

A COMPARATIVE STUDY ON HOW TO CREATE AN OPERATING SYSTEM
FROM SCRATCH AND A LINUX KERNEL

1C G Accamma, 1Baisakhi Debnath, *2Palak Agarwal, 2Om Jaiswal, 2Nishant Kumar, 2Nischal

Dhoka and 2Parag Joshi

1Asst.Professor, Center for Management Studies, Jain (Deemed-to-be) University, Bangalore, India
2Student, Center for Management Studies, Jain (Deemed-to-be) University, Bangalore, India

ARTICLE INFO ABSTRACT

There are numerous operating systems available today, each designed to function optimally on various
devices and with their own resource utilization and algorithms. Creating an operating system from scratch
would require extensive expertise in the field, as it serves as the interface to manage multiple user requests,
API calls, and channels. Nevertheless, it would be impractical to develop a new operating system today, given
the abundance of existing options that are both secure and efficient. However, we can choose from various
Linux distributions tailored to our specific needs, such as Kali Linux or Parrot OS for ethical hacking, Red Hat
for server-related tasks, or Cloudera for big data analysis. There is a significant area where a unique operating
system is necessary, and that is for supercomputers. These computers operate differently than standard
systems, and thus require a custom operating system to optimize their performance.

Copyright©2023, C G Accamma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

An operating system (OS) is an essential component of modern
computer systems, responsible for managing hardware resources and
providing services to software applications. Its primary function is to
act as a mediator between the applications and the underlying
hardware, allowing them to communicate and interact efficiently.
OSes play a vital role in offering a stable, secure, and efficient
platform for running software applications. There are many different
versions of operating systems, each with their own unique features and
capabilities, optimized for specific hardware platforms and use cases.
Operating systems offer several key benefits, including the ability to
run multiple. Applications concurrently, manage system resources,
and provide a common user interface for interacting with applications.
They provide an abstract layer that shields applications from the
complexities of the underlying hardware, allowing developers to write
software that can run on various hardware platforms. Operating
systems consist of several layers, including the kernel, device drivers,
system libraries, and user interface components. The kernel is the
central component of the OS, responsible for managing system
resources, such as memory and CPU time, and providing a set of
system calls that applications can use to communicate with the
operating system.

Device drivers’ interface between the OS and network adapters.
System libraries provide a set of common functions that applications
can call, while UI components provide the graphical interface with
which the user interacts.The most used operating systems today are
Windows, macOS, and Linux, each with their unique strengths and
weaknesses. Windows is a proprietary OS developed by Microsoft and
has a market share of more than 80%. It provides a user-friendly
interface, supports a wide range of hardware devices, and has a rich
ecosystem of software applications. Key features of Windows include
its enhanced security features, compatibility with legacy apps, and
support for touch input. MacOS is an operating system developed by
Apple for its line of Macintosh computers. It is based on the Unix
operating system and shares many features with Linux. MacOS offers
a sleek, modern interface and tight integration with other Apple
products like iPhone and iPad. Key features of macOS include tight
integration with Apple's product ecosystem, emphasis on privacy and
security, and support for virtualization technology. Linux is an open-
source operating system widely used in enterprise environments,
cloud computing, and embedded systems. It is known for its stability,
security, and flexibility. It is highly customizable and can be adapted to
fit various use cases. Key features of Linux include support for a wide
range of hardware architectures, a strong developer and user
community, and a powerful command-line interface. Other notable
operating systems include Android, iOS, Chrome OS, and FreeBSD.

ISSN: 2230-9926

International Journal of Development Research
Vol. 13, Issue, 03, pp. 62320-62325, March, 2023

https://doi.org/10.37118/ijdr.26649.03.2023

Article History:

Received 17th January, 2023
Received in revised form
06th February, 2023
Accepted 19th February, 2023
Published online 30th March, 2023

Available online at http://www.journalijdr.com

Citation: C G Accamma, Baisakhi Debnath, Palak Agarwal, Om Jaiswal, Nishant Kumar, Nischal Dhoka and Parag Joshi. 2023. “Origin, distribution, taxonomy,
botanical description, genetic diversity and breeding of tomato (Solanum lycopersicum L.)”. International Journal of Development Research, 13, (03), 62320-62325.

