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1. INTRODUCTION

The aim of this paper is to propose an extension of the conception of intrinsic metric from strongly local Dirichletforms to the general case, and
show that if the measure space, equipped with the intrinsic metric associated with a strongly local Dirichlet form, is doubling, supports a (1, 2)-
Poincaré inequality. In Section 2 we then present a general concept of intrinsic metric. In Section 3, we recall some basic property of general
regular strongly local Dirichlet forms €, and present the weak coincidence of the intrinsic distance and differential structures of J established in
[8]. Some finer properties, which are essentially established in [7,9], are also given with the additional local Poincaré and doubling assumptions;
see Lemma 3.4 and Lemma 3.5.

Let X be a locally compact, separable metric space, m a positive Radon measure on € with suppm = X. The functions on C we consider will all
be real valued. By wy(X) denote the set of continuous function on X with compact support and € is regular Dirichlet form. Thep is a pseudo-

metric on Xand A% c X, a pseudo-metric p: X X X — [0, 0] is called an intrinsic metric with respect to the Dirichlet form €, A map p: X X X —
[0, 0] if p(xn, %) = 0, p(Xn, Xn11) = P (i1, X0) 5 and p(xn, Xn11) < PO Xny2) + P (ng2, Xnpq) for all Xy, X4, X4 € C. That

2 oG i) = 2 ()0 )| < 2 Z 60 + G ).

We emphasize that p may not be continuous with respect to the original topology.
As pis a pseudo-metric, then so is p A Tfor any I = 0. That

@ AT gz =ps2 AT,

and the estimate

2lpaz(xn) AT = ppz(xn41) AT| < p X, Xn41)-

We assumption tow spaces of all measurable real valued functions, one of these is L?(X) and another is L®(X,m), M is dense subspace that
M c L*(X,m).The space My, of functions locally in domain is defined to be the set of all functions u; € M,
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Also M, and the measures 1™ are well compatible with approximation via cut-off procedures see Lemma 2.5.

We can extend u® to the space M), to do that we define for F  Xmeasurable and uj € My,

WO (w)E) 1= 1O () = oy (T ) = 8 Conrn)) L, ).

Proposition 1.1. For u; € My, the map ,u(b)(u]-)(-) is a Radon measure.

Proof: We only have to show, that u® is inner regular, the rest is obvious. For this let F © Xbe measurable. As Lis a Radon measure,

2
1®(w)(F) can be approximated by f(p (L’F](xn)—ffj(xnﬂ)) L(dxy, dxp41) with @ € F x X — dcompact. But then pu®(u;)(p") =

2
f(p'xc—d (1’[1 (xn) — ﬁ}(xnﬂ)) L(dxp, dxpyq). with @' = {x, € X : 3x, 41 € Cwith(x,, x,41) € @}with the projection from ¢@on the first

component also approximates yu® (uj)(T ). As @'is compact the desired regularity follows.

We proved that the intrinsic distance dg of Dirichlet form € is given by the original distance d on X, and hence that the intrinsic differential and
distance structures of € coincide, that is, for all u; € Lipg4 ; X)

d
Ef(uj,uj) = (Lipdau]-(X))z, a.e D

Relies on a weak coincidence (much weaker than (1) of the intrinsic distance and differential structures given by Lemma 3.1, which holds for
general regular strongly local Dirichlet forms.

1. Intrinsic metrics and their applications

Accessing strongly local Dirichlet forms the intrinsic metric is a punchy tool. It has been used in studying decay of heat kernels, the investigation
of Harnack inequalities and to get good cut-off functions in the study of spectral properties cf [2, 3, 4, 12, 13]. First we introduced some define.

Definition 2.1. Let Ryand R, is two Radon measures, that R), + Rp, < Rsuch that for all A2 < Xand all T > 0,
Paz NT € M. Nw(X)
also

P (P2 AT) <R, and u®*9(pue AT) < Rpye, the standard Euclidean distance, £ (%, Xp4+1) = |Xn — Xn4+1l, is an intrinsic metric for €.
We have norm definition follow.

Definition 2.2. Let F c Xand s = 0. Hence, F is linked to cut-off function into extent s,
Ers(xn) = (1 = pF(xn)/s)7,

for some ball B := B(x,,d), where d is radius the intrinsic impart B4(F) = {x, € X: pF(x,) < d}, when F is a set, the intrinsic boundary its
A%(F) = By(F) n B.(F").

Now we show some properties of intrinsic metrics

Proposition 2.3. let A* € X,and p,2(x,) < cofor all x, € X, let p be an intrinsic. Then p(42) € My, N w(X), € = 0 and ub+2e) (;p(Az)) <
R.

Proof: See Definition 2.1,p,2 A Tfor any . We have (p2 AT) € M. and u®+29) (p2 AT) < Ry + Rpye) = R, forany T > 0.

Proposition 2.4. Let w be a bound and p is an intrinsic metric, F € X, s > 0. Then &r; € M, N w(X) and ﬂ(b+26)(fyz’s) < (1/s®)R.
Moreover, if B5(F) is relatively compact, then &z ¢ € M N wo(X).

