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ARTICLE INFO  ABSTRACT 
 
Metamorphosis comprise dramatic transformation in shape and function of organs, tissues and individual 
cells. According to the classical theory of the hormonal control of insect metamorphosis, ecdysteroids initiates 
a molt independent on the titer of JH. However a few observations earlier indicate that tissues must first 
acquire competence in the presence of JH acid alone is not sufficient for the metamorphic response to 
ecdysteroid. JHacid is an inactive precursor and metabolite of JH actually induces cells to become competent 
to undergo metamorphoses, whereas ecdysteroid merely stabilizes this commitment and facilitates the 
expression of this state of development program.The model system used in this project is the common 
Mormon butterfly Papillio polytes is a major pest of Rutaceous plants. Metamorphosis especially molting 
behavior in insects is known to be governed by specific dermal glands known as Version’s glands. 
Ecdysteroid induces and coordinates the molting process and JH determines the nature of moult. JH acid is an 
inactive precursor and metabolite of juvenile hormone (JH) that induces cells to become competent to undego 
metamorphosis, whereas ecdysteroid merely stabilizes this commitment that facilitates the expression of this 
state of developmental programme.Verson’s glands that are found specifically in lepidopteran insects are 
paired dermal glands of epidermal derivatives which contribute a protective layer to the newly formed cuticle 
or might has defensive function.In the present study localization of Version’s glands were done The specific 
role of JH metabolite, the JH acid in the induction of metamorphic competence were examined. Elucidation of 
the fundamental mechanism and interaction of insect endocrine molecules during insect metamorphosis were 
also explained. 
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INTRODUCTION 
 
Metamorphosis comprise dramatic transformation in shape and 
function of organs, tissues and individual cells.Juvenile hormone (JH) 
was initially discovered in the 1930s as a factor that is secreted from 
the corpus allatum (CA) and inhibits insect metamorphosis. The 
chemical structure of the first JH was solved in 1967, and at least 
eight JHs have been identified to date. JH regulates development, 
reproduction, diapause, polyphenism,and behavior throughout insect 
life.JH biosynthesis is controlled by various neuroendocrine and 
neuronal factors in complex stage and species specific ways. JH has 
multiple functions, and a primary role of JH in insect development is 
to modulate ecdysone action. JH maintains the current commitment of 
the tissues and cells, whereas ecdysone causes both predifferentiative 
and differentiative cellular events that are necessary for the molt. 
Thus, when JH is present, a molt to a larval stage ensues. If JH is 
absent at the onset of the molt, metamorphosis occurs. According to 
the classical theory of the hormonal control of insect metamorphosis, 
ecdysteroids initiates a molt independent on the titer of JH.However a 
few observations earlier (Ismail et al., 2000) indicate that tissues must 
first acquire competence in the presence of JH acid alone is not  

 
 
sufficient for the metamorphic response to ecdysteroid. JHacid is an 
inactive precursor and metabolite of JH actually induces cells to 
become competent to undergo metamorphosis, where as ecdysteroid 
merely stabilizes this commitment and facilitates the expression of 
this state of development program. The model system used in this 
study is the comon mormon butterfly Papilio polytes is a major pest 
of Rutaceous plants.Its larval period lasts for 17-24 days thus 
completing its lifecycle within a period of conditions and seasonal 
variations. The 3rd, 4th and 5thinstars has an osmeterical gland in the 
first thoracic segment and it is defensive in function. The 5th instar 
larvae changes to prepupa before pupation on the plant itself as a 
naked C shaped chrysalis handling to the plant by spinning a silken 
girdle.The model part used in this study is versons glands which is 
found exclusively only in lepidopteran insects. Metamorphosis 
especially molting behaviour in insects is known to be governed by 
specific dermal glands known as Verson’s glands. Ecdysteroid 
induces and coordinates the molting process and JH determines the 
nature of moult. These glands are paired dermal glands of epidermal 
derivatives which may contribute a protective layer to the new cuticle 
or may be defensive. Verson’s gland was selected as the model 
system, because specific protein products from both larval and pupal 
stages can be made simultaneously by a cell in the midst of this 
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transition. In papilio polytes this gland is present as a pair on the 
anterodorsal region of each segment lying below the epidermis. Its 
size diminishes as it reaches the last abdominal segment and it is 
absent in last segment. Verson’s glands show differences in protein 
patterns between a larval- pupal molt. 
 

