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ARTICLE INFO  ABSTRACT 
 

We present a general conception of intrinsic metric and study some of its properties. We provide for general 
regular Dirichlet forms. Given a regular, strongly local Dirichlet form ℇ, the local doubling and local Poincaré 
inequalities are satisfied, we obtain that: the intrinsic differential and distance structures of ℇ coincide. 
 
 
 
 
 
 
 
 
 
 

 
Copyright©2023, Hanana Elnage. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 
 
 
 

 
1. INTRODUCTION 
 
The aim of this paper is to propose an extension of the conception of intrinsic metric from strongly local Dirichletforms to the general case, and 
show that if the measure space, equipped with the intrinsic metric associated with a strongly local Dirichlet form, is doubling, supports a (1, 2)-
Poincaré inequality. In Section 2 we then present a general concept of intrinsic metric. In Section 3, we recall some basic property of general 
regular strongly local Dirichlet forms ℇ, and present the weak coincidence of the intrinsic distance and differential structures of 𝒥 established in 
[8]. Some finer properties, which are essentially established in [7,9], are also given with the additional local Poincaré and doubling assumptions; 
see Lemma 3.4 and Lemma 3.5. 

   
Let 𝑋 be a locally compact, separable metric space, 𝑚 a positive Radon measure on 𝐶 with supp𝑚 = 𝑋. The functions on 𝐶 we consider will all 
be real valued. By 𝜔଴(𝑋) denote the set of continuous function on 𝑋 with compact support and ℇ is regular Dirichlet form. The𝓅 is a pseudo-
metric on 𝑋and 𝐴ଶ ⊂ 𝑋, a pseudo-metric 𝓅: 𝑋 × 𝑋 → [0, ∞] is called an intrinsic metric with respect to the Dirichlet form ℇ, A map 𝓅: 𝑋 × 𝑋 →
[0, ∞] if 𝓅(𝑥௡ , 𝑥௡) = 0, 𝓅(𝑥௡, 𝑥௡ାଵ) = 𝓅(𝑥௡ାଵ, 𝑥௡) , and 𝓅(𝑥௡ , 𝑥௡ାଵ) ≤ 𝓅(𝑥௡, 𝑥௡ାଶ) + 𝓅(𝑥௡ାଶ, 𝑥௡ାଵ) for all 𝑥௡, 𝑥௡ାଵ, 𝑥௡ାଶ ∈ 𝐶. That 
 

∑ ቚ𝓅(𝑥௡, 𝑥௡ାଵ) − 𝓅 ቀ𝑥௡
ᇱ , 𝑥

௡ାذଵ
ᇱ ቁቚ ≤ 𝓅 ∑(𝑥௡, 𝑥௡

ᇱ ) + (𝑥௡ାଵ, 𝑥௡ାଵ
ᇱ ). 

 
We emphasize that 𝓅  may not be continuous with respect to the original topology. 
 
As 𝓅is a pseudo-metric, then so is 𝓅 ∧  𝒯for any 𝒯 ≥ 0. That 
 
(𝓅 ∧  𝒯)஺మ = 𝓅஺మ  ⋀ 𝒯, 
 

and the estimate 
 
∑|𝓅஺మ(𝑥௡) ∧ 𝒯 − 𝓅஺మ(𝑥௡ାଵ) ∧ 𝒯| ≤ 𝓅 ∑(𝑥௡ , 𝑥௡ାଵ). 
 
We assumption tow spaces of all measurable real valued functions, one of these is 𝐿ଶ(𝑋) and another is 𝐿ஶ(𝑋, 𝑚), ℳ is dense subspace that 
ℳ ⊂ 𝐿ଶ(𝑋, 𝑚).The space ℳ௟௢௖

∗  of functions locally in domain is defined to be the set of all functions 𝑢௝ ∈ ℳ௟௢௖. 
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Also ℳ௟௢௖
∗ and the measures 𝜇(∗) are well compatible with approximation via cut-off procedures see Lemma 2.5. 

 
We can extend 𝜇(௕) to the space ℳ௟௢௖

∗ , to do that we define for ℱ ⊂ 𝑋measurable and 𝑢௝ ∈ ℳ௟௢௖
∗ , 

 

𝜇(௕)൫𝑢௝൯(ℱ) ∶= 𝜇(௕)൫𝑢௝൯ ≔ ∫ ቀ𝑢ఫ෥ (𝑥௡) − 𝑢ఫ෥ (𝑥௡ାଵ)ቁ
ଶ

ℒ(𝑑𝑥௡ , 𝑑𝑥௡ାଵ)
ℱ×௑ିௗ

. 
 

Proposition 1.1.  For 𝑢௝ ∈ ℳ௟௢௖
∗ , the map 𝜇(௕)൫𝑢௝൯(∙) is a Radon measure. 

 
Proof:  We only have to show, that 𝜇(௕) is inner regular, the rest is obvious. For this let ℱ ⊂ 𝑋be measurable. As ℒis a Radon measure, 

𝜇(௕)൫𝑢௝൯(ℱ) can be approximated by ∫ ቀ𝑢ఫ෥ (𝑥௡) − 𝑢ఫ෥ (𝑥௡ାଵ)ቁ
ଶ

ℒ(𝑑𝑥௡, 𝑑𝑥௡ାଵ)
ఝ

 with 𝜑 ⊂ ℱ × 𝑋 − 𝑑compact. But then 𝜇(௕)൫𝑢௝൯(𝜑ᇱ) =

∫ ቀ𝑢ఫ෥ (𝑥௡) − 𝑢ఫ෥ (𝑥௡ାଵ)ቁ
ଶ

ℒ(𝑑𝑥௡ , 𝑑𝑥௡ାଵ).
ఝᇲ×஼ିௗ

 with 𝜑ᇱ ≔ {𝑥௡ ∈ 𝑋 ∶ ∃𝑥௡ାଵ ∈ 𝐶with(𝑥௡, 𝑥௡ାଵ) ∈ 𝜑}with the projection from 𝜑on the first 

component also approximates 𝜇(௕)൫𝑢௝൯(ℱ). As 𝜑ᇱis compact the desired regularity follows.  
 
We proved that the intrinsic distance 𝑑ℇ of Dirichlet form ℇ is given by the original distance 𝑑 on 𝑋, and hence that the intrinsic differential and 
distance structures of ℇ coincide, that is, for all 𝑢௝ ∈ Lipௗ𝒥

(𝑋) 
 
𝑑

𝑑𝑝
𝛤൫𝑢௝ , 𝑢௝൯ = ቀLipௗ𝒥

𝑢௝(𝑋)ቁ
ଶ

,   𝑎. 𝑒                                                                                                                                                                                              (1) 

 
Relies on a weak coincidence (much weaker than (1) of the intrinsic distance and differential structures given by Lemma 3.1, which holds for 
general regular strongly local Dirichlet forms.  
 
1. Intrinsic metrics and their applications 
 
Accessing strongly local Dirichlet forms the intrinsic metric is a punchy tool. It has been used in studying decay of heat kernels, the investigation 
of Harnack inequalities and to get good cut-off functions in the study of spectral properties cf [2, 3, 4, 12, 13]. First we introduced some define. 
 
Definition 2.1.  Let ℛ௕and ℛ௕ାఢ is two Radon measures, that  ℛ௕ + ℛ௕ାఢ ≤ ℛsuch that for all 𝐴ଶ ⊂ 𝑋and all 𝒯 > 0, 
 
𝓅஺మ ∧ 𝒯 ∈ ℳ௟௢௖

∗ ∩ 𝜔(𝑋) 
 
also 
 

𝜇(௕)(𝓅஺మ ∧ 𝒯) ≤ ℛ௕     𝑎𝑛𝑑  𝜇(௕ାఢ)(𝓅஺మ ∧ 𝒯) ≤ ℛ௕ାఢ , the standard Euclidean distance, 𝓅(𝑥௡, 𝑥௡ାଵ) ≔ |𝑥௡ − 𝑥௡ାଵ|, is an intrinsic metric for ℇ. 
We have norm definition follow.  
 
Definition 2.2.   Let ℱ ⊂ 𝑋and 𝑠 ≥ 0. Hence, ℱ is linked to cut-off function into extent 𝑠, 
 
𝜉ℱ,௦(𝑥௡) ≔ (1 − 𝓅ℱ(𝑥௡) 𝑠⁄ )ା, 
 
for some ball 𝐵 ≔ 𝐵(𝑥௡, 𝑑), where 𝑑 is radius the intrinsic impart 𝐵ௗ(ℱ) ≔ {𝑥௡ ∈ 𝑋: 𝓅ℱ(𝑥௡) ≤ 𝑑}, when ℱ is a set, the intrinsic boundary its 
𝐴ௗ

ଶ (ℱ) ≔ 𝐵௦(ℱ) ∩ 𝐵௦(ℱᇱ). 
 
Now we show some properties of intrinsic metrics 
 
Proposition 2.3.   let 𝐴ଶ ⊂ 𝑋,and 𝓅(஺మ)(𝑥௡) < ∞for all 𝑥௡ ∈ 𝑋, let 𝓅 be an intrinsic. Then 𝓅(஺మ) ∈ ℳ௟௢௖

∗ ∩ 𝜔(𝑋), 𝜖 ≥ 0  and 𝜇(௕ାଶఢ)൫𝓅(஺మ)൯ ≤

ℛ . 
 
