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a molt independent on the titer of JH. However a few observations earlier indicate that tissues must first
acquire competence in the presence of JH acid alone is not sufficient for the metamorphic response to
ecdysteroid. JHacid is an inactive precursor and metabolite of JH actually induces cells to become competent
to undergo metamorphoses, whereas ecdysteroid merely stabilizes this commitment and facilitates the
expression of this state of development program.The model system used in this project is the common
Mormon butterfly Papillio polytes is a major pest of Rutaceous plants. Metamorphosis especially molting
behavior in insects is known to be governed by specific dermal glands known as Version’s glands.
Ecdysteroid induces and coordinates the molting process and JH determines the nature of moult. JH acid is an
inactive precursor and metabolite of juvenile hormone (JH) that induces cells to become competent to undego
metamorphosis, whereas ecdysteroid merely stabilizes this commitment that facilitates the expression of this
state of developmental programme.Verson’s glands that are found specifically in lepidopteran insects are
paired dermal glands of epidermal derivatives which contribute a protective layer to the newly formed cuticle
or might has defensive function.In the present study localization of Version’s glands were done The specific
role of JH metabolite, the JH acid in the induction of metamorphic competence were examined. Elucidation of
the fundamental mechanism and interaction of insect endocrine molecules during insect metamorphosis were
also explained.
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INTRODUCTION

Metamorphosis comprise dramatic transformation in shape and
function of organs, tissues and individual cells.Juvenile hormone (JH)
was initially discovered in the 1930s as a factor that is secreted from
the corpus allatum (CA) and inhibits insect metamorphosis. The
chemical structure of the first JH was solved in 1967, and at least
eight JHs have been identified to date. JH regulates development,
reproduction, diapause, polyphenism,and behavior throughout insect
life.JH biosynthesis is controlled by various neuroendocrine and
neuronal factors in complex stage and species specific ways. JH has
multiple functions, and a primary role of JH in insect development is
to modulate ecdysone action. JH maintains the current commitment of
the tissues and cells, whereas ecdysone causes both predifferentiative
and differentiative cellular events that are necessary for the molt.
Thus, when JH is present, a molt to a larval stage ensues. If JH is
absent at the onset of the molt, metamorphosis occurs. According to
the classical theory of the hormonal control of insect metamorphosis,
ecdysteroids initiates a molt independent on the titer of JH.However a
few observations earlier (Ismail et al., 2000) indicate that tissues must
first acquire competence in the presence of JH acid alone is not

sufficient for the metamorphic response to ecdysteroid. JHacid is an
inactive precursor and metabolite of JH actually induces cells to
become competent to undergo metamorphosis, where as ecdysteroid
merely stabilizes this commitment and facilitates the expression of
this state of development program. The model system used in this
study is the comon mormon butterfly Papilio polytes is a major pest
of Rutaceous plants.Its larval period lasts for 17-24 days thus
completing its lifecycle within a period of conditions and seasonal
variations. The 3™ 4" and 5%Minstars has an osmeterical gland in the
first thoracic segment and it is defensive in function. The 5™ instar
larvae changes to prepupa before pupation on the plant itself as a
naked C shaped chrysalis handling to the plant by spinning a silken
girdle.The model part used in this study is versons glands which is
found exclusively only in lepidopteran insects. Metamorphosis
especially molting behaviour in insects is known to be governed by
specific dermal glands known as Verson’s glands. Ecdysteroid
induces and coordinates the molting process and JH determines the
nature of moult. These glands are paired dermal glands of epidermal
derivatives which may contribute a protective layer to the new cuticle
or may be defensive. Verson’s gland was selected as the model
system, because specific protein products from both larval and pupal
stages can be made simultaneously by a cell in the midst of this
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transition. In papilio polytes this gland is present as a pair on the
anterodorsal region of each segment lying below the epidermis. Its
size diminishes as it reaches the last abdominal segment and it is
absent in last segment. Verson’s glands show differences in protein
patterns between a larval- pupal molt.

Female

Figure 1. Life cycle pattern of Papilio polytes
MATERIALS AND METHODS

Localization of Verson’s Glands is done by a square cuticle portion
from muscle free segment was excised under microscope and
adhering fat body and trachea were carefully cleared and the glands
were collected. Dissected Verson’s glands in MEM were
homogenized in sample buffer, centrifuged at 14000 g for Smin,
supernatant was collected and subjected to SDS-PAGE analysis on
10% SDS gels under constant voltage. 2DE were done by following
parameters. Dissected out glands were homogenized in TRIS-DTT-
PIC homogenizing medium, centrifuged at 14000 g for Smin, and
supernatant was collected. First dimension was done using iso-electric
focusing (IEF) at 500 V for 2 hrs, 1500 V for lhr, 3500 V for 5
hrs.Second dimension was performed using SDS —-PAGE (10%)
under constant voltage. 2DE gels with the candidate protein spots
were run and silver stained for MS analysis. Analysis was performed
using an UltraFlex MALDI-TOF mass spectrometer. Spectra were
analyzed using the Denovo software and calibrated internally with the
auto-proteolysis peptides of trypsin.Blast analysis were done byl
identifications based on one matching peptide or low Blast scores
were manually verified, and all proteins that were identified only once
were checked carefully. /n vitro analysis were done with total of 90
Verson’s glands were dissected out from the 5th instar of Papilio
poltytes and kept in Grace’s medium. 9 Verson’s glands sets with
with JH acid, Ecdysteroid and JH were incubated for 12h with
0.5pg/ml concentrations and 0.1pg/ml concentrations for another 12h
.After incubation the glands were homogenized. The media and the
glands were analysed separately by SDS-PAGE.

Secretory pattern and VGP profile during P.polytes developmental
cycle
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RESULT AND DISCUSSION

Papilio polyteslarval specific proteins resolved werelying within the
molecular mass of 11-13 kDa andwhich are the primary larval
secretary product. The pupal-specific proteins are first detected
inlarvae with exposed dorsal vessel (EDV), an event that was
triggered by ecdysteroid. After EDV 3 different polypeptides
to 30-34 kDa, 66 kDa and 75 kDa which are pupal-
specific appears. Two dimensional electrophorograms
stage-specific differences in larval and pupal proteins.The 2-DE
analysed stage specific proteins — P1,P2,P3 | 5" I and 5" 2 ofPapilio
polytes were analysed by MS Analysis.Each of the stage specific
trypsinated peptides usually produce different spectra.The peptides
were analysed by denovo sequencing using the denovo software. The
peptide sequences obtained after denovo sequencing were further
ranked for BLAST analysis.BLATP algorithm to identify sequence
similaritythe stage specific proteins of Verson’s glands must be an
unique protein. BLATP algorithm to identify sequence similarity the
stage specific proteins of Verson’s glands must be an unique protein.

contributing

CONCLUSION

The two different larval and pupal-specific protein units of same
glandularorigin  makes
morphogenetic hormonal action. This finding further provides
information on an important component of insect cuticle and this
novel information should definitely kindle more research interest in
devising endocrine-based insect pest management strategy. Verson’s
Glands that secrete the cement layer of cuticular proteins appear to
secrete stage specific — larval and
holometabolan (Papilio polytes) seems to be under the control of JH
acid level during different developmental stages.Studies on insect
hormone are of both scientific and economic importance.From the
are valuable for
understanding of the neuroendocrine process in insects and thereby
introducing an interesting evolutionary aspect attempt to utilize JH
endocrine system as a pesticide target to develop juvenoids or JH
analogues. Common limitation of Juvenoids as pesticides is that they
prolong the destructive instars of many pests and also only acting at

scientific point

of view,such

specific periods of development.
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