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ARTICLE INFO  ABSTRACT 
 
 

We have discovered a truly marvelous proof, which this article can contain. Indeed, this article has the goal 
of present a solution to Fermat s Last Theorem. It is a Diophantine equation that has enchanted all subjects of 
the mathematical world for centuries due to your frugality. So near, and yet so distant. The equation  was and 
still a enigma. By the year of 1993, the British mathematician Andrew Willes presented to the world a 
solution. But, we believe in not several ways, but, at least, in more than one way that can solve it. Or, yet, we 
are trying to reach the same point, through a different point of view. Unlikely, but possible. A simple and 
straight resolution; moreover, compatible with the seventeenth Fermat´s environment, time and geniality. 
After all, as Da Vinci stated centuries ago, “simplicity is  the ultimate sophistication”. 
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INTRODUCTION 
 
According to Pierre Fermat, the equation  𝑎 = 𝑏 + 𝑐   with {n > 
2|n ∈ ℕ } has no solution in which (𝑎, 𝑏, 𝑐) ∈ 𝑁. This is the Fermat´s 
last theorem. It was one of the last enigmas of the mathematical in 
world and persisted for more than three centuries. By the year of 
1993, Fermat´s Last Theorem was mathematically demonstrated by 
Andrew Willes, in a paper, initially with more than two hundreds 
pages. The British mathematician used sophisticated concepts and 
tools that were not known at Fermat´s time. In this paper, we are 
going to use plane geometry, trigonometric functions and algebraic 
principles to demonstrate the truthiness of the theorem. 
 
Argument and Proof 
 
Equation notation 
 
Suppose the equation 
 

𝑎𝑛 = 𝑏𝑛 + 𝑐𝑛                                                                          (1) 
 
Then, by the statement that the whole is greater than the parts, we 
have  𝑎   > 𝑏 and  𝑎   > 𝑐 . That is to say that  𝑎  > 𝑏  and   𝑎  > 𝑐 . 
Thereby, the three possible ways that a is related to the sum of (𝑏 +
𝑐) are: 

 
𝑎 < 𝑏 + 𝑐 ,                                                                            (2) 
𝑎 = 𝑏 + 𝑐 ,                                                                            (3) 
𝑎 > 𝑏 + 𝑐 .                                                                            (4) 
 
Whence, (2), (3) and (4) imply, respectively: 
 
𝑎 < (𝑏 + 𝑐) ,𝑎 = (𝑏 + 𝑐)  and   𝑎 > (𝑏 + 𝑐)  
 
Yet, developing the binomial (𝑏 + 𝑐) , as result we have:  
 

(𝑏 +  𝑐) = 𝑏 +
𝑛
1

𝑏 𝑐 + ⋯ +
𝑛

𝑛 − 1
 𝑏 𝑐 +  𝑐    

 
Considering the binomial´s development; and, comparing with (4), it 
will always have 𝑎 > 𝑏 + 𝑐 ,  because, 𝑎 > (𝑏 + 𝑐) . So, (1) 
will never find solution in (4). Yet, comparing the binomial´s 
development with (2) and (3), these remains possible as solution of 
(1). 
 
So, there will be (1), if and only if: 
 
𝑎 > 𝑏 ,      𝑎 > 𝑐     and     𝑎 ≤ 𝑏 + 𝑐 . 
 
Argument: If   𝑎 > 𝑏 ,   𝑎 > 𝑐   and   𝑎 ≤ 𝑏 + 𝑐, then, it is to say 
geometrically that (𝑎, 𝑏, 𝑐) satisfies the condition of existence of a 
triangle, according to the triangle inequality theorem. Yet, the only 
two possibles orders for the tern (𝑎, 𝑏, 𝑐) are the following: 
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𝑎 > 𝑏 > 𝑐      or     𝑎 > 𝑐 >  𝑏 
 
For proof and argument purpose, we are going to consider 𝑎 > 𝑐 > b. 
At this time, we register that either one of the orders chosen will not 
neither mislead the proof development, nor the final result of it. So, a, 
b and c will stand for the sides of a triangle, and also as its scalar 
measures. Because of that, we have the geometrical argument below. 
 

 
Figure 1. 

 
Then, we make the triangle △ ( 𝑎 , 𝑏, 𝑐), as shown at the Fig. 1. Next, 
 𝑏  and 𝑐 are extend until it fits the segment 𝑎𝑛; and, 𝑎 ∥ 𝑎  . As a 

result of it, two similar triangles with parallel bases 𝑎 and 𝑎𝑛 are 
formed. Thus, by the proportionality statement, the similarity ratio of 

these two triangles is 𝑎𝑛−1. Yet again, by the proportionality 
statement, it is possible to obtain the other two sides of the bigger 

triangle of base 𝑎𝑛: 𝑎𝑛 −1  ∙  𝑏 and 𝑎𝑛 −1  ∙  𝑐 . 
 