 RESEARCH ARTICLE OPEN ACCESS

KeyWords:

Operating System, Windows, Linux, Mac, UNIX,
Android, iOS, Comparative Analysis, quantum
computer operating system, Security, Performance.

*Corresponding author: Palak Agarwal,

Android is a mobile operating system developed by Google and is the
most widely used operating.system for mobile devices. iOS is the
operating system developed by Apple for its iPhone and iPad devices.
Chrome OS is a lightweight operating system developed by Google
for Chromebook laptops. FreeBSD is a free and open-source Unix-like
operating system used in many enterprise environments. Overall,
operating systems play a critical role in providing the foundation for
softwareapplication development and deployment. As computer
technology advances, the role of the operating system will continue to
play an important role in providing a stable, secure, and efficient
platform for running software applications. There are many different
operating.systems in use today, each with their unique features and
capabilities, but Windows, macOS, and Linux are the most widely
used operating systems, each with strong popularity and a rich
ecosystem of software application.

Review of Literature Operating system: Operating systems ideas
are covered in detail in the book "Operating Systems: Three Simple
Parts" by Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
It addresses issues including networking, file systems, memory
management, and processes. Another thorough operating systems
reference is the book "Modern Operating Systems" by Andrew S.
Tanenbaum and Herbert Bos. It covers subjects including networking,
file systems, memory management, and process management. The
widely used textbook "Operating System Concepts" by Abraham
Silberschatz, Peter B. Galvin, and Greg Gagne offers a thorough
overview of operating systems. It covers subjects including
networking, file systems, memory management, and process
management. A notable book that covers the UNIX operating
system's design ideas and inner workings is "The Design of the UNIX
Operating System" by Maurice J. Bach. The authors Mark
Russinovich, David Solomon, and Alex Ionescu's book "Windows
Internals" offers a thorough analysis of the inner workings of the
Windows operating system. It addresses issues including file systems,
memory management, and processes.

Linux Kernel: Robert Love's book "Linux Kernel Development" is a
thorough introduction to the development of the Linux kernel.
Process management, memory management, file systems, and device
drivers are some of the subjects it covers. Daniel P. Bovet and Marco
Cesati's book "Understanding the Linux Kernel" offers a thorough
description of the Linux kernel's internal operations, covering process
management, memory management, and device drivers. The "Linux
Device Drivers" book by Greg Kroah-Hartman, Alessandro Rubini,
and Jonathan Corbet is a thorough instruction manual for creating
device drivers for the Linux kernel. It covers subjects including USB
devices, network devices, and character devices. Michael Kerrisk's
book "The Linux Programming Interface" offers a thorough
introduction to Linux system programming, including process
management, file systems, and network programming. Overall, there
is a significant body of literature on operating systems and the Linux
kernel that ranges from scholarly research articles to how-to manuals
and tutorials. It is simple for everyone to learn and grasp these
complex topics thanks to the resources' broad coverage of subjects and
ability-level catered content.