Proof: G Fis continuous, &z sis so as well. Moreover, § Fbelongs to M, by Proposition 2.3and as Dirichlet form, Fis compatible with cut-off
procedures. Hence & s € My,.. In order to show the claimed upper bound on ,u(b”E)({T's), we recallthat [.l(b+6)(fj:"5) < (1/sHub+a(GF),
see [5]. Moreover, since |€7.—,s(xn) - fy.—_s(xnﬂ)l < (1/9)IGF (xn) — GF (tns1)l,we have p®(&x¢) < (1/sH)u® (GF). Therefore, thebound
1®*2€) (pF) < Rfrom Proposition 2.3implies the bound u®+29)(&; ) < (1/52)R.

Here need introduce result about intrinsic metrics in follow Lemmas.

Lemma 2.5. Letu; € L, U Mj,cand assume that there is a Radon measure R, such that for every ' > 0 one has (uj)g_ = (uj/\T)V(—T) €
M and p® (uj)T < R,. Thenu; € Mj,.and u®(u;) = lims_o, u(*)(uj)T for = b, (b + €), (b + 2€). In particular, u® (u;) < R;.

Proof: Note that u; € Lj agrees locally with (uj) Tfor T'big enough. Thus, obviously u;belongs to M;,.. Therefore we only have to show that

| (@6 = ) £ (e, dCinen) <

PxX—-d
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2 2
This follows as ((uj) T(xn) — (uj) T(xn+1)> converges monotonically to (uj (x) — u; (xn+1)) and

2
((uj)T(xn) = (1), Gonn) ) £ A0, dCinsn) < Ry() < 0,
PxXX—-d

uniformly in . For *= b, (b + €)the convergence of ) ((uj)T) is also clear by monotone convergence. To deal with x= (b + 2¢), i.e., the
strongly local part, we note that (vj)T - v; with respect to €, for all v; € y, see [5].

Lemma 2.6. Let pbe an intrinsic metric. Then [, #?(xXn, ¥n41) Hdxy, dXni1) < Ry (F), for any measurable set 7  X.

Proof: Let & > 0 and r > 2&be arbitrary. We first consider sets Fwith & c Bg(X;,) for some Xx;,. Using the fact that for x,, € &
Pn, Xp41) < pinsn, %) — P, %) + 20 (x0, X0) < |p (1, %) — p(x, X)| + 2€, we can estimate for every { > 0

372 (xn, Xn41) L(dxp, dxpyq)
FxX
P (X Xn41)>T

<1+0) f (9 Gon T) — 2 Conar, T)) LA A1)
FxX—-d

1
+ (1 + E) 4¢g? f dcL.
FxX
P Onxn41)>1

The first term on the right side is controlled since by the definition of an intrinsic metric and by Lemma 2.5 we have
— —\\2
(p(xn' xn) - ﬁ(xn+1' xn)) L(dxn: dxn+1) < :Rb (:F)
FxX—-d
In order to control the second term on the right side we estimate for x,, € Fand x4, € Xwith p(x,, Xpye1) > 71

ﬁ(xn+1' 55\11/) - ﬁ(xn' 55\11/) 2 ﬁ(xn+1vxn) - 237(xn' 5C\n’) =1 —2E,

. . 1 — —~\2
which yields [ #xx dL < mffxx_d(p(xn, %) — p(Xn1, %)) L(dxn, dXpyq).

P Onxn41)>1
Putting these estimates together we infer that

2

) (1 + %) R, (F).

pz(xn' xn+1) L(dxn' dxn+1) <|1+ ( + (
FxX—-d

r—2€
With this estimate at hand, we can now pass to arbitrary compact sets F. An arbitrary compact Fcan be covered by finitely many disjoint sets F,,
each one being contained in an intrinsic ball B := B(x,, s). In this way, the previous estimate extends to arbitrary compact F. Letting first v — 0,
then { = 0 and finally r — 0 we obtain the desired estimate for all compact sets F. The general case follows from regularity.

Remarks 2.7.

(i) If € is a regular form on (X, p), that € € M, for all u; € M, the exists a quasi-continuous version i .

(i) If pg be a pseudo-metric, p, be an intrinsic metric, and p, < p;.Then p, is an intrinsic metric

Zl#’o,AZ (xn) — P1,42 (xn+1)| < Z P0(xn, Xn41) < p1(X, Xpi1)-

(iii) If X = R%,d > 1, with Lebesgue measure for A> € R%nd T > 0 the function p42 A T'is Lipschitz continuous its gradient exists and equals
[V(pae AT)| = 1on{pyz < T}and {p,z = T}. Whenever g

Paz(xn) = inf # (s Xng1)-
Xn+1 € A2

We have given sense to E(uj, ¢) for u; € Myy.and @ € Mwith compact support. In a similar way, the expression h(uj, ¢) is meaningful for
u;j € Mj,.(h) and ¢ € M (h) with compact support.

Definition 2.8. A function u; € M, (h)\{0}is called a generalized eigen-function corresponding to the generalized eigen value A € R if
h(uj, qo) = A(uj, (p) for all ¢ € M (h) with compact support. The next theorem gives an effective bound on the infimum of the spectrum by
representing the form. It requires that the generalized eigen function has a fixed sign.



61758 Hanana Elnage, Intrinsic metrics and geometry of dirichlet forms

Theorem 2.9. Let h = € + vywith vj+ € My, vj € M; and €a regular Dirchlet form. Let u;be a generalized eigen-function to the eigen-value
Awith u # 0 g.e. and uj_l € M,.. Then the formula

@ =A@W) = [ Y e ar ()

XXX

holds true for all ¢, € M (h) with ¢pu; 7%, ;7' € My .(h) and pypu;~t € M, (h) . If w;~ € M, (h) N L the formula holds true for all

Here, if Fis a space of functions on X, F,,denotes the subset of elements in Fwith compact support.

