this percentage with the 
results found in the treatments with pyocyanin, the reduction 

was significantly different in the 
tion of the exometabolite. 
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was a disturbance in the adhesion of P. aeruginosa due to the 
concentration of indole, however, the activity of indole was 

when compared to the activity of 
E. coli cells. Exposed to 0.5 mM 
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TGC04=43.9±6.8%), to the detriment of the concentration of 
1.0 mM (TGC02=25.4±1.5% and TGC04=38.5±2.4%), which 
led to low adherence, as observed in the strain UFPEDA 416, 
whose adherence percentages were 21.1±1.2% and 32.3±2.2%, 
respectively when exposed to 0.5 and 1.0 mM of indole. It is 

all conditions tested, adherent growth 

In the absence of indole, the percentages of adherence of wild 
isolates, relative to control were particularly different between 
TGC02 (60.2±3.1%) and TGC04 (93.3±2.3%). Comparatively, 
when correlating the percentage of adherence of the control 

sults found in the treatments with indole, the 
adhesion of TGC02 was significantly different only in the 
treatment with 1.0 mM. For TGC04, the percentage of 
adherence was significantly different regardless of the 
concentration of indole. A similar value was also observed in 

P. aeruginosa UFPEDA 416 strain 

 

Effect of treatment with the inhibitory concentration of pyocyanin (0.2 mM) on the adhesion of E. coli UFPEDA 224 (A), 
AV12 (B), AV14 (C) and AV02 (D) on the polystyrene surface after 48 hours. Significant differences in control are indicated with an 

March, 2020 



 
Figure 2. Effect of indole treatment (0.5 and 1.0 mM) on the 
adhesion of P. aeruginosa UFPEDA 416 (A), TGC02 (B) and 

TGC04 (C) on the polystyrene surface after 48 hours. Significant 
differences in control are indicated with an aste

and ** p <0.01) 
 

DISCUSSION 
 
Sessile communities are the most prevalent microbial lifestyle 
in nature. This allows the settlement of mixed communities in 
coexistence, with a high level of organization, although 
exhibiting genotypic and phenotypic complexity, distinct from 
their planktonic forms (Ito et al., 2009; Mittal 
This kind of cellular organization offers advantages, such as 
horizontal changes, protection against moisture loss and 
proportional increase in the concentration of nutrients. The 
persistence of the microbial population is guaranteed through 
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Effect of indole treatment (0.5 and 1.0 mM) on the 
UFPEDA 416 (A), TGC02 (B) and 

TGC04 (C) on the polystyrene surface after 48 hours. Significant 
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Sessile communities are the most prevalent microbial lifestyle 
in nature. This allows the settlement of mixed communities in 
coexistence, with a high level of organization, although 
exhibiting genotypic and phenotypic complexity, distinct from 

, 2009; Mittal et al., 2015). 
This kind of cellular organization offers advantages, such as 
horizontal changes, protection against moisture loss and 
proportional increase in the concentration of nutrients. The 

bial population is guaranteed through 

different mechanisms, among which the concentration of 
nutrients and chemical signaling are crucial (Hibbing 
2010; Tashiro et al., 2013). P. aeruginosa
organisms that can coexist in aquatic 
interaction between them expected (Gonzales
Sjoling, 2016). The antagonistic relationships between the two 
species were described in the first classic studies on antibiosis 
(Hutchison et al., 1943). This association may result in
biostatic effect for the pseudomonads as well as, more 
dramatically, for enterobacteria (Viana 
al., 2014), although E. coli
replicate in nutrient-rich aquatic environments (Ishii and 
Sadowsky, 2008). Generally, in aquatic environments, there 
are low levels of essential nutrients for microbial growth, 
creating a competition site for limited compounds, as well as 
space (Hirsch, 1986, Mahto and Goel, 2008, Ghoul and Mitri, 
2016). This stress scenario will
to use its metabolic resources to mitigate selective pressures, 
becoming dominant and stable through mechanisms driven by 
competition (Cordero and Datta, 2016). One of the strategies 
used by microbes is the synthesis of exom
antimicrobial activity. These molecules are generally not toxic 
to the producing organisms, even in concentrations greater 
than the physiological concentration seen in stationary
(Hassett et al., 1992, Garbe
subinhibitory concentrations of exometabolites with 
antimicrobial activity may act as signaling molecules with 
inter- and interspecies interactions, two of these being indole 
and pyocyanin (Romero et al., 2011, Jauri
 