On the other hand, if  𝑎𝑛 = 𝑏𝑛 + 𝑐𝑛  (1), there will be a point P 

which separates 𝑏𝑛 from 𝑐𝑛  on 𝑎𝑛. And, P could or could not be 

coincident with the orthogonal projection of V, that is V´, on 𝑎𝑛. 
 
Proof 
 
Hypotheses and resolutions 
 
Suppose exists 𝑎𝑛 = 𝑏𝑛 + 𝑐𝑛  (1) with (𝑎, 𝑏, 𝑐) ∈ ℕ and   {𝑛 >

2| 𝑛 ∈ ℕ} ; and P, which separates 𝑏𝑛 from 𝑐𝑛  on 𝑎𝑛, could or not to 
be coincident with the orthogonal projection of V: V´. From it, there 
will be three situations. 
 
Situation – 1 
 
𝑏𝑛 >  𝑎𝑛 −1  ∙  𝑏 ∙ cos 𝛿    (5)    and    𝑐𝑛 <  𝑎𝑛 −1  ∙  𝑐 ∙ cos 𝛽      (6).  
 

If and only if, P is on the left of V´. 
 
Situation – 2 
 

𝑏 =  𝑎   ∙  𝑏 ∙ cos 𝛿    (7)    and    𝑐 =  𝑎   ∙  𝑐 ∙ cos 𝛽   (8).  
 

If and only if, P is coincident with V´.  
 

Situation – 3 
 

𝑏  < 𝑎   ∙  𝑏 ∙ cos 𝛿    (9)    and    𝑐  > 𝑎   ∙  𝑐 ∙ cos 𝛽   (10).  
 

If and only if, P is on the right of V´. 
 

Regardless of the presented situations, we will have: 
 

cos 𝛿 =
( ) 

 ∙ 
   and   cos 𝛽 = 

( ) 

 ∙ 
 

And, there they are the demonstrations for each situation. 
 
Proof: situation – 1. 
 

From (5) and (6): 
𝑏 >  𝑎   ∙  𝑏 ∙ cos 𝛿    (5)    and    𝑐 <  𝑎   ∙  𝑐 ∙ cos 𝛽   (6).  
 
If cos 𝛿 and cos 𝛽 are replaced in (5) and (6), it results: 

𝑏 > 
 [ ( )]

 and    𝑐 < 
 [ ( )]

, 

or 
 

− 𝑏 <  −
 [ ( )]

                                                         (11)      

 and       

 𝑐 < 
 [ ( )]

                                                                (12) 

Whence, summing (11) and (12): 
 

𝑐 − 𝑏  <   𝑎 ∙ (𝑐 − 𝑏 )       or       𝑎 >
( )

( )
             (13)  

 
Next, effecting the division on the second member of inequality (13), 
we have: 
 

𝑎 > 𝑐 + 𝑐 ∙ 𝑏 +
∙

                                               (14)  

 
And, multiplying both members of the inequality above times 𝑎  : 
 

𝑎 > 𝑎 ∙ 𝑐 + 𝑎 ∙ 𝑐 ∙ 𝑏 + 𝑎 ∙
∙

                               (14)  

 

From (14), and considering 𝑎2 ∙ 𝑐
𝑛−2

> 𝑐𝑛,    𝑎2 ∙ 𝑐
𝑛−4

∙ 𝑏2 > 𝑏𝑛  

where  𝑎 > 𝑐 > b; hence,  𝑎𝑛 > 𝑏𝑛 + 𝑐𝑛.  
 

So,  𝑎𝑛 > 𝑏𝑛 + 𝑐𝑛  whenever the point P (yet again, that separates 𝑏𝑛 

from 𝑐𝑛 ) is on the left side of V´. It is proved the nonexistence of  

𝑎𝑛 = 𝑏𝑛 + 𝑐𝑛   (1) for the situation 1, whenever  𝑛 > 2.  
 
Proof: situation – 2 
 
From (7) and (8): 
 
𝑏 =  𝑎   ∙  𝑏 ∙ cos 𝛿    (7)    and    𝑐 =  𝑎   ∙  𝑐 ∙ cos 𝛽        (8) 
 
And, by subtracting  𝑐 − 𝑏  , it results: 
 
𝑐 − 𝑏 =  𝑎   ( 𝑐 ∙ cos 𝛽 − 𝑏 ∙ cos 𝛿)  . 
 
Replacing the cosines, we have: 
 

𝑐 − 𝑏 =  𝑎   𝑐 ∙
 ( )

∙
− 𝑏 ∙

 ( )

∙
   . 