Proof:  See Definition 2.1,𝓅஺మ ∧ 𝒯for any 𝒯. We have (𝓅஺మ ∧ 𝒯) ∈ ℳ௟௢௖

∗  and 𝜇(௕ାଶఢ)(𝓅஺మ ∧ 𝒯) ≤ ℛ௕ + ℛ(௕ାఢ) = ℛ, for any 𝒯 > 0.  
 
Proposition 2.4.   Let 𝜔 be a bound and 𝓅 is an intrinsic metric, ℱ ⊂ 𝑋, 𝑠 > 0. Then 𝜉ℱ,௦ ∈ ℳ௟௢௖

∗ ∩ 𝜔(𝑋) and 𝜇(௕ାଶఢ)൫𝜉ℱ,௦൯ ≤ (1 𝑠ଶ⁄ )ℛ. 
Moreover, if 𝐵௦(ℱ) is relatively compact, then 𝜉ℱ,௦ ∈ ℳ ∩ 𝜔଴(𝑋). 
Proof: 𝒢 ℱis continuous, 𝜉ℱ,௦is so as well. Moreover, 𝒢 ℱbelongs to ℳ௟௢௖

∗ by Proposition 2.3and as Dirichlet form, ℱis compatible with cut-off 
procedures. Hence 𝜉ℱ,௦ ∈ ℳ௟௢௖

∗ . In order to show the claimed upper bound on 𝜇(௕ାଶఢ)൫𝜉ℱ,௦൯, we recallthat 𝜇(௕ାఢ)൫𝜉ℱ,௦൯ ≤ (1 𝑠ଶ⁄ )𝜇(௕ାఢ)(𝒢ℱ), 
see [5]. Moreover, since ห𝜉ℱ,௦(𝑥௡) − 𝜉ℱ,௦(𝑥௡ାଵ)ห ≤ (1 𝑠⁄ )|𝒢ℱ(𝑥௡) − 𝒢ℱ(𝑥௡ାଵ)|,we have 𝜇(௕)൫𝜉ℱ,௦൯ ≤ (1 𝑠ଶ⁄ )𝜇(௕)(𝒢ℱ). Therefore, thebound 
𝜇(௕ାଶఢ)(𝓅ℱ) ≤ ℛfrom Proposition 2.3implies the bound 𝜇(௕ାଶఢ)൫𝜉ℱ,௦൯ ≤ (1 𝑠ଶ⁄ )ℛ.  
 
Here need introduce result about intrinsic metrics in follow Lemmas.  
 
Lemma 2.5.   Let 𝑢௝ ∈ 𝐿௟௢௖

ஶ ∪ ℳ௟௢௖and assume that there is a Radon measure ℛଵ such that for every 𝒯 > 0 one has ൫𝑢௝൯
𝒯

≔ ൫𝑢௝⋀𝒯൯⋁(−𝒯) ∈

ℳ௟௢௖
∗ and 𝜇(௕)൫𝑢௝൯

𝒯
≤ ℛଵ. Then 𝑢௝ ∈ ℳ௟௢௖

∗ and 𝜇(∗)൫𝑢௝൯ = lim𝒯→ஶ 𝜇(∗)൫𝑢௝൯
𝒯

 for ∗= 𝑏, (𝑏 + 𝜖), (𝑏 + 2𝜖). In particular, 𝜇(௕)൫𝑢௝൯ ≤ ℛଵ. 

 
Proof: Note that 𝑢௝ ∈ 𝐿௟௢௖

ஶ agrees locally with ൫𝑢௝൯
𝒯

for 𝒯big enough. Thus, obviously 𝑢௝belongs to ℳ௟௢௖. Therefore we only have to show that 

න ቀ𝑢ఫ෥ (𝑥௡) − 𝑢ఫ෥ (𝑥௡ାଵ)ቁ
ଶ

ℒ ൫𝑑(𝑥௡), 𝑑(𝑥௡ାଵ)൯ < ∞.

ఝ×௑ିௗ
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This follows as ൬൫𝑢௝൯
𝒯

(𝑥௡) − ൫𝑢௝൯
𝒯

(𝑥௡ାଵ)൰
ଶ

 converges monotonically to ቀ𝑢௝(𝑥௡) − 𝑢௝(𝑥௡ାଵ)ቁ
ଶ
 and 

 

න ൬൫𝑢௝൯
𝒯

(𝑥௡) − ൫𝑢௝൯
𝒯

(𝑥௡ାଵ)൰
ଶ

ℒ 𝑑(𝑥௡), 𝑑(𝑥௡ାଵ) ≤ ℛଵ(𝜑) < ∞

ఝ×௑ିௗ

, 

 

uniformly in 𝒯. For ∗= 𝑏, (𝑏 + 𝜖)the convergence of 𝛽(∗) ቀ൫𝑢௝൯
𝒯

ቁ is also clear by monotone convergence. To deal with ∗= (𝑏 + 2𝜖), i.e., the 

strongly local part, we note that ൫𝑣௝൯
𝒯

→ 𝑣௝ with respect to ℇଵ for all 𝑣௝ ∈ 𝜇, see [5]. 

 
Lemma 2.6.   Let 𝓅be an intrinsic metric. Then ∫ 𝓅ଶ(𝑥௡, 𝑥௡ାଵ) ℒ(𝑑𝑥௡, 𝑑𝑥௡ାଵ) ≤ ℛ௕(ℱ)

ℱ×௑ିௗ
,  for any measurable set ℱ ⊂ 𝑋. 

 
Proof:  Let ℇ > 0 and 𝑟 > 2ℇbe arbitrary. We first consider sets ℱwith ℱ ⊂ 𝐵ℇ(𝑥௡෦) for some  𝑥௡෦. Using the fact that for 𝑥௡ ∈ ℱ 
𝓅(𝑥௡ , 𝑥௡ାଵ) ≤ 𝓅(𝑥௡ାଵ, 𝑥௡෦) − 𝓅(𝑥௡ , 𝑥௡෦) + 2𝓅(𝑥௡ , 𝑥௡෦) ≤ |𝓅(𝑥௡ାଵ, 𝑥௡෦) − 𝓅(𝑥, 𝑥෤)| + 2ℇ, we can estimate for every 𝜁 > 0 
 

න 𝓅ଶ(𝑥௡, 𝑥௡ାଵ) ℒ(𝑑𝑥௡ , 𝑑𝑥௡ାଵ)

ℱ×௑
𝓅(௫೙,௫೙శభ)வ௥

 

 

≤ (1 + 𝜁) න ൫𝓅(𝑥௡, 𝑥௡෦) − 𝓅(𝑥௡ାଵ, 𝑥௡෦)൯
ଶ

ℒ(𝑑𝑥௡, 𝑑𝑥௡ାଵ)

ℱ×௑ିௗ

+ ൬1 +
1

𝜁
൰ 4ℇଶ න 𝑑ℒ

ℱ×௑
𝓅(௫೙,௫೙శభ)வ௥

. 

 
The first term on the right side is controlled since by the definition of an intrinsic metric and by Lemma 2.5 we have 
 

න ൫𝓅(𝑥௡, 𝑥௡෦) − 𝓅(𝑥௡ାଵ, 𝑥௡෦)൯
ଶ

ℒ(𝑑𝑥௡, 𝑑𝑥௡ାଵ)

ℱ×௑ିௗ

≤ ℛ௕(ℱ). 

 

In order to control the second term on the right side we estimate for 𝑥௡ ∈ ℱand 𝑥௡ାଵ ∈ 𝑋with 𝓅(𝑥௡ , 𝑥௡ାଵ) > 𝑟 
𝓅(𝑥௡ାଵ, 𝑥௡෦) − 𝓅(𝑥௡ , 𝑥௡෦) ≥ 𝓅(𝑥௡ାଵ, 𝑥௡) − 2𝓅(𝑥௡ , 𝑥௡෦) ≥ 𝑟 − 2ℇ,  
 

which yields ∫ 𝑑ℒℱ×௑
𝓅(௫೙,௫೙శభ)வ௥

≤
ଵ

(௥ିଶℇ)మ ∫ ൫𝓅(𝑥௡, 𝑥௡෦) − 𝓅(𝑥௡ାଵ, 𝑥௡෦)൯
ଶ

ℒ(𝑑𝑥௡ , 𝑑𝑥௡ାଵ)
ℱ×௑ିௗ

. 

 
Putting these estimates together we infer that 
 

න 𝓅ଶ(𝑥௡, 𝑥௡ାଵ) ℒ(𝑑𝑥௡, 𝑑𝑥௡ାଵ)

ℱ×௑ିௗ

≤ ቌ1 + 𝜁 + ൬
2ℇ

𝑟 − 2ℇ
൰

ଶ

൬1 +
1

𝜁
൰ቍ ℛ௕(ℱ). 

 

With this estimate at hand, we can now pass to arbitrary compact sets ℱ. An arbitrary compact ℱcan be covered by finitely many disjoint sets ℱ௡, 
each one being contained in an intrinsic ball 𝐵 ≔ 𝐵(𝑥௡, 𝑠). In this way, the previous estimate extends to arbitrary compact ℱ. Letting first 𝜐 → 0, 
then 𝜁 → 0 and finally 𝑟 → 0 we obtain the desired estimate for all compact sets ℱ. The general case follows from regularity.  
 