Designing an Operating system from scratch: When designing an
operating system, there are several key design principles that must be
carefully considered. These principles include the operating system's
architecture, kernel design, and system calls. The architecture of an
operating system refers to the way in which the system is structured
and how it interacts with the underlying hardware. It is important for
the architecture to be modular, extensible, and flexible in order to
accommodate the addition of new hardware and software components
without requiring major changes to the underlying system. The kernel
design of an operating system refers to the basic components of the
system that manage system resources such as memory, CPU time, and
input/output devices. The kernel must be designed to be efficient,
reliable, and secure, and should be able to manage system resources
in a way that minimizes contention and maximizes throughput.
Security should also be a key consideration in the kernel design, with
mechanisms in place to protect the system from malicious attacks.
System calls are the mechanism by which applications interact with
the operating system. It is important for the set of system calls to be
comprehensive, consistent, and easy to use, allowing developers to
perform a wide range of operations such as memory management and
process scheduling. Consistency across different parts of the
operating system is also important so that developers can easily learn
and use them. Other design principles that are important when
building an operating system include performance, reliability, and
maintainability. Performance is important in order to provide users
with a responsive and smooth user experience. Reliability is also
crucial, as minimizing the risk of system crashes and data loss is
essential. Finally, maintainability is important for ensuring that the
system can be easily documented and developed. Overall, designing
an operating system requires careful consideration of several key
design principles. These include the architecture, kernel design, and
system calls, as well as performance, reliability, and maintainability.
By taking these principles into account, it is possible to build an
operating system that is efficient, reliable, and easy to use, meeting
the demands of modern computing.

Building an operating system using a Linux kernel: Custom
operating systems may not be necessary for minor performance
boosts, but they are still useful for specific types of work. For
example, developers may want to create an operating system with
their own specifications, such as a custom user interface (UI) design.
To build such an operating system, one can start by choosing from
different flavors or use third-party tools or virtual machine
frameworks to load the Linux kernel. Then, developers can choose
which applications to install by default, such as LibreOffice or
VSCodium. Everything can be customized, including the background
and tiling. Once the OS is installed, it can be exported as an ISO file.
Advanced users and developers can use the Linux API to design the
UI elements of the OS, but it is recommended to leave everything as it
is to avoid crashing the OS. Building an operating system using a
Linux kernel image has become a popular choice for developers due
to its faster development times, access to a large community of open-
source developers, and pre-built software components. However, there
are also limitations and practical considerations to keep in mind. One
advantage of using a Linux kernel image is that it provides a solid
foundation for the operating system. The Linux kernel has been
extensively tested and optimized over the past two decades to ensure
high performance, reliability, and security. This means that developers
can focus on building higher-level components of the OS, such as the
user interface and system services, without worrying about low-level
details of hardware interaction.

Another advantage of using a Linux kernel image is access to a large
community of open source developers. The Linux community is one
of the largest and most active in the world, with thousands of
developers contributing to the kernel and associated software
components. This can save developers time and effort by allowing
them to build on the work of others and create their own operating
systems. However, there are also limitations to using Linux kernel
images. One limitation is that the kernel may not support all hardware
configurations. Although the Linux kernel supports a wide range of
hardware, some devices may not be supported or may require custom

62321 C G Accamma, A comparative study on how to create an operating system from scratch and a linux kernel

device drivers to be written. Another limitation is that using a Linux
kernel image can limit the ability to differentiate the operating system
from other Linux-based systems. This can make it more difficult to
create a unique brand and identity for the operating system and limit
the ability to provide functionality not found in other Linux-based
systems. Finally, there are practical issues to consider when building
an operating system based on an existing kernel. This includes
choosing the right distribution on which to base the operating system,
understanding licensing requirements for the kernel and associated
software components, and ensuring that the operating system is
compatible with the target hardware configuration.

System bootstrapping and initialization

System startup and initialization refers to the crucial process by which
an operating system is booted up and its components are initialized.
This process is essential for the proper functioning of the operating
system as it sets up the environment for running applications and
system services. The boot process commences when the computer is
turned on or restarted. The first step in this process is the initialization
of the hardware and performing a power-on self-test (POST) by the
BIOS (Basic Input/Output System) to ensure that all components are
functioning properly. Once this is done, the BIOS then loads the boot
loader, which is responsible for loading the operating system kernel
into memory.

When the kernel is loaded into memory, the initialization process
begins. The first step is to configure the memory management of the
system. This includes allocating memory for the kernel and other
system components, creating page tables, and other data structures
needed to manage memory access. Next, the kernel initiates the
process of hardware device initialization, such as the keyboard, mouse,
and monitor. This involves detecting and configuring each device, as
well as configuring device drivers to enable communication between
the device and the operating system. Once the hardware devices are
initialized, the kernel initializes the system's file system and network
interface. This involves mounting file systems and configuring
network settings such as IP addresses and network interfaces. Finally,
the kernel starts system services and applications, which provide the
user interface and other functionality. This includes starting the GUI,
starting system daemons, and starting any user applications configured
to start automatically.