 
 

Figure 1. Life cycle pattern of Papilio polytes 
 

MATERIALS AND METHODS 
 
Localization of Verson’s Glands is done by a square cuticle portion 
from muscle free segment was excised under microscope and 
adhering fat body and trachea were carefully cleared and the glands 
were collected. Dissected Verson’s glands in MEM were 
homogenized in sample buffer, centrifuged at 14000 g for 5min, 
supernatant was collected and subjected to SDS-PAGE analysis on 
10% SDS gels under constant voltage. 2DE were done by following 
parameters. Dissected out  glands were homogenized in  TRIS-DTT-
PIC homogenizing medium, centrifuged at 14000 g for 5min, and 
supernatant was collected. First dimension was done using iso-electric 
focusing (IEF) at 500 V for 2 hrs, 1500 V for 1hr,  3500 V for 5 
hrs.Second dimension was performed using SDS –PAGE (10%) 
under constant  voltage. 2DE gels with the candidate protein spots 
were run and silver  stained for MS analysis. Analysis was performed 
using an UltraFlex MALDI-TOF mass spectrometer. Spectra were 
analyzed using the Denovo software and calibrated internally with the 
auto-proteolysis peptides of trypsin.Blast analysis were done byl 
identifications based on one matching peptide or low Blast scores 
were manually verified, and all proteins that were identified only once 
were checked carefully. In vitro analysis were done with total of 90 
Verson’s glands were dissected out from the 5th instar of Papilio 
poltytes and kept in Grace’s medium. 9 Verson’s glands sets with 
with JH acid, Ecdysteroid and JH were incubated for 12h with 
0.5µg/ml concentrations and 0.1µg/ml concentrations for another 12h 
.After incubation the glands were homogenized. The media and the 
glands were analysed separately by SDS-PAGE. 
 
Secretory pattern and VGP profile during P.polytes developmental 
cycle 
 

 
2 dimensional electrophorogram  resolving  VGP  from P. polytes 

 

 
 

 
 

MS Analysed data of 5th1 early larval protein 
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 MS Analysed data of 5th 2 early larval protein 
 

 
 

MS Analysed data of P1 larval protein 
 

 
 

MS Analysed data of P2 larval proteins 
 

 
 

MS Analysed data of P3 larval proteins 

 
 

RESULT AND DISCUSSION 
 
Papilio polyteslarval specific proteins resolved werelying within the 
molecular mass of 11-13 kDa andwhich are the primary larval 
secretary product. The pupal-specific proteins are first detected 
inlarvae with exposed dorsal vessel (EDV), an event that was 
triggered by ecdysteroid. After EDV 3 different polypeptides 
contributing   to 30-34 kDa, 66 kDa and 75 kDa which are pupal-
specific appears. Two dimensional electrophorograms   confirm the 
stage-specific differences in larval and pupal proteins.The 2-DE 
analysed stage specific proteins – P1,P2,P3 , 5th 1  and 5th 2  ofPapilio 
polytes were analysed by MS Analysis.Each of the stage specific 
trypsinated  peptides usually produce different spectra.The peptides  
were analysed by denovo sequencing using the denovo software. The 
peptide sequences obtained after denovo sequencing were further 
ranked for BLAST analysis.BLATP algorithm to identify sequence 
similaritythe stage specific proteins of Verson’s glands must be an 
unique protein. BLATP algorithm to identify sequence similarity the 
stage specific proteins of Verson’s glands must be an unique protein. 
 

CONCLUSION 
 
The two different larval and pupal-specific protein units of same 
glandularorigin makes this an ideal marker for in depth 
morphogenetic hormonal action. This finding further provides  
information on an important component of insect cuticle and this 
novel  information should definitely kindle more  research interest in 
devising  endocrine-based insect pest management strategy. Verson’s 
Glands that secrete the cement layer of cuticular proteins appear to 
secrete stage specific – larval and  pupal proteins in the 
holometabolan (Papilio polytes) seems to be under the control of JH 
acid level during  different developmental stages.Studies on insect 
hormone are of both scientific and economic importance.From the 
scientific point of view,such studies are valuable for our 
understanding of the neuroendocrine process in insects and thereby 
introducing an interesting evolutionary aspect attempt to utilize JH 
endocrine system as a pesticide target to develop juvenoids or JH 
analogues. Common limitation of Juvenoids as pesticides is that they 
prolong the destructive instars of many pests and also only acting at 
specific periods of development. 
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