Remarks 2.7. 
 
(i) If ℇ is a regular form on (𝑋, 𝑝), that ℇ ∈ ℳ௟௢௖, for all 𝑢௝ ∈ ℳ௟௢௖ the exists a quasi-continuous version 𝑢ఫ෕  . 
 
(ii) If 𝓅଴ be a pseudo-metric, 𝓅ଵ  be an intrinsic metric, and 𝓅଴ ≤ 𝓅ଵ.Then 𝓅଴ is an intrinsic metric 
 

෍ห𝓅଴,஺మ(𝑥௡) − 𝓅ଵ,஺మ(𝑥௡ାଵ)ห ≤ ෍ 𝓅଴(𝑥௡ , 𝑥௡ାଵ) ≤ 𝓅ଵ(𝑥௡, 𝑥௡ାଵ). 

 

(iii) If 𝑋 = ℝௗ , 𝑑 ≥ 1, with Lebesgue measure for 𝐴ଶ ⊂ ℝௗand 𝒯 > 0  the function 𝓅஺మ ∧ 𝒯is Lipschitz continuous its gradient exists and equals 
|∇(𝓅஺మ ∧ 𝒯)| = 1 on {𝓅஺మ < 𝑇} and {𝓅஺మ ≥ 𝒯}. Whenever 𝜚 
 
𝓅஺మ(𝑥௡) ≔ inf

𝑥௡ାଵ ∈ 𝐴ଶ
 𝓅(𝑥௡ , 𝑥௡ାଵ). 

 
We have given sense to ℇ൫𝑢௝ , 𝜙൯ for 𝑢௝ ∈ ℳ௟௢௖

∗ and 𝜑 ∈ ℳwith compact support. In a similar way, the expression ℎ൫𝑢௝ , 𝜙൯ is meaningful for 
𝑢௝ ∈ ℳ௟௢௖

∗ (ℎ) and 𝜑 ∈ ℳ(ℎ)  with compact support. 
 
Definition 2.8.   A function 𝑢௝ ∈ ℳ௟௢௖

∗ (ℎ)\{0}is called a generalized eigen-function corresponding to the generalized eigen value 𝜆 ∈ ℝ if 
ℎ൫𝑢௝ , 𝜑൯ = 𝜆൫𝑢௝ , 𝜑൯ for all 𝜑 ∈ ℳ(ℎ) with compact support. The next theorem gives an effective bound on the infimum of the spectrum by 
representing the form. It requires that the generalized eigen function has a fixed sign. 
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Theorem 2.9.   Let ℎ = ℇ + 𝑣௝with 𝑣௝
ା ∈ ℳ଴, 𝑣௝

ି ∈ ℳଵ and ℇa regular Dirchlet form. Let 𝑢௝be a generalized eigen-function to the eigen-value 
𝜆with 𝑢 ≠ 0 q.e. and 𝑢௝

ିଵ ∈ ℳ௟௢௖
∗ . Then the formula 

 

෍ ℎ(𝜙, 𝜓) − 𝜆(𝜙, 𝜓) = න ෍ 𝑢௝(𝑥)𝑢௝(𝑦)𝑑Γ൫𝜙𝑢௝
ିଵ, 𝜓𝑢௝

ିଵ൯

௑×௑

 

 

holds true for all 𝜙, 𝜓 ∈ ℳ(ℎ) with 𝜙𝑢௝
ିଵ, 𝜓𝑢௝

ିଵ ∈ ℳ௟௢௖
∗ (ℎ)  and 𝜙𝜓𝑢௝

ିଵ ∈ ℳఠ(ℎ) . If 𝑢௝
ିଵ ∈ ℳ௟௢௖

∗ (ℎ) ∩ 𝐿௟௢௖
ஶ the formula holds true for all 

𝜙, 𝜓 ∈ ℳ(ℎ) ∩ 𝐿௟௢௖
ஶ . 

 
Here, if 𝐹is a space of functions on 𝑋, 𝐹ఠdenotes the subset of elements in 𝐹with compact support. 
 
Proof:  We follow the argument given in [18]. Without loss of generality we assume 𝜆 = 0 and 𝑘 = 0. The Leibniz rule gives 
0 = Γ൫𝑢௝ , 1൯ = Γ൫𝑢௝ , 𝑢௝𝑢௝

ିଵ൯ = 𝑢௝
ିଵ(𝑥௡)Γ൫𝑢௝ , 𝑢௝൯ + 𝑢௝(𝑥௡ାଵ)Γ൫𝑢௝ , 𝑢௝

ିଵ൯. 
 
Using the fact that 𝑢௝is a generalized eigen function, the Leibniz rule and the preceding formula we can calculate 
 

ℎ(𝜙, 𝜓) = ℇ(𝜙, 𝜓) + 𝑣௝(𝜙, 𝜓) = ℇ(𝜙, 𝜓) + 𝑣௝൫𝜙𝜓𝑢௝
ିଵ, 𝑢௝൯ = ℇ(𝜙, 𝜓) − න 𝑢௝(𝑥௡)𝑢௝𝑥ିଵ𝑑Γ൫𝜙𝜓𝑢௝

ିଵ, 𝑢௝൯

௑×௑

= ℇ(𝜙, 𝜓) + න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑Γ൫𝜙𝜓𝑢௝
ିଵ, 𝑢௝

ିଵ൯

௑×௑

= ℇ(𝜙, 𝜓) + න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝜙(𝑥௡)𝑑Γ൫𝜓𝑢௝
ିଵ, 𝑢௝

ିଵ൯

௑×௑

+ න 𝑢௝(𝑥௡)𝜓(𝑥௡ାଵ)𝑑Γ൫𝜙, 𝑢௝
ିଵ൯

௑×௑

= න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝜙(𝑥௡)𝑑Γ൫𝑢௝
ିଵ, 𝜓𝑢௝

ିଵ൯

௑×௑

+ න 𝑢௝(𝑥௡)𝑑Γ൫𝜙, 𝜓𝑢௝
ିଵ൯

௑×௑

= න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑Γ൫𝜙𝑢௝
ିଵ, 𝜓𝑢௝

ିଵ൯

௑×௑

. 

 
This gives the first statement. 
   
The argument given above can be modified to give the following results. There, we do not need the assumptions 𝑢௝ > 0 and 𝑢௝

ିଵ ∈ ℳ௟௢௖
∗ but then 

have stronger restrictions on 𝜙and 𝜓. 
 
Theorem 2.10.    Let ℎ = ℇ + 𝑣௝with 𝑣௝

ା ∈ ℳ଴ and 𝑣௝
ି ∈ ℳଵ. Let 𝑢௝be a generalized eigen function to the eigen value 𝜆. Then, 

 

ℎ൫𝑢௝𝜙, 𝑢௝𝜓൯ − 𝜆൫𝑢௝𝜙, 𝑢௝𝜓൯ = න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑𝛤(𝜙, 𝜓),

௑×௑

 

 

for all 𝜙, 𝜓 ∈ ℳ(ℎ) ∩ 𝐿ఠ
ஶwhenever 𝑢௝𝜙, 𝑢௝𝜓, 𝑢௝𝜙, 𝜓 ∈ ℳ(ℎ). In particular, the formula holds for all 𝜙, 𝜓 ∈ ℳ(ℎ) ∩ 𝐿ఠ

ஶif 𝑢௝ ∈ 𝐿ఠ
ஶ. 

 
Proof:  Without loss of generality we can assume 𝑘 = 0 and 𝜆 = 0. Using the Leibniz rule repeatedly we calculate 
 

ℇ൫𝑢௝𝜙, 𝑢௝𝜓൯ + 𝑣௝൫𝑢௝𝜙, 𝑢௝𝜓൯ = න 𝑑𝜇(ௗ)൫𝑢௝𝜙, 𝑢௝𝜓൯ + 𝑣௝൫𝑢௝ , 𝑢௝𝜙𝜓൯

ଡ଼

= න 𝑢௝𝑑𝜇(ௗ)൫𝜙, 𝑢௝𝜓൯

ଡ଼

+ න 𝜙𝑑𝜇(ௗ)൫𝑢௝ , 𝑢௝𝜓൯ + 𝑣௝൫𝑢௝ , 𝑢௝𝜙𝜓൯

ଡ଼

= න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑Γ(𝜙, 𝜓)

௑×௑

+ න 𝑢௝(𝑥௡)𝜓(𝑥௡)𝑑Γ൫𝜙, 𝑢௝൯

௑×௑

+ න 𝑑𝜇(ௗ)൫𝑢௝ , 𝑢௝𝜙𝜓൯

ଡ଼

− න 𝑢௝𝜓𝑑𝜇(ௗ)൫𝑢௝ , 𝜙൯ + 𝑣௝൫𝑢௝ , 𝑢௝𝜙𝜓൯

ଡ଼

 

= න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑Γ(𝜙, 𝜓)
௑×௑

+ ℇ൫𝑢௝ , 𝑢௝𝜙𝜓൯ + 𝑣௝൫𝑢௝ , 𝑢௝𝜙𝜓൯ = න 𝑢௝(𝑥௡)𝑢௝(𝑥௡ାଵ)𝑑Γ(𝜙, 𝜓)
௑×௑

. 

 
In the last step we used that 𝑢௝is a generalized eigen function. This finishes the proof.  Now we will estimate the energy measure of generalized 
eigen functions. 
 