Proof: We follow the argument given in [18]. Without loss of generality we assume A = 0 and k = 0. The Leibniz rule gives
0=T(u,1) = Tw,wu ™) = ()T (), 1) + ()T (1, 70).

Using the fact that u;is a generalized eigen function, the Leibniz rule and the preceding formula we can calculate

h(¢! ly[)) = E(¢v 110) + Vj (¢v 110) = E(¢, ly[)) + Vj (¢¢uj_1J uj) = E(¢, ly[)) - f U; (xn)ujx_ldr((plpuj_lJ uj)

XXX

= £ P) + f 111t (g AT (0, 1,1

XXX

E(¢le)+ fuj(xn)uj(xn+1)¢(xn)dr(lpuj_1:uj_l) + fuj(xn)w(xn+1)dr(¢vuj_l)

XXX XXX

f 4 (et Gona ) e AT (=L Yy, ™) + f e dr (¢, Py ~) = f 1 o)ty Cons AT (o270 ™).

XXX XXX XXX

This gives the first statement.

The argument given above can be modified to give the following results. There, we do not need the assumptions u; > 0 and uj_l € M, but then
have stronger restrictions on ¢pand .

Theorem 2.10. Let h = € + v;with vj+ € M, and v; € Mj. Let ujbe a generalized eigen function to the eigen value A. Then,

h(ui, uh) — A, uyh) = f 14 o)ty G )T (),

XXX

for all ¢, € M (h) N Lgwhenever u;¢, ujh, u;¢,p € M (h). In particular, the formula holds for all ¢,y € M (h) N Lgif u; € L7.

Proof: Without loss of generality we can assume k = 0 and A = 0. Using the Leibniz rule repeatedly we calculate
E(wd wy) +v; (o, wp) = fdy(d)(u]¢ W) + v (w, ) = fuj du@(d,wy) + f pdu @ (w, wp) + v (w, wp9)

- f (et Gons1)dT(B, ) + f 1w G ()T (1) + f Au® (uy, uyip) — f wpdu® (g, §) + vy (), w )

XXX XXX

= f w; (e (1) AT (@, ) + E(wj, wpp) + v (v, wipyp) = f w; () O 41)dT (@, ).
XXX XxX

In the last step we used that u;is a generalized eigen function. This finishes the proof. Now we will estimate the energy measure of generalized
eigen functions.

Theorem 2.11. Let Ebe a regular Dirichlet form, v/ € M, and v; € Myjand g € (0,1) = g =1—-¢€,e <1 with v (u]) <@1- E)E(u]) +
a)(l_g)”ujllz be given and set h = € + (vj) (v]) .Then, for any A € R, there exists a constant w = w(l ) with

0
[ ¢eau) < o) sl + [ 77000 )
x 1

X
for any u; € My,e, & € M N wo(X) with Euj, E2u; € M and h(wj, ;&%) < A(uj, w;€?).
Proof: Ifk = 0,

e = vy (w:8) = €(w;,u;8%) = f §2(xp)dr (w) + f () (§ Gen) + € (xn 1))l (w;, €)

XXX XXX

and, by assumption, we have



61759 International Journal of Development Research, Vol. 13, Issue, 02, pp. 61755-61765, February, 2023

—v;(u;,€) < (1 - I () + Xa—o) i€

Finally, Leibniz rule again shows

e(ew) = [ £2edr(y) +2 [ GoECndr(u.) + [ G0

XXX XXX XXX

Let us now assume the last integral to be finite (otherwise the claim is still true).

We now set

T:=¢ f n?(,)dr ().
XXX

Putting everything together we can estimate

T< A+ wao)|wél’ + 1 - e f T (0)2dI(E) + f T () (=€) + (1 — 26)EGenen) )T (1, €)

XXX X1><X
< (1 + wao) ] + <(1 —o+ E) [ morar©
XXX
+5 [ (~60) + (1 - 298 Grn) dr ()
XXX
1

<(1+ w(l_g))”ujfnz + <(1 —e)+ E) f I, (2,)2dI (&) + 4S max((1 — ), 6)2 f E(xp)%dr ()
forall § > 0. o e

The bound takes a simpler form if Ehas finite jump size.
2. Intrinsic geometry and analysis of Dirichlet forms

Avoid In this section m denote to a non-negative Radon measure with support X. A Dirichlet form € on L2(X, m) is a closed, non-negative
definite and symmetric bilinear form defined on a dense linear subspace A of L?(X, m), that satisfies the Markov property: for any uj € A,

setting v; = min{l,max{O,uj}}, we have S(Uj,uj) < S(uj,uj). Furthermore, € is said to be strongly local if S(u]-, u]-) = 0 whenever uj,vj € A
with u; a constant on a neighborhood of the support of vj, to be regular if there exists a subset of A N wy (X) which is both dense in wgy(X) with
uniform norm and in A with the norm ||-|| 4 defined by

1/2
lwll, = [ujfz(x) + S(ui'ui)] :
for each u; € A.