Overall, system startup and initialization is a complex process that
involves many steps, including hardware initialization, memory
management, device driver configuration, and application launch.
Developers and system administrators need to have a good
understanding of this process to diagnose and fix boot problems,
optimize system performance, and customize the boot process to their
specific needs. It is worth noting that there are potential risks
associated with the system startup process. BIOS corruption, for
example, can occur, leading to the destruction of hardware
components if not reviewed and tested properly. Therefore, it is
crucial to ensure that the system is thoroughly tested and configured
before the startup process is initiated to minimize the risk of such
problems occurring.

Memory management and virtualization: The proper management
of memory and virtualization are fundamental aspects of an operating
system, as they enable applications to efficiently access resources and
safeguard the system against resource competition and security
breaches. At a fundamental level, memory management involves
allocating and releasing memory as required by applications. This is
typically done by using both physical and virtual memory, which
allows the operating system to allocate more memory than is
physically available, temporarily storing data on disk. Virtualization,
on the other hand, entails creating multiple virtual instances of an
operating system, each with its own resources and applications. This
allows multiple applications to run concurrently on the same hardware
without causing interference with each other or the underlying
operating system. Memory management and virtualization are closely
related as they both involve the allocation. and management of
application resources. For instance, in a virtualized environment, a
hypervisor distributes memory and other resources to each virtual
machine, while an operating system within each virtual machine
manages the resources allocated to it.

Preventing resource competition and security breaches is one of the
significant challenges in memory management and virtualization. If
several applications try to access the same memory space or hardware
resource simultaneously, it may result in crashes or other issues.
Similarly, if a malicious application gains access to system resources,
it can compromise the security of the entire system. To address these
challenges, modern operating systems employ various techniques,
including process isolation, memory protection, and sandboxing.
These technologies are designed to prevent applications from
interfering with each other or the underlying system, while limiting
the impact of security breaches and other issues. In conclusion,
memory management and virtualization are critical functions of an
operating system as they enable applications to access resources
effectively while ensuring that the system is protected from resource
conflicts and security vulnerabilities. Modern operating systems use a
range of techniques, such as process isolation, memory protection,
and sandboxing, to ensure that applications run reliably and securely
in diverse environments.

Process management and scheduling: Process management and
scheduling are fundamental functions of an operating system because
they control how system resources are assigned to different
applications and services. These functions involve creating,
executing, and terminating processes, as well as prioritizing and
scheduling those processes to keep the system running efficiently. At
a basic level, a process is an instance of an application or system
service that is currently running. The operating system manages each
process by allocating resources like memory, CPU time, and I/O
devices to each process, and ensuring that they have the resources
they need to operate efficiently. This includes creating new processes
as needed, managing the state of each process (e.g. running, waiting,
or paused), and stopping processes when they are no longer required.
Scheduling algorithms are used to determine process priority and
manage process execution. Prioritizing processes can be based on
various factors, such as the importance of the process,

62322 International Journal of Development Research, Vol. 13, Issue, 03, pp. 62320-62325, March, 2023

the amount of resources required, and the execution time. The
operating system then uses these priorities to determine which
processes should be run first and how much CPU time should be
allocated to each process. One of the biggest challenges in process
management and scheduling is managing the competing demands of
different processes and users. For instance, if one process is using a lot
of CPU time, it may cause other processes to run slowly or become
unresponsive. To address this challenge, modern operating systems
use various techniques such as time sharing, multitasking, and
preemptive scheduling. Time-sharing involves dividing the CPU time
into fixed intervals and allocating a portion of CPU time to each
process during each interval. Multitasking allows multiple processes
to run simultaneously by dividing the CPU time between them.
Preemptive scheduling involves interrupting a process that is using
too much CPU time, and allocating the CPU time to another process
with higher priority. Process management and scheduling are critical
operating system functions because they determine how system
resources are assigned to various applications and services. To
achieve this, modern operating systems use various techniques such as
process creation and termination, scheduling algorithms, and resource
allocation policies. These techniques ensure that the system runs
efficiently, while providing a fair and responsive environment for
users and applications.