Theorem 2.11.   Let ℇbe a regular Dirichlet form, 𝑣௝

ା ∈ ℳ଴ and 𝑣௝
ି ∈ ℳଵand 𝑞 ∈ (0,1) ⇒ 𝑞 = 1 − 𝜖, 𝜖 < 1 with 𝑣௝

ି൫𝑢௝൯ ≤ (1 − 𝜖)ℇ൫𝑢௝൯ +

𝜔(ଵିఢ)ฮ𝑢௝ฮ
ଶ
  be given and set ℎ = ℇ + ൫𝑣௝൯

ା
− ൫𝑣௝൯

ି
.Then, for any 𝜆 ∈ ℝ, there exists a constant 𝜔 = 𝜔൫𝜆, 𝑣௝

ି൯ with  

 

න ෍ 𝜉ଶ𝑑𝜇(ௗ)൫𝑢௝൯

଴

ଵ௑

≤ 𝜔൫𝜆, 𝑣௝
ି൯ ൭ฮ𝑢௝𝜉ฮ

ଶ
+ න 𝑢ఫ෥ ଶ𝑑𝜇(ௗ)(𝜉)

௑

൱, 

 
for any 𝑢௝ ∈ ℳ௟௢௖

∗ , 𝜉 ∈ ℳ ∩ 𝜔଴(𝑋) with 𝜉𝑢௝ , 𝜉ଶ𝑢௝ ∈ ℳ and ℎ൫𝑢௝ , 𝑢௝𝜉ଶ൯ ≤ 𝜆൫𝑢௝ , 𝑢௝𝜉ଶ൯. 
 
Proof: If𝑘 = 0, 
 

𝜆ฮ𝑢௝𝜉ฮ
ଶ

− 𝑣௝൫𝑢௝𝜉൯ ≥ ℇ൫𝑢௝ , 𝑢௝𝜉ଶ൯ = න 𝜉ଶ(𝑥௡)d𝛤൫𝑢௝൯

௑×௑

+ න 𝑢௝(𝑥௡)൫𝜉(𝑥௡) + 𝜉(𝑥௡ାଵ)൯𝑑𝛤൫𝑢௝ , 𝜉൯

௑×௑

 

 
and, by assumption, we have 
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−𝑣௝൫𝑢௝ , 𝜉൯ ≤ (1 − 𝜖)𝒥൫𝜉𝑢௝൯ + 𝑋(ଵିఢ)ฮ𝑢௝𝜉ฮ
ଶ
. 

 
Finally, Leibniz rule again shows 
 

ℇ൫𝜉𝑢௝൯ = න 𝜉ଶ(𝑥௡)𝑑𝛤൫𝑢௝൯

௑×௑

+ 2 න 𝑢ఫ෥ (𝑥௡)𝜉(𝑥௡ାଵ)𝑑𝛤൫𝑢௝ , 𝜉൯

௑×௑

+ න 𝑢ఫ෥ (𝑥௡)ଶ𝑑𝛤(𝜉).

௑×௑

 

 
Let us now assume the last integral to be finite (otherwise the claim is still true). 
 
We now set 
 

𝑇 ≔ 𝜖 න 𝜂ଶ(𝑥௡)𝑑𝛤൫𝑢௝൯

௑×௑

. 

 
Putting everything together we can estimate 
 

𝑇 ≤ ൫𝜆 + 𝜔(ଵିఢ)൯ฮ𝑢௝𝜉ฮ
ଶ

+ (1 − 𝜖) න 𝑢ఫ෥ (𝑥௡)ଶ𝑑𝛤(𝜉)

௑×௑

+ න 𝑢ఫ෥ (𝑥௡)൫−𝜉(𝑥௡) + (1 − 2𝜖)𝜉(𝑥௡ାଵ)൯𝑑𝛤൫𝑢௝ , 𝜉൯

௑×௑

≤ ൫𝜆 + 𝜔(ଵିఢ)൯ฮ𝑢௝𝜉ฮ
ଶ

+ ቆ(1 − 𝜖) +
1

4𝑆
ቇ න 𝑢ఫ෥ (𝑥௡)ଶ𝑑𝛤(𝜉)

௑×௑

 

+𝑆 න ൫−𝜉(𝑥௡) + (1 − 2𝜖)𝜉(𝑥௡ାଵ)൯
ଶ

𝑑𝛤൫𝑢௝൯

௑×௑

 

≤ ൫𝜆 + 𝜔(ଵିఢ)൯ฮ𝑢௝𝜉ฮ
ଶ

+ ቆ(1 − 𝜖) +
1

4𝑆
ቇ න 𝑢ఫ෥ (𝑥௡)ଶ𝑑𝛤(𝜉)

௑×௑

+ 4𝑆 𝑚𝑎𝑥൫(1 − 𝜖), 𝜖൯
ଶ

න 𝜉(𝑥௡)ଶ𝑑𝛤൫𝑢௝൯

௑×௑

 

for all 𝑆 > 0.  
 
The bound takes a simpler form if ℇhas finite jump size. 
 
2. Intrinsic geometry and analysis of Dirichlet forms 
 
Avoid In this section m denote to a non-negative Radon measure with support X. A Dirichlet form ℇ on Lଶ(X, m) is a closed, non-negative 
definite and symmetric bilinear form defined on a dense linear subspace 𝒜 of Lଶ(X, m), that satisfies the Markov property: for any u୨ ∈ 𝒜, 

setting υ୨ = min൛1, max൛0, u୨ൟൟ, we have ℇ൫υ୨, υ୨൯ ≤ ℇ൫u୨, u୨൯. Furthermore, ℇ is said to be strongly local if ℇ൫u୨, u୨൯ = 0 whenever u୨, υ୨ ∈ 𝒜 
with u୨ a constant on a neighborhood of the support of υ୨, to be regular if there exists a subset of 𝒜 ∩ ω଴(X) which is both dense in ω଴(X) with 
uniform norm and in 𝒜 with the norm ‖∙‖𝒜 defined by  
 

ฮu୨ฮ𝒜
= ቂu୨୐మ(ଡ଼)

ଶ + ℇ൫u୨, u୨൯ቃ
ଵ ଶ⁄

, 
 

for each u୨ ∈ 𝒜. 
 
See [1] showed that a regular, strongly local Dirichlet form ℇ can be written as 
 

ℇ൫u୨, υ୨൯ = න dΓ൫u୨, υ୨൯,

ଡ଼

 

for all u୨, υ୨ ∈ 𝒜, where Γ is an ρ(X)-valued nonnegative definite and symmetric bilinear form defined by the formula 
 

න 𝜑𝑑𝛤൫𝑢௝ , 𝜐௝൯

௑

=
1

2
ൣℇ൫𝑢௝ , 𝜑𝜐௝൯ + ℇ൫𝜐௝ , 𝜑𝑢௝൯ − ℇ൫𝑢௝𝜐௝ , 𝜑൯൧, 

 

for all u୨, υ୨ ∈ 𝒜 ∩ Lଶ(X) and φ ∈ 𝒜 ∩ ω଴(X). Here𝜌(𝑋) is the collection of all signed Radon measures on X. We call Γ൫u୨, υ୨൯ the Dirichlet 

energy measure. The Radon–Nikodym derivative 
ௗ௰൫௨ೕ,௨ೕ൯

ௗ௠
(𝒵) plays the role of the square of the length of the gradient of u୨ ∈ 𝒜 at 𝒵 ∈ X. 

Whatever, 
ୢ୻൫୳ౠ,୳ౠ൯

ୢ୫
 is related merely to the absolutely continuous part of Γ൫u୨, u୨൯. There is no reason for Γ൫u୨, u୨൯ to be absolutely continuous 

with respect to m in general. 
 
For each open subset 𝒲 ⊂ X, we denote by 𝒜୪୭ୡ(𝒲) the class of u୨ ∈ L୪୭ୡ

ଶ (𝒲). We write 𝒜୪୭ୡ(𝒲) as 𝒜୪୭ୡ. Observe that, since ℇ is strongly 

local, Γ is local and satisfies the Leibniz rule and the chain rule, see for example [5]. Therefore both ℇ൫u୨, υ୨൯ and Γ൫u୨, υ୨൯ can be defined for 
u୨, υ୨ ∈ 𝒜୪୭ୡ.  With the aid of Dirichlet energy, the intrinsic distance dℇ associated to ℇ is defined by 
 

dℇ(x୬, x୬ାଵ) = sup൛u୨(x୬) − u୨(x୬ାଵ): u୨ ∈ ω(X) ∩ 𝒜୪୭ୡ, Γ൫u୨, u୨൯ ≤ mൟ, 
 

for all x୬, x୬ାଵ ∈ X, where Γ൫u୨, u୨൯ ≤ m means that Γ൫u୨, u୨൯ is absolute continuous with respect to m and its Radon–Nikodym derivative 
ୢ

ୢ୫
Γ൫u୨, u୨൯ ≤ 1 almost everywhere. We always make a standard assumption that the topology induced by dℇ coincides with the original 
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topology on X. Under this, it was proved that dℇ is a distance, dℇ(x୬, x୬ାଵ) < ∞ for all x୬, x୬ାଵ ∈ X, and (X, dℇ) is a length space; see 
[14,15,17]. Associated to this intrinsic distance dℇ, for a measurable function u୨, its pointwise Lipschitz constantis defined as 
 

Lipୢℇ
u୨(X) ≡ lim sup

୶౤ஷ୶౤శభ→୶౤

หu୨(x୬) − u୨(x୬ାଵ)ห

dℇ(x୬, x୬ାଵ)
, 

 
and for each κ ⊂ X, Lipୢℇ

(κ) stands for the collection of all measurable functions u୨ with 
 

ฮu୨ฮ୐୧୮ౚℇ

(κ) ≡
sup

x୬, x୬ାଵ ∈ κ, x୬ ≠ x୬ାଵ

หu୨(x୬) − u୨(x୬ାଵ)ห

dℇ(x୬, x୬ାଵ)
≤ ∞. 