See [1] showed that a regular, strongly local Dirichlet form € can be written as

€(uy,vy) = fdr(ui'ui)'
X

for all uj, v € A, where T is an p(X)-valued nonnegative definite and symmetric bilinear form defined by the formula

1
[ 0dr(u,) = 5 [y 0v) + (i 0) - vy 0)],
X
for all uj,v; €AN L?(X) and @ € A N wy(X). Herep(X) is the collection of all signed Radon measures on X. We call F(uj,ui) the Dirichlet
energy measure. The Radon—Nikodym derivative %(2{) plays the role of the square of the length of the gradient of u; € A at Z € X.
dl"(uj,uj)
dm

Whatever, is related merely to the absolutely continuous part of F(u]-, u]-). There is no reason for F(uj, u]-) to be absolutely continuous

with respect to m in general.

For each open subset W < X, we denote by Ajo.(W) the class of u; € L2 .(W). We write Ajoc(W) as Ajoc. Observe that, since € is strongly
local, T is local and satisfies the Leibniz rule and the chain rule, see for example [5]. Therefore both S(uj,uj) and F(u]-,vj) can be defined for
Uj, Uj € Ajoc. With the aid of Dirichlet energy, the intrinsic distance dg associated to € is defined by

de(Xp, Xp41) = sup{uj (%n) = Uj(Xn41): 45 € 0(X) N Ajge, F(uj,u]-) < m},

for all xp,,X,4+1 € X, where F(u]-,uj) < m means that F(u]-,uj) is absolute continuous with respect to m and its Radon—Nikodym derivative

ﬁf(uj,ui) < 1 almost everywhere. We always make a standard assumption that the topology induced by dg¢ coincides with the original
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topology on X. Under this, it was proved that dg is a distance, dg(Xy, Xps1) < o for all x,, X541 € X, and (X, dg) is a length space; see
[14,15,17]. Associated to this intrinsic distance dg, for a measurable function ;, its pointwise Lipschitz constantis defined as

|u-(Xn) — (Xn+1)|
Lipg.u;(X) = lim su ]
Pd, l( ) xn==xn+1—g<n de(Xn, Xn+1)

]

and for each x € X, Lipg, () stands for the collection of all measurable functions u;j with

ol (o= sup uj(xn) — uj(xns1)|
MLipg, T Xn,Xn+1 € KX F Xpig de(Xp, Xn41) -

Under the above standard assumption, it was proved that if uj € Lipg,(X), then F(u]-, u]-) is absolutely continuous with respect tom; see [8] and
[14].

Notice that on X, we now have two kinds of structures: the gradient (differential) structure given by I' and the intrinsic distance structure given by
de. As indicated by the constructions in [9,10,16], we cannot expect that the two structures coincides pointwise, that is, (Llpdguj) =

%F(uj,u]-) almost everywhere for all u; € LipdS(X). However, instead of the pointwise coincidence, we established a weak coincidence of
intrinsic distance and differential structures in [8]. This is given by the following lemma.

Lemma 3.1. For every open set W c X, if uj € Ajoc (W) N (W) and l"(uj, uj) is absolutely continuous with respect to 1ym, then
, d .
esssup al“(uj, u]-)(xn) = sup Lipg.uj(xy). ?2)
X, EW X, EW
We will also need the following Lemma 3.2, which is established in [8]. For every W c X, we define a local intrinsic distance d¢ by
dyw (X, Xns1) = sup{u]- (%n) = Uj(Xp41), 4j € Ajoc (W) N (W), F(uj, u]-) < 1Wm},
d

where F(uj, u]-) < 1yp means that F(u]-, uj) is absolutely continuous with respect to 1y,p , and Im F(u]-, uj) <1 on W. Recall that F(u]-, uj) is
well-defined on W by the locality of T

Lemma 3.2. Let W be an open subset of X. Then for every x, € W, there exists r(, ) € (0,de(xp, @W)) such that dyy(xp, Xn41) =
de(Xp, Xp4q) forall x4 € BdSE(xn, r(xn)).

If we further assume that (X, €, dg, m) satisfies a local doubling property and supports a local weak (1,2)-Poincare inequality, we have some
further results concerning the intrinsic distance and differential structures.

Remarks 3.3.

We say that (X, dg, m) enjoys a local doubling property if there exist constants s, € (1, ) and IV, € (0, ) such that for all x, € Xand 0 < r <
N,

e

0 1
mz (Bds(xn, Zr)) < semz (Bds(xn,r)) <o 3)

(i) If IV, = diam X, we say that (X, dg, m) enjoys a doubling property. We also say that (X, €, m) supports a local weak (1,2)-Poincare inequality
if there exist constant s; € (1, 0) and V; € (0, ©) such that for all u; € A and x, € Xand 0 <7 <V,

0
: ] ]
Ldg(xn'r) = | Bds(xn'r)

(i) If V; = diamX, we say that (X, € dg, m) enjoys a weak (1,2)-Poincare inequality. Note that for functions uj € Lipg, (xs), F(u]-,uj) is
absolutely continuous with respect to m; see the discussion in [8]. Therefore, for Lipschitz functions u;, we know that

f Z%F(uj'uj)dp = Z ) (BdE(Xn' Zr)).