In addition to managing processes, modern operating systems also
provide mechanisms for inter-process communication (IPC). IPC
allows processes to communicate with each other and share resources.
For instance, a process may need to share data with another process or
coordinate with another process to accomplish a task. The operating
system provides various IPC mechanisms such as pipes, message
queues, and shared memory to facilitate inter process communication.
Another important aspect of process management is process
synchronization. Process synchronization is the process of
coordinating the execution of multiple processes to ensure that they do
not interfere with each other. This is necessary when multiple
processes access shared resources, such as a file or a database.
Synchronization techniques such as semaphores, monitors, and locks
are used to ensure that only one process can access a shared resource
at a time, to prevent data corruption and inconsistency. Overall,
process management and scheduling are critical functions of an
operating system, as they control how system resources are assigned
to various applications and services. By using various techniques such
as process creation and termination, scheduling algorithms, resource
allocation policies, and inter-process communication and
synchronization mechanisms, modern operating systems ensure that
processes run efficiently and fairly, while providing a stable and
responsive environment for users and applications.

File systems and I/O: File systems and input/output (I/O) operations
are fundamental components of an operating system as they enable
users and applications to store and retrieve data on the system. In
essence, a file system is a method of organizing and storing data on a
storage device, such as a hard drive or USB flash drive. The operating
system manages the file system by providing a set of tools and
Application Programming Interfaces (APIs) that allow applications to
interact with files, create directories, and perform other file-related
tasks. Moreover, I/O operations refer to the process of reading and
writing data from and to a device, such as a keyboard, mouse, printer,
or network. The operating system manages I/O operations using
device drivers, which are software components that interact with
hardware devices and provide applications with a standardized means
of accessing those devices. One of the major challenges in managing
file systems and I/O is to ensure that data is stored and retrieved in an
efficient and reliable manner. Modern operating systems use a variety
of techniques to achieve this, including caching frequently accessed
data in memory, optimizing disk access patterns, and ensuring that
data is written to disk consistently and reliably. Another challenge is
to limit the amount of bandwidth each application can use to avoid
resource contention and ensure that applications run smoothly.
Efficient file system and I/O management are essential components of
any operating system. These components play a vital role in ensuring
that users and applications can store and retrieve data efficiently and

reliably. To achieve this, modern operating systems use various
techniques, such as caching frequently accessed data in memory,
optimizing disk access patterns, and prioritizing I/O operations
according to their importance. For example, file system caching is a
technique used by the operating system to store frequently accessed
data in memory, which allows for faster access to that data. This
technique is particularly useful for applications that require quick
access to data, such as video editing software or database
management systems. Additionally, the operating system may use
techniques such as read-ahead and write-behind to optimize disk
access patterns, which involves predicting which data the application
will need next and loading that data into memory before the
application requests it. Another important aspect of file system and
I/O management is ensuring the reliability of data storage. For
instance, the operating system may use techniques such as journaling
to ensure that data is written to disk consistently and reliably, even in
the event of power outages or system crashes. This technique involves
keeping a record of all changes made to the file system, which allows
the operating system to recover from failures and restore the file
system to a consistent state.

Furthermore, modern operating systems prioritize I/O operations
based on their importance to ensure that critical operations are
completed in a timely manner. For example, an operating system may
prioritize printing jobs over other I/O operations if the printer is being
used for a time-sensitive task, such as printing an important document.
This technique ensures that important operations are completed in a
timely manner and that the system runs smoothly. In conclusion, file
systems and I/O operations are essential components of any operating
system as they allow users and applications to store and retrieve data
on the system. To achieve efficient and reliable file system and I/O
management, modern operating systems use a variety of techniques,
such as caching frequently accessed data, optimizing disk access
patterns, and prioritizing I/O operations according to their
importance. These techniques ensure that the system runs smoothly
and that users and applications can get the most out of their computing
experience.