 
Under the above standard assumption, it was proved that if u୨ ∈ Lipୢℇ

(X), then Γ൫u୨, u୨൯ is absolutely continuous with respect tom; see [8] and 
[14]. 
 
Notice that on X, we now have two kinds of structures: the gradient (differential) structure given by Γ and the intrinsic distance structure given by 

dℇ. As indicated by the constructions in [9,10,16], we cannot expect that the two structures coincides pointwise, that is, ൫Lipୢℇ
u୨൯

ଶ
=

ୢ

ୢ୫
Γ൫u୨, u୨൯ almost everywhere for all u୨ ∈ Lipୢℇ

(X). However, instead of the pointwise coincidence, we established a weak coincidence of 

intrinsic distance and differential structures in [8]. This is given by the following lemma. 
 
Lemma 3.1.    For every open set 𝒲 ⊂ X, if u୨ ∈ 𝒜୪୭ୡ(𝒲) ∩ ω(𝒲) and Γ൫u୨, u୨൯ is absolutely continuous with respect to 1୙m, then 
 

esssup
x୬ ∈ 𝒲

ට
ୢ

ୢ୮
Γ൫u୨, u୨൯(x୬) = sup

x୬ ∈ 𝒲
Lipୢℇ

u୨(x୬).                                                                                                                                                   (2) 

 
We will also need the following Lemma 3.2, which is established in [8]. For every 𝒲 ⊂ X, we define a local intrinsic distance dℇ by 
 
d𝒲(x୬, x୬ାଵ) = sup൛u୨(x୬) − u୨(x୬ାଵ), u୨ ∈ 𝒜୪୭ୡ(𝒲) ∩ ω(𝒲), Γ൫u୨, u୨൯ ≤ 1𝒲mൟ, 
 

where Γ൫u୨, u୨൯ ≤ 1𝒲p means that Γ൫u୨, u୨൯ is absolutely continuous with respect to 1𝒲p , and 
ୢ

ୢ୫
Γ൫u୨, u୨൯ ≤ 1 on 𝒲. Recall that Γ൫u୨, u୨൯ is 

well-defined on 𝒲 by the locality of Γ. 
 
Lemma 3.2.    Let 𝒲 be an open subset of X. Then for every x୬ ∈ 𝒲, there exists r(୶౤) ∈ ൫0, dℇ(x୬, ∂𝒲)൯ such that d𝒲(x୬, x୬ାଵ) =

dℇ(x୬, x୬ାଵ) for all x୬ାଵ ∈ ℬୢℇ
ℇ൫x୬, r(୶౤)൯. 

 
If we further assume that (X, ℇ, dℇ, m) satisfies a local doubling property and supports a local weak (1,2)-Poincare inequality, we have some 
further results concerning the intrinsic distance and differential structures.  
 
Remarks 3.3. 
 
We say that (X, dℇ, m) enjoys a local doubling property if there exist constants sℯ ∈ (1, ∞) and 𝒩ℯ ∈ (0, ∞) such that for all x୬ ∈ X and 0 < 𝑟 <
𝒩ℯ,       
          

m ෍ ቀBୢℇ
(x୬, 2r)ቁ

଴

ஶ

≤ sℯm ෍ ቀBୢℇ
(x୬, r)ቁ

ଵ

ஶ

< ∞                                                                                                                                                                       (3) 

 
(i) If 𝒩ℯ ≥ diam X, we say that (X, dℇ, m) enjoys a doubling property. We also say that (X, ℇ, m) supports a local weak (1,2)-Poincare inequality 
if there exist constant s𝒾 ∈ (1, ∞) and 𝒩𝒾 ∈ (0, ∞) such that for all u୨ ∈ 𝒜 and x୬ ∈ X and 0 < 𝑟 < 𝒩𝒾, 
 

න ෍ ฬu୨ − u୨୆ౚℇ
(୶౤,୰)

ฬ dm

଴

ஶ୆ౚℇ
(୶౤,୰)

≤ s𝒾r ෍ ቐ
Γ൫u୨, u୨൯ ቀBୢℇ

(x୬, 2r)ቁ

m ቀBୢℇ
(x୬, 2r)ቁ

ቑ

ଵ
ଶൗ

ଵ

ஶ

                                                                                                                            (4) 

 
(ii) If 𝒩𝒾 ≥ diamX, we say that (X, ℇ, dℇ, m) enjoys a weak (1,2)-Poincare inequality.  Note that for functions u୨ ∈ Lipୢℇ

(x୬), Γ൫u୨, u୨൯ is 
absolutely continuous with respect to m; see the discussion in [8]. Therefore, for Lipschitz functions u୨, we know that 
 

න ෍
d

dm
Γ൫u୨, u୨൯dp

୆ౚℇ
(୶౤,ଶ୰)

= ෍
Γ൫u୨, u୨൯ ቀBୢℇ

(x୬, 2r)ቁ

p ቀBୢℇ
(x୬, 2r)ቁ

. 

 
Furthermore, an employment of a good lambda inequality argument as in [6] lets us obtain the following stronger (local) Sobolev–Poincare 
inequality: 
 

න ෍ ฬu୨ − u୨ቀ୆ౚℇ
(୶౤,୰)ቁ

ฬ
ଶ

dm

୆ౚℇ
(୶౤,୰)

≤ sr ෍ Γ൫u୨, u୨൯ ቀBୢℇ
(x୬, 2r)ቁ. 
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Lemma 3.4.   Assume that (X, ℇ, dℇ, m) satisfies a local doubling property. Then for every Lipୢℇ
(X), Γ൫u୨, u୨൯ is absolutely continuous with 

respect to m and 
ୢ 

ୢ୫
Γ൫u୨, u୨൯ ≤ ൫Lipୢℇ

u୨൯
ଶ
 almost everywhere. 

 
Lemma 3.5.   Assume that (X, ℇ, dℇ, m)satisfies a local doubling property and supports a local weak (1,2)-Poincare inequality. Then there exists 
a constant s ≥ 0 ⇒  sଵ = 1 + ϵ such that for all u୨ ∈ Lipୢℇ

(X) and almost all x୬ ∈ X, 
 

෍ ቀ𝐿𝑖𝑝ௗℇ
𝑢௝(𝑥௡)ቁ

ଶ
≤ 𝑠ଵ ෍

𝑑 

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯(𝑥௡)                                                                                                                                                                           (5) 

 
Proof: If (X, ℇ, m) satisfies the doubling property and weak (1,2)-Poincare inequality, that is 𝒩ℯ = 𝒩𝒾 ≥ diam X, then Lemma 3.5 is already 
showed in [10]. With the local doubling property and local weak (1,2)-Poincare inequality, we adapt the argument of [7], we have that 
 

෍ 𝐿𝑖𝑝ௗℇ
𝑢௝(𝑥௡) ≤ 𝑠 𝑙𝑖𝑚 𝑠𝑢𝑝

௥→଴

1

𝑟
න ෍ ฬ𝑢௝ − 𝑢௝ቀ஻೏ℇ

(௫೙,௥)ቁ
ฬ 𝑑𝑚

஻೏ℇ
(௫೙,௥)

, 

 
for almost all x୬ ∈ X. Here s is a constant independent of u୨ and x୬. This together with the local weak (1,2)-Poincare inequality leads to that 

෍ 𝐿𝑖𝑝ௗℇ
𝑢௝(𝑥௡) ≤ 𝑠𝑠𝒾𝑙𝑖𝑚 𝑠𝑢𝑝

௥→଴
෍ ቐ න

𝑑 

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯𝑑𝑚

஻೏ℇ
(௫೙,௥)

ቑ

ଵ ଶ⁄

, 

and hence by Lebesgue differential theorem, ቀLipୢℇ
u୨(x୬)ቁ

ଶ
≤ ss𝒾

ୢ 

ୢ୫
Γ൫u୨, u୨൯(x୬) for almost all x୬ ∈ X. This give (5).  

 
ℇ is a regular, strongly local Dirichlet form on Lଶ(X, m) and we assume that the topology induced by the intrinsic distance coincides with the 
original topology on X. Denote by ∆ℇ the generator of the Dirichlet form ℇ, which is a self-adjoint operator with domain 𝔇(∆ℇ) and defined by: 
for all u୨, v୨ ∈ 𝔇(∆ℇ), 
 

− න 𝑢௝∆ℇ𝑣௝  𝑑𝑚

௑

= − න 𝑣௝∆ℇ𝑢௝ 𝑑𝑚

௑

= ℇ൫𝑢௝ , 𝑣௝൯. 