Pyocyanin is suggested as the most important exometabolite 
involved in the activity of P. aeruginosa
(Angell et al., 2006). Even subinhibitory concentrations of 
pyocyanin exert important phenotypic changes in 
enterobacteria, for example in 
profile, mechanisms against oxidative stress, motility and 
biofilm production (Andrade 
pyocyanin exhibits good antimicrobial properties against 
Gram-positive, Gram-negative, fungi and protozoa (Devn
al., 2017, Kerr et al., 1999).
concentration-dependent pyocyanin has been known for a few 
decades (Baron and Rowe, 1981). Its action is expected to 
disrupt the active transport mechanism across the membrane 
and the respiratory chain of susceptible organisms (Jayaseelan
et al., 2014). This results in a decrease in oxygen supply as 
well as an accumulation of reactive oxygen compounds (Price
Whelan et al., 2007). In addition, pyocyanin synthesized at 
basal concentrations can mediate complex quorum
mechanisms in P. aeruginosa (Mangwani 
way, the bacteria can regulate the stability of its population 
when subjected to pressures of different natures, such as 
exposure to active exometabolites (Brug
which includes adhesion to surfaces and cell aggregation 
(Skariyachan et al., 2018). Pyocyanin exhibited good activity 
against adhesion of the E. coli 
Similar values for the E. coli 
previous study, in which strains of 
linezolid and vancomycin on a polystyrene conditioning 
surface (Pagano et al., 2004). The establishment of a bacterial 
biofilm depends on environmental factors that interact with the 
external bacterial surface as well as intracellular mechanisms 
(Donlan, 2002). In addition, the time required for the 
microorganism to generate new cells is crucial for the 
formation of the biofilm. This represents an important 
microbial defensive strategy under 
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E. coli to the polystyrene surface. 
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previous study, in which strains of E. coli were exposed to 
linezolid and vancomycin on a polystyrene conditioning 

., 2004). The establishment of a bacterial 
biofilm depends on environmental factors that interact with the 
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al., 2018). In natural environments, some cells that suffer 
chemical stresses exhibit tolerance phenotypes to certain 
concentrations of active exometabolites, persisting in the 
environment, even if there is a slightly reduced growth rate 
(Heß and Gallert, 2016). It is thus suggested that the UFPEDA 
416 strain showed tolerance to 1.0 mM while the P. 
aeruginosa TGC02 exhibited tolerance to 0.5 mM of indole 
whose percentage of adherence was similar to that observed in 
the test control, ie, growth condition without addition of the 
exometabolite. This result was similar to that obtained by a 
previous study, in which a P. aeruginosa strain formed biofilm 
when showing tolerance to 0.4 mM of indole (Kim et al., 
2015). This characteristic can be attributed to an anthranilate 
synthesis by the bacterium. The molecule is involved in the 
metabolism of tryptophan, and can also participate in the 
production of pyocyanin, recognized as an important quorum 
signal molecule of P. aeruginosa when exposed to indole 
(Palmer et al., 2013). On the other hand, indole is the most 
important signaling molecule in the pyrimidine group 
synthesized by E. coli. The compound is stable and may play a 
role in the catabolism of amino acids when they become the 
most important source of energy in nutrient-poor environments 
(Wang et al., 2001). In addition, indole can provide important 
phenotypic changes in P. aeruginosa, as well as for other non-
indole-producing microorganisms (Lee et al., 2015), including 
the inhibition of biofilm formation (Frei et al., 2012) and 
inhibition of antibiotic tolerance (Lee et al., 2009). Indole is 
very toxic to sensitive organisms, possibly leading to changes 
in membrane permeability as a result of the generation of a 
superoxide ion (Garbe et al., 2000). However, the 
antimicrobial effect of indole can be suppressed by 
pseudomonads through the modification or degradation of the 
molecule by the action of oxygenases (Ma et al., 2015). 
Disregarding the complexity of environments that exert high 
selective pressures, as well as the interactions between all 
species that coexist in certain ecosystems, the results suggest 
that indole and pyocyanin may play an important role in events 
related to the disturbance of P. aeruginosa and E. coli biofilm 
formation. Further investigations need to be conducted to 
confirm the degree of participation of these exometabolites in 
the cell aggregation of the two species. It is suggested that the 
synthesis of indole and pyocyanin represent a clear example 
that exometabolites produced as metabolic strategies 
associated with amensalism can contribute to the balance of 
populations between two competing species since, for both 
indole and pyocyanin, the cell adhesion to surfaces can be 
disturbed but not totally inhibited. 
 
Conclusion 
 
Under the conditions evaluated by this study, indole and 
pyocyanin disturbed the adhesion of P. aeruginosa and E. coli, 
however E. coli was more sensitive to pyocyanin than P. 
aeruginosa to indole. Additionally, adherent cells were 
detected under conditions where the percentage of adherence 
reached values around 20%. Adherences were considered from 
weak to moderate and the best percentages of adherence were 
obtained with P. aeruginosa, suggesting that in an eventual 
competition between E. coli and P. aeruginosa, the second 
seems to have more advantages and persist for a longer time. 
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