Bag oo p (Bason,20)

dn < Zl: F(ui'ui)(Bdg(Xn;zr)) &
m= s m (Bds(xn, 2r))

4)

Furthermore, an employment of a good lambda inequality argument as in [6] lets us obtain the following stronger (local) Sobolev—Poincare
inequality:

f Z |u" 7 U (Bagxar)

Bdg(xn'r)

’ dm < srz F(uj,uj) (Bdg(xn, 2r)).
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Lemma 3.4. Assume that (X, € dg, m) satisfies a local doubling property. Then for every Lipg,(X), F(uj,u]-) is absolutely continuous with

d . 2
respect to m and m F(uj, u]-) < (Llpdsu]-) almost everywhere.

Lemma 3.5. Assume that (X, €, dg, m)satisfies a local doubling property and supports a local weak (1,2)-Poincare inequality. Then there exists
aconstants = 0 = s; = 1+ e such that for all u; € Lipg, (X) and almost all x, € X,

Z (Lipdsuj(xn))z <s Z j—mF(uj,uj)(xn) (5)

Proof: If (X, €, m) satisfies the doubling property and weak (1,2)-Poincare inequality, that is NV, = N; = diam X, then Lemma 3.5 is already
showed in [10]. With the local doubling property and local weak (1,2)-Poincare inequality, we adapt the argument of [7], we have that

1
. ) < : _ ey
Z Llpdsul (xn) =S lmrz_)s(‘]up r f Z |u] u] (Bds(xn'r))

Bag (xn,1)

dm,

for almost all x, € X. Here s is a constant independent of u; and x,. This together with the local weak (1,2)-Poincare inequality leads to that
1/2

. , d
Z Lipg u;(xn) < Ssill":_f]upz f %F(uj, uj)dmy

Bdg(xn'r)

2
and hence by Lebesgue differential theorem, (Lipdsuj (Xn)) <ss; ;—m F(uj, u]-)(xn) for almost all x,, € X. This give (5).

€ is a regular, strongly local Dirichlet form on L2(X, m) and we assume that the topology induced by the intrinsic distance coincides with the
original topology on X. Denote by Ag the generator of the Dirichlet form €, which is a self-adjoint operator with domain D (A¢) and defined by:
for all uj, vj € D(Ag),

- f ujAgv; dm = — f vjAgu; dm = S(uj, vj).
X X

Let {P. = e7"¢}, be the heat semi-group generated by Ag. From the theory of Dirichlet forms, it follows that for each u; € L*(X, m) and t > 0
we have Piu; € D(A¢). Furthermore, Ptusatisfies the heat equation in the weak sense: for each ¢ € A N g, (X) we have that

d
—-&(¢, Pryj) = f¢aptuj dm.
X

We say that the Dirichlet form satisfies the Feller property if for all u; € #,,(X) and t > 0, Pu;j admits a continuous representative P?fll, that is,
l5tTll € p(X) and l5tTll = Puu; almost everywhere. For convenience, we write l5tTll as Pt~u]. Note that by the results of [19] or [16], the local
doubling property together with the local (1,2)-Poincare inequality implies the Feller property.

Suppose that for all u; € A, nonnegative ¢ € A N $,(X) and t = 0, we have

f ¢dr (P, Pauj) < k(t) f Pepar (uj,u)) (6)
b's b's
Where : (0, 0) — (0, ) is locally bounded from above, see (6). The works of [16] and [19] tell us that F(Ptu]-, Ptu]-) is absolutely continuous

with respect to p provided the measure is doubling and satisfies a weak (1,2)-Poincare inequality. Therefore, if (X, €,dg, m) is doubling and
supports a (1,2)-Poincaré inequality and T (uj, uj) is absolutely continuous with respect to m, then we have that (6) is equivalent to

d d
| &5y Pay)am < k@) | ( | ¢(xn+1)Pt(xn.xm)dm(xm))Er(u,».uj)(xn)dm(xn)
X

X X

d
= (®) [ $Cxnan) < | ar(u,-.u,-)(xnm(xn.xn+1)dm(xn)> dm )
X X

Here P;: X X X - R is the heat kernel associated with the semi-group {P.};. Since the above inequality should hold for each ¢ € A N ., (X), it
follows that

d ~(d
aF(Ptuj,Ptuj) < K(t)Pt (E[‘(uj'uj)>

almost everywhere in X. It then follows from Lemma (3.4) and Lemma (3.5) that if (X, €,dg, m) is doubling and supports a (1,2)-Poincare
inequality, and if uj € Lipq, (x,) with Pu; € Lipg, (x,) satisfying (6), then for almost every x, € X,

~ ~(d
(Lipngtuj(xn))z < k(t)P; (Ef(uj,uj)> (x).
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We extend the above inequality to a larger class of functions u;, under the milder condition (6) and the Feller property. We provide this extension
without requiring the doubling and Poincare inequality properties here, for this will then be of independent interest. Set ko = lim infi_,o k(t).
Without loss of generality, we always assume that k, = 1 and that k™! € L1(0,1).

Recall that if u; € Lipg,(xy), then by Lemma (3.4), F(u]-, uj) is absolute continuous with respect to m and % F(uj, u]-) € H®(X, m).
Lemma (3.6):

(i) If uj € L*(X, m), then for all t > 0, Pru; € A with E(Pu;, Pyy) < %||u,-||2 and AgPuu; € L2(X, m) with || AgPuy;|

1
< tlwll 2 m
L2(X,m)’ L2xm) — t 1L2(xm)
(ii) If u; € A, then S(Ptu]- —uy, Py — uj) —>0ast— 0.