 
Let {P୲ = eି୲∆ℇ}୲ஹ଴ be the heat semi-group generated by ∆ℇ. From the theory of Dirichlet forms, it follows that for each u୨ ∈ Lଶ(X, m) and t > 0 
we have P୲u୨ ∈ 𝔇(∆ℇ). Furthermore, Ptusatisfies the heat equation in the weak sense: for each ϕ ∈ 𝒜 ∩ ℘୵(X) we have that 
 

−ℇ൫𝜙, 𝑃௧𝑢௝൯ = න 𝜙
𝑑

𝑑𝑡
𝑃௧𝑢௝ 𝑑𝑚.

௑

 

 

We say that the Dirichlet form satisfies the Feller property if for all u୨ ∈ ℘୵(X) and t > 0, P୲u୨ admits a continuous representative P୲u఩
෪ , that is, 

P୲u఩
෪ ∈ ℘(X) and P୲u఩

෪ = P୲u୨ almost everywhere. For convenience, we write P୲u఩
෪  as P୲u఩

෪ . Note that by the results of [19] or [16], the local 
doubling property together with the local (1,2)-Poincare inequality implies the Feller property. 
 
Suppose that for all u୨ ∈ 𝒜, nonnegative ϕ ∈ 𝒜 ∩ ℘୵(X) and t ≥ 0, we have 
 

න 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯
௑

≤ 𝜅(𝑡) න 𝑃௧𝜙𝑑𝛤 ൫𝑢௝ , 𝑢௝൯
௑

                                                                                                                                                                          (6) 

 
Where κ: (0, ∞) → (0, ∞) is locally bounded from above, see (6). The works of [16] and [19] tell us that Γ൫P୲u୨, P୲u୨൯ is absolutely continuous 
with respect to p provided the measure is doubling and satisfies a weak (1,2)-Poincare inequality. Therefore, if (X, ℇ, dℇ, m) is doubling and 
supports a (1,2)-Poincaré inequality and Γ ൫u୨, u୨൯ is absolutely continuous with respect to m, then we have that (6) is equivalent to 
 

න 𝜙
𝑑

𝑑𝑡
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯𝑑𝑚

௑

≤ 𝜅(𝑡) න ൭න 𝜙(𝑥௡ାଵ)𝑃௧(𝑥௡, 𝑥௡ାଵ)𝑑𝑚(𝑥௡ାଵ)

௑

൱

௑

𝑑

𝑑𝑡
𝛤൫𝑢௝ , 𝑢௝൯(𝑥௡)𝑑𝑚(𝑥௡)

= 𝜅(𝑡) න 𝜙(𝑥௡ାଵ) ൭න
𝑑

𝑑𝑡
𝛤൫𝑢௝ , 𝑢௝൯(𝑥௡)𝑃௧(𝑥௡ , 𝑥௡ାଵ)𝑑𝑚(𝑥௡)

௑

൱ 𝑑𝑚(𝑥௡ାଵ).

௑

 

 
Here P୲: X × X → ℝ is the heat kernel associated with the semi-group {P୲}୲. Since the above inequality should hold for each ϕ ∈ 𝒜 ∩ ℘୵(X), it 
follows that 
 

𝑑

𝑑𝑡
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯ ≤ 𝜅(𝑡)𝑃௧

෩ ൭
𝑑

𝑑𝑡
𝛤൫𝑢௝ , 𝑢௝൯൱ 

 

almost everywhere in X. It then follows from Lemma (3.4) and Lemma (3.5) that if (X, ℇ, dℇ, m) is doubling and supports a (1,2)-Poincare 
inequality, and if u୨ ∈ Lipୢℇ

(x୬) with P୲
෩u୨ ∈ Lipୢℇ

(x୬) satisfying (6), then for almost every x୬ ∈ X, 
 

ቀ𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡)ቁ

ଶ
≤ 𝜅(𝑡)𝑃௧

෩ ൭
𝑑

𝑑𝑡
𝛤൫𝑢௝ , 𝑢௝൯൱ (𝑥௡). 
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We extend the above inequality to a larger class of functions u୨, under the milder condition (6) and the Feller property. We provide this extension 
without requiring the doubling and Poincare inequality properties here, for this will then be of independent interest.  Set κ଴ = lim inf୲→଴ κ(t). 
Without loss of generality, we always assume that κ଴ ≥ 1 and that κିଵ ∈ Lଵ(0,1). 
 

Recall that if u୨ ∈ Lipୢℇ
(x୬), then by Lemma (3.4), Γ൫u୨, u୨൯ is absolute continuous with respect to m and 

ୢ

ୢ୲
Γ൫u୨, u୨൯ ∈ Hஶ(X, m). 

  
Lemma (3.6):   
 

(i) If  u୨ ∈ Lଶ(X, m), then for all t > 0, P୲u୨ ∈ 𝒜 with ℇ൫P୲u୨, P୲u୨൯ ≤
ଵ

୲
ฮu୨ฮ୐మ(ଡ଼,୫)

ଶ
, and ∆ℇP୲u୨ ∈ Lଶ(X, m) with ฮ∆ℇP୲u୨ฮ୐మ(ଡ଼,୫)

≤
ଵ

୲
ฮu୨ฮ୐మ(ଡ଼,୫)

. 

(ii) If u୨ ∈ 𝒜, then ℇ൫P୲u୨ − u୨, P୲u୨ − u୨൯ → 0 as t → 0. 
 
Lemma (3.7):  Under the condition (6), for all u୨ ∈ Lஶ(X, m) ∩ Lଶ(X, m) and t > 0, 𝛤൫P୲u୨, P୲u୨൯, is absolutely continuous with respect to m and 
for almost all x୬ ∈ X, 
 
ୢ

ୢ୲
൫P୲u୨, P୲u୨൯(x୬) ≤

ଵ

∫
మ

ಒ(౨)
ୢ୰

౪

బ

ฮu୨ฮ୐ಮ(ଡ଼,୫)

ଶ
                                                                                                                                                                    (7) 

 
We show Lemma (3.7) by using some ideas from [15] . First, we recall the following result; see [15]. 
 
Proof: Let ϕ ∈ ℘୵(X) be a nonnegative function. For r ∈ [0, t], define 
 

h(r) = න൫P୲ି୰u୨൯
ଶ

P୰ϕdm

ଡ଼

. 

 
By the Markov property, we have a comparison theorem for f ↦ P୲f, see[15]. Therefore we know that ‖P୰ϕ‖ୌಮ(ଡ଼) ≤ ‖ϕ‖୐ಮ(ଡ଼), and so because 

P୲ି୰u୨ ∈ Lଶ(X), the quantity h(r) is finite for all 0 ≤ r < 𝑡. Obviously, h(0) = ∫ ൫P୲u୨൯
ଶ

ϕdp
ଡ଼

 and because ∫ v୨∆ℇu୨ϕdm
ଡ଼

= ∫ u୨∆ℇv୨ϕdm
ଡ଼

, we 

see that h(t) = ∫ P୲൫u୨൯
ଶ

ϕdm
ଡ଼

. We will now see that his continuous and locally Lipschitz on (0, t). Indeed, for r, rᇱ ∈ (0, t), 
 

h(r) − h(rᇱ) = න൫P୲ି୰u୨൯
ଶ

[P୰ϕ − P୰ᇲϕ]P୰ϕdm

ଡ଼

+ න ቂ൫P୲ି୰u୨൯
ଶ

− ൫P୲ି୰ᇲu୨൯
ଶ

ቃ P୰ᇲϕdm.

௑

 

 
From [15] we know that 
 

lim
୰→୰ᇲ

1

r − rᇱ
[P୰ϕ − P୰ᇲϕ] = ∆ℇP୰ᇲϕ ∈ Lଶ(X)     in  Lଶ(X) 

 

Similarly, for rᇱ < 𝑡, 
ଵ

୰ି୰ᇲ
ൣP୲ି୰u୨ − P୲ି୰ᇲu୨൧ → −∆ℇP୲ି୰ᇲu୨. 

 
It follows from this fact as well as the comparison theorem that h is locally Lipschitz continuous on (0, t).  
 
The above discussion, the Leibniz rule ∫ dΓ(ϐh, g)

ଡ଼
= ∫ hdΓ(f, g)

ଡ଼
= ∫ fdΓ(h, g)

ଡ଼
 and (10) also allow us to obtain 

 
d

dr
h(r) = න൫P୲ି୰u୨൯

ଶ

ଡ଼

∆P୰ϕdm − න 2P୲ି୰u୨∆P୲ି୰u୨P୰ϕdm

ଡ଼

= − න dΓ ቀ൫P୲ି୰u୨൯
ଶ

, P୰ϕቁ

ଡ଼

+ 2 න dΓ൫P୲ି୰u୨, P୲ି୰u୨P୰ϕ൯

ଡ଼

 

= 2 න 𝑃௥𝜙𝑑𝛤൫𝑃௧ି௥𝑢௝ , 𝑃௧ି௥𝑢௝൯

௑

≥
2

𝜅(𝑟)
න 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯

௑

𝑑𝑚. 