 
Thus, 
 

𝑎   =  . 

 
Next, effecting the division on the second member of the equation 
above, and multiplying both terms times  𝑎  : 
 

𝑎 = 𝑎 ∙ 𝑐 + 𝑎 ∙ 𝑐 ∙ 𝑏 + 𝑎 ∙
∙

       . 

 
This result is similar to the one from situation – 1, inequality (14). 
Obviously, switching the signal from “>” to the “=”; since, this 
result is an equation, and there is an inequality. But, if 𝑎 ∙ 𝑐 >
 𝑐   and  𝑎 ∙ 𝑐 ∙ 𝑏  >  𝑏 ; then, it is to be concluded that  
𝑎 > 𝑏 + 𝑐 , every time that P coincides with V´.  
 
Nevertheless, remains another key issue: the assumption 
that(𝑎, 𝑏, 𝑐) ∈ ℕ. Regarding this issue, we can prove that 𝑎 is note 
integer. 
 
Returning to (7) and (8), if we replace the cosines on these equations, 
it results: 

𝑏 =  𝑎  ∙ 𝑏 ∙
 ( )

∙
     and     𝑐 =  𝑎  ∙ 𝑐 ∙

 ( )

∙
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whence, 
 

𝑏 =  
 [  ( )]

     and     𝑐 =
 [  ( )]

   

 
Thus,  
 
𝑎 − (𝑐 − 𝑏 )𝑎 − 2𝑏  = 0                                                  (15)      
 
and     
 
𝑎 + (𝑐 − 𝑏 )𝑎 − 2𝑐  = 0                                                   (16) 
 
Now, considering (15) and (16) as polynomial equations of degree n 
in a, with integers an non-zero coefficients; then, none of them will 
have integer roots. It happens, because, from the hypotheses we have 
(𝑎, 𝑏, 𝑐)  coprimes pairwise; and, thereby, a will not divide neither 
2𝑏  , nor 2𝑐  . As consequence, it is proved that 𝑎 ∉ ℕ , which is 
against the hypotheses; where (𝑎, 𝑏, 𝑐, 𝑛) ∈ ℕ . 
 
So, it is proved the nonexistence of 𝑎 = 𝑏 + 𝑐    (1) for the 
situation – 2, whenever  𝑛 >  2 . 
 
Proof: situation – 3 
 
Once again, returning to Fig. 1, consider the similar triangles  
△ (𝑉, 𝑋, 𝑌) ≈△ (𝑉, 𝑀, 𝑁), from where: 
 

=       or       =    

But, as 
 

cos 𝛿 =      and     𝑋𝑀 =  , 

 
so, 
 

  
=                                                                                   (17)  

 
However, 
 
𝑉𝑋 =  𝑎  ∙ 𝑏,  𝑋𝑃 =  𝑏 ,  𝑀𝑁 = 𝐿   and   𝑋𝑌 =  𝑎    

 
Hence, (17) can be written as: 
 

∙   

∙
=      or     

∙ ∙   

∙ ∙
=   

 
Then,  
 

𝐿 =
∙ ∙

                                                                  (18) 

 
Therefore, returning to Fig. 1, and now considering the similar 
triangles △ (𝑄, 𝑃, 𝑌) ≈△ (𝑄, 𝑀, 𝑁), we have: 
 

=       or       =  . 

 
But, as  
 

tan 𝛽 =    or    𝑄𝑃 = 𝑃𝑌 ∙ tan 𝛽   and   tan 𝛿 =    or   𝑃𝑀 =

𝑃𝑋 ∙ tan 𝛿 , 
 
then 
 

 ∙  ∙ 

  ∙ 
=

 
 , 

 

So,  
 

 ∙  ∙ 
 ∙ 

=   , 

 
whence 
 

𝐿 =
 ∙  ∙ 

     (19).  

 
Continuing into the proof development, we compare (18) and (19), 
and it results: 
 

∙ ∙
=

∙ ∙
     , 

 
And, when we substitute  tan 𝛽  and  tan 𝛿  we come to: 
 

∙ ∙
=

∙
  

∙

 , 

 
or 
 

∙ ∙
=

∙ ∙ ∙ ∙

∙    

 
So,  
 

∙ ∙
=

∙ ∙ ∙ ∙

∙
∙  , 

 
whence 
 

∙ ∙
=

∙ ∙ ∙ ∙

∙
, 

 
then 
 

𝑎 ∙ cos 𝛿 − 𝑎 ∙ 𝑏 =
∙ ∙ ∙ ∙

 , 

 
hence 
 
𝑎 ∙ sin 𝛽 ∙ cos 𝛿 − 𝑎 ∙ 𝑏 ∙ sin 𝛽 = 𝑐 ∙ sin 𝛽 ∙ cos 𝛿 − 𝑏 ∙
sin 𝛿 ∙ cos 𝛽. 
 