Lemma (3.7): Under the condition (6), for all u; € L*(X,m) N L*(X,m) and t > 0, (Ptuj, Ptuj), is absolutely continuous with respect to m and
for almost all x,, € X,

(Ptu],Ptu,)(Xn) = ft 2 ||ul||L°°(Xm) N

We show Lemma (3.7) by using some ideas from [15] . First, we recall the following result; see [15].

Proof: Let ¢ € $,,(X) be a nonnegative function. For r € [0, t], define

h(r) = f(Pt_ruj)ZPrq)dm.

X

By the Markov property, we have a comparison theorem for f = Pif, see[15]. Therefore we know that ||[Pdllgex) < llpllLex), and so because
P_;u; € LA(X), the quantity h(r) is finite for all 0 < r < t. Obviously, h(0) = fx(Ptu]-)Zq)dp and because [ vjAgu;pdm = [, ujAevibdm, we
see that h(t) = fx Pt(u]-)zd)dm. We will now see that his continuous and locally Lipschitz on (0,t). Indeed, for r,r’ € (0,t),

h(r) —h(r") = f (Perw) [Prd — P pIPepdm + f [(Pr)” = (Por))’| Prpdim.
X X

From [15] we know that

lim —— [P — Pr] = AP € L2(X) in 12(X)

r-r'r —
Similarly, for r’ < t,— [Pt Y — Pt_r:ui] - —AgPe_py;
It follows from this fact as well as the comparison theorem that h is locally Lipschitz continuous on (0, t).
The above discussion, the Leibniz rule fx dr(fh,g) = fx hdr'(f, g) = fx fdl'(h, g) and (10) also allow us to obtain
d 2 2
The) = f (Pr_ry)” AP.pdm — f 2P,_,u;AP,_u;P.pdm = — f dr (), Prp) + 2 f dr(P_ruj, P_ru;Pep)
X X X X
2
=2 f Prgpdl(Pr—yuij, Pr_ytj) = ol f ¢dr (P, Pruj) dm.
X X
This further gives from the local absolute continuity of h that

h(t) — h(0) = lim_, f W (r)dr > f Pl J,, #dr (Pew;, Pyu;) and hence by h(0) > 0,

J;( ¢(Ptu,-)2 dm > —drf odr (Paw, Pry). (8)

By the arbitrariness of ¢, F(Ptuj, Ptuj) is absolutely continuous with respect to p, and the comparison theorem
1

d
T (P, Pry) < W (Pay)” <

[l
xm)
0 x(r) T fO K(r) L

almost everywhere as desired. Consequently, suppose that for all u; € €, nonnegative ¢ € € N $,(X) and t > 0 we have

| gar(pay,pay) <@ | Ppar () )
X X
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Corollary (6.2.8)[263]: The condition (10) holds for all u; € A if and only if for all u; € <A, F(u]-, u]-) is absolutely continuous with respect to m,
and for all t > 0 and almost all x,, € X,

:—pF(Ptuj, Ptuj)(xn) < k(t) (%I"(uj,uj)) (x).
(10)w

Proof: We only need to show that (10) implies that for all uj € A, F(uj,uj), is absolutely continuous with respect to m and (9) holds. The
converse is obvious.

By an approximation argument, we will see that (8) holds for all uj € A. Indeed, let (uj)n = max {min {u,n}, —n}.Then (uj)n € ANL2X m)
and (8) holds for (uj)n. Observe that (uj)n — uand Pt(uj)n - Pt(u]-)n in L*(X,m) as n - oo,

(Pt (u] (w) ) P, (uj - (uj)n)) < % ”uj - (uj)n

Hence for all ¢ € g, (X), by the Cauchy—Schwarz inequality see[16],

-0 asn - oo.
L2(X,m)

[ oar e o) - [ par (), )| -

1/2
2 ( f ¢2d1"(Ptuj,Ptuj)> E (Pt (w = (w),). P (v - (uj)n))]
Hl@lliox)€ (Pt (uj - (uj)n) Py (uj - (uj)n)) -

as n — oo, Therefore

f $2dr(Puy;, Powy).

X

2 f odr (Pay, Pay — Py(u)) ) - f ¢dr (Pay — Po(w) , Pay — Pe(y), )
X X

1/2

We then know that (8) holds for u whenever ¢ € g,,(X) is non-negative.

By the arbitrariness of nonnegative ¢ € g,,(X) in (8), we have that F(Ptuj, Ptuj) is absolutely continuous with respect to p, and for almost all
X € X,

1 2
F(Ptu],Ptu])(xn) <— (Ptuj(xn)) .
0 k(r)

Finally, by [16], for every set E with p(E) = 0, we have
f 1gdl (w,w;) = lim 1gdl(Pewj, Pruj) = 0

X
which implies that F(uj, u]-) is absolutely continuous with respect tom. So (10) together with the absolute continuity of F(Ptuj, Ptu]-) implies that

d
J-¢ F(Ptu],Ptu])dm < k(t) f Pt(l) F(u],u])dm = k(t) f ¢ P; (dm F(uj,uj)> dm,
which further yields (9) by the arbitrariness of .