Security and system administration: System security and
management are integral components of any operating system as they
ensure the protection of the system from unauthorized access while
guaranteeing the efficient use of system resources. User accounts are
a fundamental aspect of security that allow users to access the system
and its resources. Operating systems manage user accounts by
providing tools and APIs that enable administrators to create, modify,
and delete user accounts while setting permissions and access levels
for each user. This ensures that users only have access to the resources
that they need to perform their tasks and that unauthorized access is
prevented. Apart from user accounts, operating systems use various
security measures to safeguard the system from unauthorized access.
Examples of such measures include firewalls, antivirus. software, and
intrusion detection systems. These security measures are designed to
detect and prevent malicious activities on the system, such as viruses,
malware, and hacking attempts, and to alert administrators of
potential security breaches.

System administration is another key aspect of operating system
management, and it involves tasks such as software updates, system
monitoring, and resource allocation. The operating system provides
tools and APIs that enable administrators to manage system
resources, such as memory, disk space, and CPU usage, and monitor
system performance to detect issues such as bottlenecks or system
errors. This ensures that system resources are used efficiently and that
the system is running smoothly. To ensure system security and
reliability, the operating system also provides a variety of tools and
APIs that enable administrators to control access to system resources
and limit the operations that users can perform. For instance,
administrators can set access levels and permissions for different
users, restrict access to specific files or folders, and monitor user
activity for potential security breaches or misuse of system resources.
These security measures ensure that the system is protected against
unauthorized access and that system resources are used effectively. In

62323 C G Accamma, A comparative study on how to create an operating system from scratch and a linux kernel

summary, security and system administration are crucial components
of any operating system as they guarantee that the system is secure
and that system resources are used efficiently. Operating systems
provide tools and APIs that allow administrators to manage user
accounts, control access to system resources, and perform system
administration tasks such as software updates and maintenance. By
providing a secure and robust system management infrastructure,
operating systems enable users and administrators to effectively
manage and protect their systems.

Summary of Findings

After going through the report and the ROL on how to create an
operating software and Linux kernel from scratch the following things
can be summarized Creating an Operating System from Scratch:

● Firstly Books, online courses, forums, and other resources are all

accessible for creating an operating system from scratch.
● Secondly Most publications offer detailed instructions for creating

a simple operating system, covering subjects like boot loaders,
memory management, and device drivers.

● Lastly A thorough understanding of computer architecture and
operating system ideas is necessary for the time-consuming and
difficult process of creating an operating system from scratch.

● Creating the Linux Kernel
● A Linux kernel can be created using a variety of resources,

including books, online guides, and the kernel source code itself.
● Many publications offer thorough explanations of the core

operations of the Linux kernel, including process management,
memory management, and device drivers.

● It takes specialized expertise and abilities to create device drivers
for the Linux kernel in fields including character devices, network
devices, and USB devices.

● It can be difficult and requires solid knowledge of computer
architecture and operating system ideas to build a bespoke Linux
kernel.

Basically, in order to create a operating software you require
significant investments of time and effort. However, there are many
books and resources to guide the developers for better and deeper
understanding of operating system concept and computer architecture.