And, from the hypothesis  𝑎 = 𝑏 + 𝑐   (1), then,  
 
(𝑏 + 𝑐 ) ∙ sin 𝛽 ∙ cos 𝛿 − 𝑎 ∙ 𝑏 ∙ sin 𝛽 = 𝑐 ∙ sin 𝛽 ∙ cos 𝛿 − 𝑏 ∙
sin 𝛿 ∙ cos 𝛽, 
 
or 
 
𝑏 ∙ sin 𝛽 ∙ cos 𝛿 − 𝑎 ∙ 𝑏 ∙ sin 𝛽 = −𝑏 ∙ sin 𝛿 ∙ cos 𝛽. 
 
So,  
 
𝑏 ∙ (sin 𝛽 ∙ cos 𝛿 + sin 𝛿 ∙ cos 𝛽) = 𝑎 ∙ 𝑏 ∙ sin 𝛽, 
 
thus 
 
𝑏 ∙ sin(𝛽 + 𝛿) = 𝑎 ∙ 𝑏 ∙ sin 𝛽, 
 
or yet 
 
𝑏 ∙ sin(𝛽 + 𝛿) = 𝑎 ∙ sin 𝛽. 
Therefore,  
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( )
=                                                                           (20) 

 
However, from △ ( 𝑎 , 𝑏, 𝑐), Fig. 1, and by the law of sines, the 
outcome is: 
 

= =   , 

 
where 
 

=                                                                                  (21) 

 
Comparing (20) with (21), it results: 
 

( )
=   →   sin 𝛼 = sin(𝛽 + 𝛿)   ∴    𝛼 = 𝛽 + 𝛿. 

 
And, since 𝛼 + 𝛽 + 𝛿 = 180° ; therefore, 2𝛽 + 2𝛿 = 180° ; or, yet, 
𝛽 + 𝛿 = 90° . When ce, 𝛼 = 90° . 
 
As consequence, it is mandatory that the triangle △ ( 𝑎 , 𝑏, 𝑐), Fig. 1, is 
a rectangle triangle, which implies: 
 
𝑎 = 𝑏 + 𝑐                                                                                  (22) 
 
And, in these terms, the equation (22) is equivalent to the equation 
(1). It implies that the exponentes of both equations are the same, 
with 𝑛 = 2. 
 
Finally, remains proved that for the situation 3, where (𝑎, 𝑏, 𝑐, 𝑛) ∈ ℕ 
and 𝑎 = 𝑏 + 𝑐  (1), never will be possible if 𝑛 > 2 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 
Acknowledging that  𝑎 = 𝑏 + 𝑐  (1) will have three, and only 
three, possibilities for the position of the point P, that separates 𝑏  
from 𝑐   on 𝑎  as shown at Fig. 1, then, it implies in the three 
situations investigated at the argument and proof section. The 
situations 1, 2, and 3 were able to prove the truthiness of Fermat´s 
Last Theorem. For the situation 1, it is proved the nonexistence of (1), 
because 𝑎 > 𝑏 + 𝑐  when 𝑛 > 2 . About the situation 2, under the 
same conditions foreseen by the hypotheses, it is repeated the 
nonexistence of (1). That is 𝑎 > 𝑏 + 𝑐  , whenever 𝑛 > 2 . 
 
At last, on the analysis of situation 3, we were able to prove the only 
one outcome possible is 𝑛 = 2. 
 
Therefore, and as seen, there is nothing else to prove. Q.E.D.  
 

REFERENCES 
 
Alencar Filho E. 1981. Teoria elementar dos números. Nobel. 
Courant HRR. Courant R, Robbins, H. & Stewart, I. 1996. What is 

Mathematics?: an elementary approach to ideas and methods. 
Oxford University Press, USA. 

de Oliveira Santos, J. P. 1998. Introdução à teoria dos números. 
Instituto de Matemática Pura e Aplicada. 

Hogben LT. 1952. Maravilhas da matemática. Editora Globa Rio de 
Janeiro. 

Niven I. 1984. Números: racionais e irracionais. SBM. 
Pettofrezzo A. J. & Byrkit DR.1972. Introduccíon a la teoría de los 

números [por] Anthony J. Pettofrezzo [y] Donald R. Byrkit. Trad. 
y adapt.: Rolando J. Pomareda. Prentice-Hall International. 

Spiegel, M. R. 2019. Manual de fórmulas e tabelas matemáticas. 

******* 

59688                                                                       Severino Batista Brito, Fermat´s last Theorem: A geometric proof 
 