 
This further gives from the local absolute continuity of h that 
 

ℎ(𝑡) − ℎ(0) = 𝑙𝑖𝑚ఢ→଴ ∫ ℎᇱ(𝑟)𝑑𝑟
௧ିఢ

ఢ
≥ ∫

ଶ

఑(௥)
𝑑𝑟

௧

଴
∫ 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯

௑
 and hence by h(0) ≥ 0, 

 

න 𝜙൫𝑃௧𝑢௝൯
ଶ

௑

𝑑𝑚 ≥ න
2

𝜅(𝑟)
𝑑𝑟

௧

଴

න 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯
௑

.                                                                                                                                                              (8) 

 
By the arbitrariness of ϕ, Γ൫P୲u୨, P୲u୨൯ is absolutely continuous with respect to p, and the comparison theorem 
 
𝑑

𝑑𝑚
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯ ≤

1

∫
ଶ

఑(௥)
𝑑𝑟

௧

଴

൫𝑃௧𝑢௝൯
ଶ

≤
1

∫
ଶ

఑(௥)
𝑑𝑟

௧

଴

ฮ𝑢௝ฮ
௅ಮ(௑,௠)

ଶ
 

 
almost everywhere as desired. Consequently, suppose that for all u୨ ∈ ℇ, nonnegative ϕ ∈ ℇ ∩ ℘୶(X) and t ≥ 0 we have  
 

න 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯
௑

≤ 𝜅(𝑡) න 𝑃௧𝜙𝑑𝛤൫𝑢௝ , 𝑢௝൯
௑

                                                                                                                                                                       (9) 
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Corollary (6.2.8)[263]:  The condition (10) holds for all u୨ ∈ 𝒜 if and only if for all u୨ ∈ 𝒜, Γ൫u୨, u୨൯ is absolutely continuous with respect to m, 
and for all t > 0 and almost all x୬ ∈ X, 
 
ௗ

ௗ௣
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯(𝑥௡) ≤ 𝜅(𝑡) ൬

ௗ

ௗ௧
𝛤൫𝑢௝ , 𝑢௝൯൰ (𝑥௡).                                                                                                                                                  

(10)w 
 
Proof: We only need to show that (10) implies that for all u୨ ∈ 𝒜, Γ൫u୨, u୨൯, is absolutely continuous with respect to m and (9) holds. The 
converse is obvious. 
 
By an approximation argument, we will see that (8) holds for all u୨ ∈ 𝒜. Indeed, let ൫u୨൯୬

= max {min {u, n}, −n}.Then ൫u୨൯୬
∈ 𝒜 ∩ Lஶ(X, m) 

and (8) holds for ൫u୨൯୬
. Observe that ൫u୨൯୬

→ u and P୲൫u୨൯୬
→ P୲൫u୨൯୬

 in Lஶ(X, m) as n → ∞.  
 

ℇ ൬𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ , 𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ൰ ≤
1

𝑡
ቛ𝑢௝ − ൫𝑢௝൯

௡
ቛ

௅మ(௑,௠)
→ 0     𝑎𝑠 𝑛 → ∞. 

 
Hence for all ϕ ∈ ℘୵(X), by the Cauchy–Schwarz inequality see[16], 
 

อන 𝜙𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯

௑

− න 𝜙𝑑𝛤 ቀ𝑃௧൫𝑢௝൯
௡

, 𝑃௧൫𝑢௝൯
௡

ቁ

௑

อ = อ2 න 𝜙𝑑𝛤 ቀ𝑃௧𝑢௝ , 𝑃௧𝑢௝ − 𝑃௧൫𝑢௝൯
௡

ቁ

௑

− න 𝜙𝑑𝛤 ቀ𝑃௧𝑢௝ − 𝑃௧൫𝑢௝൯
௡

, 𝑃௧𝑢௝ − 𝑃௧൫𝑢௝൯
௡

ቁ

௑

อ

≤ 2 ൭න 𝜙ଶ𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯

௑

൱

ଵ ଶ⁄

ቂℇ ൬𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ , 𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ൰ቃ
ଵ ଶ⁄

 

+‖𝜙‖௅ಮ(௑)ℇ ൬𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ , 𝑃௧ ቀ𝑢௝ − ൫𝑢௝൯
௡

ቁ൰ → 0, 

 
as n → ∞. Therefore 

න ϕଶdΓ൫P୲u୨, P୲u୨൯

ଡ଼

. 

 
We then know that (8) holds for u whenever ϕ ∈ ℘୵(X) is non-negative. 
 
By the arbitrariness of nonnegative ϕ ∈ ℘୵(X) in (8), we have that Γ൫P୲u୨, P୲u୨൯ is absolutely continuous with respect to p, and for almost all 
x ∈ X, 
 
𝑑

𝑑𝑡
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯(𝑥௡) ≤

1

∫
ଶ

఑(௥)
𝑑𝑟

௧

଴

ቀ𝑃௧𝑢௝(𝑥௡)ቁ
ଶ

. 

 
Finally, by [16], for every set E with p(E) = 0, we have 

න 1ா𝑑𝛤൫𝑢௝ , 𝑢௝൯

௑

= 𝑙𝑖𝑚
௧→଴

1ா𝑑𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯ = 0 

which implies that Γ൫u୨, u୨൯ is absolutely continuous with respect tom. So (10) together with the absolute continuity of Γ൫P୲u୨, P୲u୨൯ implies that 

න 𝜙
𝑑

𝑑𝑚
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯𝑑𝑚

௑

≤ 𝜅(𝑡) න 𝑃௧𝜙
𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯𝑑𝑚

௑

= 𝜅(𝑡) න 𝜙 𝑃௧ ൭
𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯൱ 𝑑𝑚

௑

, 

which further yields (9) by the arbitrariness of φ. 
 
Lemma 3.8:  Assume that E satisfies the Feller property and (10). Then for all u୨ ∈ Lஶ(X, m) and all t > 0, (7) holds, and moreover, P୲u୨ has a 
continuous representative P୲

෩u୨ ∈ Lipୢℇ
(X) such that for all x ∈ X, 

 

Lipୢℇ
P୲
෩u୨(x୬) ≤

ଵ

ට∫
మ

ಒ(౨)
ୢ୰

౪

బ

ฮu୨ฮ୐ಮ(ଡ଼,୫)
.                                                                                                                                                                    (11) 

 
Proof: If u୨ ∈ ℘୵(X), by the Feller property,P୲u୨ has a continuous representative P୲

෩u୨  . Notice that P୲u୨ and P୲
෩u୨ induce the same element in 

Lଶ(X) and hence in 𝒜. By Lemma (3.7) and Lemma (3.2), for all x୬ ∈ X and r > 0, we have 
 

𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡) ≤

𝑠𝑢𝑝

𝓏 ∈ 𝐵(𝑥௡, 𝑟)𝐿𝑖𝑝ௗℰ
𝑃௧
෩ 𝑢௝(𝓏) =

𝑒𝑠𝑠𝑠𝑢𝑝

𝓏 ∈ 𝐵(𝑥௡ , 𝑟) ට
ௗ

ௗ௠
𝛤൫𝑃௧

෩ 𝑢௝ , 𝑃௧
෩ 𝑢௝൯(𝓏) =

𝑒𝑠𝑠𝑠𝑢𝑝

𝓏 ∈ 𝐵(𝑥௡, 𝑟) ට
ௗ

ௗ௠
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯(𝓏) ≤

ଵ

ට∫
మ

ഉ(ೝ)
ௗ௥

೟

బ

ฮ𝑢௝ฮ
௅ಮ(௑,௠)

                                                                                                                                                                                                                        (12) 

 
as desired. 
 
Next we relax the condition u୨ ∈ ℘୵(X) to u୨ ∈ Lஶ(X) ∩ Lଶ(X). If u୨ ∈ Lஶ(X, m) ∩ Lଶ(X, m), then we can find a sequence of ൫u୨൯୬

∈ ℘୵(X) 

such that ൫u୨൯୬
→ u୨ and P୲൫u୨൯୬

→ P୲u୨, and hence P୲
෩൫u୨൯୬

→ P୲u୨, in Lଶ(X, m). By passing to a subsequence if necessary, which is still denoted 

by ቄP୲
෩൫u୨൯୬

ቅ
୬∈ℕ

, we also have ൫u୨൯୬
→ u୨ and P୲

෩൫u୨൯୬
→ P୲u୨ pointwise almost everywhere. Moreover, by truncation if necessary, we can 
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assume that ቛ൫u୨൯୬
ቛ

୐ಮ(ଡ଼,୫)
≤ ฮu୨ฮ୐ಮ(ଡ଼,୫)

. By Lemma (3.7),Lipௗℇ
P୲
෩൫u୨൯୬

 satisfies (11) and thus is bounded from above uniformly in n. This 

means that P୲
෩൫u୨൯୬

 is uniformly bounded and (Lipschitz) equi-continuous on X, and hence an application of Arzela–Ascoli’s theorem shows that 

the limit (up to some subsequence) of P୲
෩൫u୨൯୬

, which is denoted by P୲
෩u୨, is Lipschitz continuous. Since Ptuand P୲

෩u୨ induce the same element in 

Lଶ(X) and hence in 𝒜, therefore P୲u୨ admits a continuous representative P୲
෩u୨ and 

ௗ

ௗ௠
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯ =

ௗ

ௗ௠
𝛤൫𝑃௧

෩ 𝑢௝ , 𝑃௧
෩ 𝑢௝൯ almost everywhere. 

Applying the above procedure given by (12), we have (11) for every 𝑢௝ ∈ 𝐿ଶ(𝑋) ∩ 𝐿ଶ(𝑋). 
 