Limitations

It can be a useful exercise to contrast the creation of an operating
system from scratch with the use of an established operating system
like Linux, but there are a few drawbacks to consider. The time and
money needed to build an operating system from scratch are a serious
limitation. This lengthy, highly specialized procedure necessitates
considerable expenditures in knowledge and resources. It might not
be fair or accurate to compare such a system to a well-known
operating system like Linux, which has been created and improved
over many years. Lack of standardization in operating system
development and deployment is another drawback. Direct
comparisons may be challenging due to the distinctive features and
design decisions that each operating system may have. It may be
difficult to meaningfully compare various operating systems due to
this lack of standardization. Additionally, comparative studies might
only cover a narrow range of operating system implementation and
design considerations. This might lead to a limited or incomplete
awareness of the distinctions between using an established operating
system like Linux and designing an operating system from scratch. It
might also be challenging to duplicate the outcomes of a project to
build an operating system from scratch. This process requires
significant expertise and knowledge, making it challenging to find
individuals with the necessary skills and resources to replicate the
project in a meaningful way. Finally, the opinions and prejudices of
the people performing the study could have an impact on comparison
studies. This might lead to a distorted or insufficient knowledge of the
distinctions between using an established operating system like Linux
and designing an operating system from scratch. As a result, while
comparing the development of an operating system from scratch with

the use of an established system like Linux can be useful, these
studies should be handled cautiously due to the constraints mentioned
above. To guarantee that any conclusions drawn from these
investigations are precise and significant, it is crucial to be aware of
these limitations.

CONCLUSION

Creating an operating system from scratch requires a team of
developers and is not advised due to the existence of numerous
operating systems that offer excellent performance. Some of these
systems are lightweight, while others are optimized for memory and
CPU usage. However, if you are building a quantum computer, the
principles of operating system development would change as quantum
computers can handle billions of processes concurrently. If you aim to
develop a better operating system, you could consider using modern
programming languages like Rust. Rust is memory-safe and offers the
ability to develop a completely new and customized operating system.
While it may be tempting to build an operating system from scratch, it
is important to consider the effort, resources, and expertise required to
do so. It is often more practical to work with existing operating
systems and modify them to suit your needs. With the increasing
complexity of modern operating systems, it is essential to have a
strong understanding of system design and programming to develop
an operating system that is stable, efficient, and secure. Utilizing
modern programming languages like Rust can help to achieve these
goals and provide a safer and more efficient operating system. In
summary, while creating a new operating system from scratch is
possible, it requires significant resources and expertise, and it may be
more practical to work with existing operating systems and modify
them to meet your needs.

REFERENCES

Aroca, R. V., Tavares, D. M., & Caurin, G. (2007, September). Scara

robot controller using real time linux. In 2007 IEEE/ASME
international conference on advanced intelligent mechatronics
(pp. 1-6). IEEE.

Barabanov, M. (1997). A linux-based real-time operating system.
Baumann, A., Barham, P., Dagand, P. E., Harris, T., Isaacs, R., Peter,

S., ... & Singhania, A. (2009, October). The multikernel: a new OS
architecture for scalable multicore systems. In

Ben-Yehuda, M., Day, M. D., Dubitzky, Z., Factor, M., Har'El, N.,
Gordon, A., ... & Yassour, B. A. (2010, October). The Turtles
Project: Design and Implementation of Nested Virtualization. In
Osdi (Vol. 10, pp. 423-436).

Black, M. D. (2009, March). Build an operating system from scratch:
a project for an introductory operating systems course. In
Proceedings of the 40th ACM technical symposium on Computer
science education (pp. 448-452)

Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, M. F.,
Morris, R. T., ... & Zhang, Z. (2008, December). Corey: An
Operating System for Many Cores. In OSDI (Vol. 8, pp. 43-57).

Chen, H., Chen, R., Zhang, F., Zang, B., & Yew, P. C. (2006, June).
Live updating operating systems using virtualization. In
Proceedings of the 2nd international conference on Virtual
execution environments (pp. 35-44).

Clock Synchronization for Measurement, Control and
Communication (pp. 116-121). IEEE. Eder, M. (2016).
Hypervisor-vs. container-based virtualization. Future Internet (FI)
and Innovative Internet Technologies and Mobile
Communications (IITM), 1.

Cochran, R., & Marinescu, C. (2010, September). Design and
implementation of a PTP clock infrastructure for the Linux kernel.
In 2010 IEEE International Symposium on Precision

Gerofi, B., Santogidis, A., Martinet, D., & Ishikawa, Y. (2018, June).
Picodriver: Fast-path device drivers for multi-kernel operating
systems. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (pp. 2-13).