Lemma 3.8: Assume that E satisfies the Feller property and (10). Then for all u; € L*(X, m) and all t > 0, (7) holds, and moreover, P has a
continuous representative ﬁuj € Lipg, (X) such that for all x € X,

Lipdgpvtuj(xn) < _” ]”Loo(Xm) (11)
A fOK(r)d

Proof: If u; € $,,(X), by the Feller property,P.u; has a continuous representative ﬁuj . Notice that Py; and ﬁuj induce the same element in
L?(X) and hence in A. By Lemma (3.7) and Lemma (3.2), for all x, € X and r > 0, we have

o - sup . esssup esssup P
LipacPeuj(xn) < ¢ B(xn_r)LlpagPtuj(Z) 5 € B(x,,1) F(Ptujvptu])(z) 2 € B(x,7) EF(Ptuj:Ptuj)(z) <
1
Jyadr e ”Lw(x'm) (12)
as desired.

Next we relax the condition u; € $,,(X) to u; € L*(X) n L2(X). If y; € L*(X,m) N L2(X, m), then we can find a sequence of (uj)n € pyX)
such that (uj)n - u; and Pt(uj)n - P, and hence ﬁt(uj)n - P, in L2(X, m). By passing to a subsequence if necessary, which is still denoted

by {ﬁ(ui)n}neN’ we also have (ui)n - uj and ls;(u]-)n - Puyj pointwise almost everywhere. Moreover, by truncation if necessary, we can
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assume that ” (uj)n” By Lemma (3.7),Lipdsﬁ(uj)n satisfies (11) and thus is bounded from above uniformly in n. This

L°°(X,m) S ||uj||L°°(X,m).
means that ﬁ(uj)n is uniformly bounded and (Lipschitz) equi-continuous on X, and hence an application of Arzela—Ascoli’s theorem shows that
the limit (up to some subsequence) of ﬁ(uj)n, which is denoted by ﬁtuj, is Lipschitz continuous. Since Ptuand ﬁuj induce the same element in
L?(X) and hence in A, therefore P.u; admits a continuous representative ls;u]- and %F (Ptuj,Ptuj) = &F (f’;uj,f"tuj) almost everywhere.
Applying the above procedure given by (12), we have (11) for every u; € L2(X) n L*(X).

Finally, we relax the condition u; € L*(X) n L2(X) to uyj € L?(X) as follows. We first assume that u; € L*(X) is non-negative. Then, with
(uj)nincreasing sequence. Let ﬁtuj = Py = lim, ﬁ(uj)n, with the sequence Pt(u]-)n converging pointwise monotonically (increasing) to Pyu;.
Strictly speaking, Puu; is the p-equivalence class of functions equivalent to Pyuj, since weak theory of heat equation allows us to perturb the
solution on sets of p-measure zero. However, for the rest of this argument we will consider only the continuous representative of Pyu;. Because
uj € L*(X), we have that |F7t(u]-)n| < ||u]||

and so |Ptuj| < ||u]|| That is, P is finite everywhere in X.

L®(x,m)’ L®(X,m)’

For any € > 0 and all x,, X,41 € X, with X, # X4, there exists ny € N such that for all n > n,,
|Pe (), Gen) = Py G| + [P(y), Gt = Peaty Gtnn)| < € Gt ).

Thus applying (11) to (uj)n € L2(X,m) n L*(X,m), we have

1
J-ti ”uj”Loo(X'm) de (xXn, Xn41)-
0 x(r)
By the arbitrariness of € > 0, we obtain (11) for all u; € L*(X, m). By Lemma 3.4 , we conclude that (11) also holds for all u; € L (X, m). Note
that because ﬁuj is Lipschitz continuous, it is in A4, and so F(Ptuj, Ptuj) makes sense.

|P~tuj(xn) - ﬁtuj(xn+1)| < EdE(xn: xn+1) + |P~t(uj)n(xn) - ﬁtuj(xn+1)| <|2e+

For more general u; € L*(X) we have that u; = u;* — u; ™. Applying the above conclusion to u;* and u;~, we have the desired conclusion for u;
as well.

Proposition 3.9: Assume that esatisfies the Feller property and (10). Then for all u; € L* (X, m), Pu; admits a continuous representative, which
is denoted by ﬁuj. Moreover, for all u; € Lipg,(X) N L”(X,m) and all t > 0, we have ﬁtuj € Lipg,(X) and for all x, € X,

~ ~(d
(Lipngtuj(xn))z < k(t)P; (Ef(uj,uj)> (), (13)

where %F(ui, uj) € L°(X, m) andP, (% r (uj, uj)) denotes the continuous representative of P (% r (uj, u]-)>.

Proof: Let u; € Lipg,(X) N L”(X, m). By Lemma 3.8 , P,u; admits a continuous representative Pru; € Lipg, (X) € Ay for all t > 0. It follows
that F(Ptu]-, Ptu]-) and F(uj, u]-) are absolutely continuous with respect tom. Therefore by (10), for each ¢ € ., (X),

d d
J-db%l"(Ptuj,Ptuj)dm < k(t) f ¢ P, %F(uj,uj) dm,
X X
and so almost everywhere in X we have

d d
%F(Ptuj, Ptu]-) < k(t) P, <%F(uj,uj)>.