Finally, we relax the condition u୨ ∈ Lஶ(X) ∩ Lଶ(X) to u୨ ∈ Lஶ(X) as follows. We first assume that u୨ ∈ Lஶ(X) is non-negative. Then, with 

൫u୨൯୬
increasing sequence. Let P୲

෩u୨ ≔ P୲u୨ ≔ lim୬ P୲
෩൫u୨൯୬

, with the sequence P୲൫u୨൯୬
 converging pointwise monotonically (increasing) to P୲u୨. 

Strictly speaking, P୲u୨ is the μ-equivalence class of functions equivalent to P୲
෩u୨, since weak theory of heat equation allows us to perturb the 

solution on sets of μ-measure zero. However, for the rest of this argument we will consider only the continuous representative of P୲u୨. Because 

u୨ ∈ Lஶ(X), we have that ቚ𝑃௧
෩ ൫𝑢௝൯

௡
ቚ ≤ ฮ𝑢௝ฮ

௅ಮ(௑,௠)
, and so ห𝑃௧𝑢௝ห ≤ ฮ𝑢௝ฮ

௅ಮ(௑,௠)
. That is, P୲u୨ is finite everywhere in X. 

 
For any ϵ > 0 and all x୬, x୬ାଵ ∈ X, with x୬ ≠ x୬ାଵ, there exists n଴ ∈ ℕ such that for all n ≥ n଴, 
 

ቚ𝑃௧
෩ ൫𝑢௝൯

௡
(𝑥௡) − 𝑃௧

෩ 𝑢௝(𝑥௡)ቚ + ቚ𝑃௧
෩ ൫𝑢௝൯

௡
(𝑥௡ାଵ) − 𝑃௧

෩ 𝑢௝(𝑥௡ାଵ)ቚ ≤ 𝜖𝑑ℇ(𝑥, 𝑥௡ାଵ). 

 
Thus applying (11) to ൫𝑢௝൯

௡
∈ 𝐿ଶ(𝑋, 𝑚) ∩ 𝐿ஶ(𝑋, 𝑚), we have 

ห𝑃௧
෩ 𝑢௝(𝑥௡) − 𝑃௧

෩ 𝑢௝(𝑥௡ାଵ)ห ≤ 𝜖𝑑ℇ(𝑥௡, 𝑥௡ାଵ) + ቚ𝑃௧
෩ ൫𝑢௝൯

௡
(𝑥௡) − 𝑃௧

෩ 𝑢௝(𝑥௡ାଵ)ቚ ≤ ቌ2𝜖 +
1

∫
ଶ

఑(௥)
𝑑𝑟

௧

଴

ฮ𝑢௝ฮ
௅ಮ(௑,௠)

ቍ 𝑑ℇ(𝑥௡ , 𝑥௡ାଵ). 

By the arbitrariness of ϵ > 0, we obtain (11) for all u୨ ∈ Lஶ(X, m). By Lemma 3.4 , we conclude that (11) also holds for all u୨ ∈ Lஶ(X, m). Note 

that because P୲
෩u୨ is Lipschitz continuous, it is in 𝒜୪୭ୡ, and so Γ൫P୲u୨, P୲u୨൯ makes sense. 

 
For more general u୨ ∈ Lஶ(X) we have that 𝑢௝ = 𝑢௝

ା − 𝑢௝
ି. Applying the above conclusion to u୨

ା and u୨
ି, we have the desired conclusion for u୨ 

as well.  
 
Proposition 3.9:  Assume that esatisfies the Feller property and (10). Then for all u୨ ∈ Lஶ(X, m), P୲u୨ admits a continuous representative, which 
is denoted by P୲

෩u୨. Moreover, for all 𝑢௝ ∈ 𝐿𝑖𝑝ௗℇ
(𝑋) ∩ 𝐿ஶ(𝑋, 𝑚) and all t > 0, we have P୲

෩u୨ ∈ Lipୢℇ
(X) and for all x୬ ∈ X, 

 

ቀ𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡)ቁ

ଶ
≤ 𝜅(𝑡)𝑃௧

෩ ൭
𝑑

𝑑𝑡
𝛤൫𝑢௝ , 𝑢௝൯൱ (𝑥௡),                                                                                                                                                                  (13)    

 

where 
ୢ

ୢ୲
Γ൫u୨, u୨൯ ∈ Lஶ(X, m) and𝑃௧

෩ ൬
ௗ

ௗ௧
𝛤൫𝑢௝ , 𝑢௝൯൰ denotes the continuous representative of  𝑃௧ ൬

ௗ

ௗ௧
𝛤൫𝑢௝ , 𝑢௝൯൰. 

 
Proof: Let u୨ ∈ Lipୢℇ

(X) ∩ Lஶ(X, m). By Lemma 3.8 , P୲u୨ admits a continuous representative P୲
෩u୨ ∈ Lipୢℇ

(X) ⊂ 𝒜୪୭ୡ for all t > 0. It follows 

that Γ൫P୲u୨, P୲u୨൯ and Γ൫u୨, u୨൯ are absolutely continuous with respect tom. Therefore by (10), for each ϕ ∈ ℘୵(X), 
 

න 𝜙
𝑑

𝑑𝑚
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯𝑑𝑚

௑

≤ 𝜅(𝑡) න 𝜙 𝑃௧ ൭
𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯൱ 𝑑𝑚

௑

, 

 

and so almost everywhere in X we have 
 

𝑑

𝑑𝑚
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯ ≤ 𝜅(𝑡) 𝑃௧ ൭

𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯൱. 

 

For every x୬ ∈ X and all r > 0, by Lemma 3.2 ,  we have 
 

ቀ𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡)ቁ

ଶ
≤ 𝑠𝑢𝑝

𝑥௡ାଵ ∈ 𝐵ௗℇ
(𝑥௡ , 𝑟)

ቀ𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡ାଵ)ቁ

ଶ
= 𝑒𝑠𝑠𝑠𝑢𝑝

𝑥௡ାଵ ∈ 𝐵ௗℇ
(𝑥௡ , 𝑟)

𝑑

𝑑𝑚
𝛤൫𝑃௧

෩ 𝑢௝ , 𝑃௧
෩ 𝑢௝൯(𝑥௡ାଵ) 

= 𝑒𝑠𝑠𝑠𝑢𝑝

𝑥௡ାଵ ∈ 𝐵ௗℇ
(𝑥௡ , 𝑟)

𝑑

𝑑𝑚
𝛤൫𝑃௧𝑢௝ , 𝑃௧𝑢௝൯(𝑥௡ାଵ) ≤ 𝜅(𝑡) 𝑒𝑠𝑠𝑠𝑢𝑝

𝑦 ∈ 𝐵ௗℇ
൫(𝑥௡, 𝑟), 𝑟൯

 𝑃௧ ൭
𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯൱ (𝑥௡ାଵ). 

 

Since 
ௗ

ௗ௠
𝛤൫𝑢௝ , 𝑢௝൯ ≤ ฮ𝑢௝ฮ

௅௜௣೏ℇ
(௑)

ଶ
 almost everywhere, by Lemma 3.8 again, 𝑃௧ ൬

ௗ

ௗ௠
𝛤൫𝑢௝ , 𝑢௝൯൰ admits a continuous representative 

𝑃௧
෩ ൬

ௗ

ௗ௠
𝛤൫𝑢௝ , 𝑢௝൯൰. Letting r → 0, we arrive at 

ቀ𝐿𝑖𝑝ௗℇ
𝑃௧
෩ 𝑢௝(𝑥௡)ቁ

ଶ
≤ 𝑃௧

෩ ൭
𝑑

𝑑𝑚
𝛤൫𝑢௝ , 𝑢௝൯൱ (𝑥௡) 

as desired 
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Finally, as a geometric consequence of Proposition 3.8 ,  we are going to derive the highly nontrivial ඥκ଴-quasi-Newtonian property defined 
below from (10). Here, following [8], we say that(𝑋, ℇ, 𝑑ℇ, 𝑚) satisfies an L-quasi-Newtonian property if for every 𝑢௝ ∈ 𝐿𝑖𝑝ௗℇ

(𝑋), there exists a 

Borel function g୳ౠ
: X → [0, ∞] such that 𝑔௨ೕ

=
ௗ

ௗ௣
𝛤൫𝑢௝ , 𝑢௝൯ almost everywhere and g୳ౠ

 is an L-quasi-Newtonian upper gradient of u୨, that is, for 

all rectifiable curves γ in X, we have 
 

ห𝑢௝(𝑥௡) − 𝑢௝(𝑥௡)ห ≤ 𝐿 න 𝑔௨ೕ
 𝑑𝑟

ఊ

. 

 

Here x୬, x୬ାଵ denote the end points of γ.  
 
Corollary 3.10:   The intrinsic differential and distance structures of ℇ coincide, that is, (1) holds for all 𝑢௝ ∈ 𝐿𝑖𝑝ௗℇ

(𝑋) . 
 

Corollary 3.11:   Let ℇ be a regular Dirchlet form and u୨ ≤ 0 be a generalize eigen-function to the eigen-value λ with ൫𝑢௝൯
ିଵ

∈ ℳ௟௢௖
∗ ∩ 𝐿௟௢௖

ஶ , for 
h = ℇ + υ୨ with υ୨

ି ∈ ℳଵ. Then h ≤ λ. If u୨ ≥ 0 that h ≥ λ. 
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