62324 International Journal of Development Research, Vol. 13, Issue, 03, pp. 62320-62325, March, 2023

Gerofi, B., Takagi, M., Hori, A., Nakamura, G., Shirasawa, T., &
Ishikawa, Y. (2016, May).

Han, S., & Jin, H. W. (2014). Resource partitioning for Integrated
Modular Avionics: comparative study of implementation
alternatives. Software: Practice and Experience, 44(12), 1441-
1466.

Herder, J. N., Bos, H., Gras, B., Homburg, P., & Tanenbaum, A. S.
(2006, October). Construction of a highly dependable operating
system. In 2006 Sixth European Dependable Computing
Conference (pp. 3-12). IEEE.

Jabeen, Q., Khan, F., Hayat, M. N., Khan, H., Jan, S. R., & Ullah, F.
(2016). A survey: Embedded systems supporting by different
operating systems. arXiv preprint arXiv:1610.07899.

Khomh, F., Yuan, H., & Zou, Y. (2012, September). Adapting Linux
for mobile platforms: An empirical study of Android. In 2012 28th
IEEE international conference on software maintenance (ICSM)
(pp. 629-632). IEEE.

Lange, Matthias, Steffen Liebergeld, Adam Lackorzynski, Alexander
Warg, and Michael Peter. "L4Android: a generic operating system
framework for secure smartphones." In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and
mobile devices, pp. 39-50. 2011.

Lankes, S., Pickartz, S., & Breitbart, J. (2016, June). HermitCore: a
unikernel for extreme scale computing. In Proceedings of the 6th
International Workshop on Runtime and Operating Systems for
Supercomputers (pp. 1-8).

Lee, C. T., Lin, J. M., Hong, Z. W., & Lee, W. T. (2004). An
application-oriented Linux kernel customization for embedded
systems. J. Inf. Sci. Eng., 20(6), 1093-1107.

Maheshwari, S., Deochake, S., De, R., & Grover, A. (2018).
Comparative study of virtual machines and containers for DevOps
developers. arXiv preprint arXiv:1808.08192.

Min, C., Kashyap, S., Lee, B., Song, C., & Kim, T. (2015, October).
Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles (pp. 361-377).

Min, C., Kashyap, S., Lee, B., Song, C., & Kim, T. (2015, October).
Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles (pp. 361-377). network stack. Proceedings of
netdev.

On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel. In
2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (pp. 1041-1050). IEEE.

Patel, A., Daftedar, M., Shalan, M., & El-Kharashi, M. W. (2015,
March). Embedded hypervisor xvisor: A comparative analysis. In
2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (pp. 682-691). IEEE.

Petroni Jr, N. L., & Hicks, M. (2007, October). Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM conference on Computer and communications security
(pp. 103-115).

Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (pp. 29-44).

Purdila, O., Grijincu, L. A., & Tapus, N. (2010, June). LKL: The
Linux kernel library. In 9th RoEduNet IEEE International
Conference (pp. 328-333). IEEE. Rusling, D. A. (1999). The
linux kernel.

Sabri, C., Kriaa, L., & Azzouz, S. L. (2017, October). Comparison of
IoT constrained devices operating systems: A survey. In 2017
IEEE/ACS 14th International Conference on Computer Systems
and Applications (AICCSA) (pp. 369-375). IEEE.

Sally, G. (2010). Creating a linux distribution from scratch. In Pro
Linux Embedded Systems (pp. 107-141). Berkeley, CA: Apress.

Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J., Lam, M. S., &
Rosenblum, M. (2002). Optimizing the migration of virtual
computers. ACM SIGOPS Operating Systems Review, 36(SI),
377-390.

Sharma, P., Chaufournier, L., Shenoy, P., & Tay, Y. C. (2016,
November). Containers and virtual machines at scale: A
comparative study. In Proceedings of the 17th international
middleware conference (pp. 1-13).

62325 C G Accamma, A comparative study on how to create an operating system from scratch and a linux kernel