For every x, € Xand allr > 0, by Lemma 3.2 , we have

.5 2 . e 2 d -~
(LlpdsPtuj (xn)) < sup (LlpdEPtuj (xn+1)) = esssup %F(Ptuj, Ptuj)(xnﬂ)
Xn+1 € Bdg(xn:r) Xn+1 € Bde(xn,r)

dm

d d
= esssup —I"(Ptuj,Ptuj)(an) < k(t) esssup P, <%F(uj,uj)> (xn41)-
Xn+1 € Bdg(xnvr) y € Bdg((xn: r), 7')

. d 2 . d . . .
Since EI" (uj,uj) < ”uj”Lipag ® almost everywhere, by Lemma 3.8 again, P, (EI" (uj,uj)> admits a continuous representative
=(d . .

P (% F(uj,uj)). Letting r — 0, we arrive at

~ [ d
(Lipngtuj(xn))z <P <%F(uj,uj)> (x)

as desired
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Finally, as a geometric consequence of Proposition 3.8 , we are going to derive the highly nontrivial \/K_O-quasi-Newtonian property defined
below from (10). Here, following [8], we say that(X, €, dg, m) satisfies an L-quasi-Newtonian property if for every u; € Lipg,(X), there exists a

Borel function 8u; X = [0, oo] such that Gu; = dipl" (uj, uj) almost everywhere and 8y, is an L-quasi-Newtonian upper gradient of u;, that is, for

all rectifiable curves y in X, we have
[ () — ()| < Lfgu}. dr.
¥

Here Xy, X+, denote the end points of y.

Corollary 3.10: The intrinsic differential and distance structures of € coincide, that is, (1) holds for all u; € Lipg, (X) .

Corollary 3.11: Let € be a regular Dirchlet form and u; < 0 be a generalize eigen-function to the eigen-value A with (uj)_l € My, N L., for
h =€+ vjwithv;” € M;. Thenh < A. Ify; = 0 thath = A.

3. Acknowledgements

H.S would like to thank Allah for his grace and prof . DrShawgy Hussein of Sudan university of science and technology for most stimulating
discussions

REFERENCES

[1] A. Beurling, J. Deny, Dirichlet spaces, Proc. Natl. Acad. Sci. USA 45 (1959) 208-215.

[2] M. Biroli and U. Mosco. A Saint-Venant: type principle for Dirichlet forms on  discontinuous media. Ann. Mat. Pura Appl., IV. Ser.,
169:125-181, 1995.

[3] A. Boutet de Monvel, D. Lenz, and P. Stollmann. Schnols: Theorem for strongly local forms. Israel J. Math. , 173 (2009), 189-211.

[4] A. F. M. Elst, Derek W. Robinson, Adam Sikora, and Yueping Zhu: Dirichlet forms and degenerate elliptic operators, Partial differential
equations and functional analysis, Oper. Theory Adv. Appl., vol. 168, Birkhauser, Basel, 2006, pp. 73-95.

[5] M. Fukushima, Y. Oshima, and M. Takeda: Dirichlet forms and symmetric Markov processes.de Gruyter Studies in Mathematics. 19. Berlin:
Walter de Gruyter. viii, 392 p., 1994.

[6] B. Franchi, C. Pérez, R.L. Wheeden, Self-improving properties of John—Nirenberg and Poincaré inequalities on spaces of homogeneous type,
J. Funct. Anal. 153 (1998) 108-146.

[7] S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271-315.

[8] P. Koskela, N. Shanmugalingam, Y. Zhou, Loo-variational problem associated to Dirichlet forms, Math. Res. Lett. 19 (2012) 1263-1275.

[9] P. Koskela, N. Shanmugalingam, Y. Zhou, Intrinsic geometry and analysis of Diffusion process and Loo-variational problem, Arch. Ration.
Mech. Anal. 214 (2014) 99-142.

[10] P. Koskela, Y. Zhou, Geometry and analysis of Dirichlet forms, Adv. Math. 231 (2012) 2755-2801.

[11] PekkaKoskelaa,1, NageswariShanmugalingamb,2, YuanZhouc,3: Geometry and analysis of Dirichlet forms (II). A Department of
Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014, University of Jyvéskyld, Finland b Department of Mathematical Sciences, P.O.
Box 210025, University of Cincinnati, Cincinnati, OH 45221-0025, USA , C Department of Mathematics, Beijing University of Aeronautics
and Astronautics, Beijing 100191, PR China

[12] Rupert L. Franki, Danial Lenz, and Daniel Wingert: Intrinsic metrics for non-Local symmetric Dirichlet forms and applications to spectral
Theory, arXiv:1012.5050v1 [math.FA] 22 Dec 2010.

[13] K.-T. Sturm: Analysis on local Dirichlet spaces. I: Recurrence, conservativeness and Ly-Liouville properties.

[14] P. Stollmann: A dual characterization of length spaces with application to Dirichlet metric spaces, Studia Math. 198 (2010) 221-233.

[15] K.-T. Sturm: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math. 456
(1994) 173-196.

[16] K.T. Sturm: Is a diffusion process determined by its intrinsic metric?, Chaos Solitons Fractals 8 (1997) 1855-1860.

[17] K.T. Sturm: The geometric aspect of Dirichlet forms, in: New Directions in Dirichlet Forms, in: AMS/IP Stud. Adv. Math., vol.8, Amer.
Math. Soc., Providence, RI, 1998, pp.233-277.

[18] D. Lenz, P. Stollmann and I. Veseli¢: The Allegretto-Piepenbrinck Theorem for strongly local Dirichlet forms. Documenta Mathematica 14
(2009), 167-189.

[19] M.-K. von Renesse, K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58
(2005) 923-940.

kst sk sk skoskook



