

STREAM CONTROL TRANSMISSION PROTOCOL

*Barigat Shaik Sadiya, Suraparaju Harshini and Prof M.P Vani

Computer Networks, Course-Integrated Mtech Software Engineering, School-Score, Vellore Institiute of
Technology, Vellore, Tamilnadu, India

ARTICLE INFO ABSTRACT

Stream Control Transmission Protocol (SCTP) is presented as a robust option compared to traditional
transport layer protocols like TCP and UDP. It offers various advanced features to meet modern
communication needs. This paper provides an overview of SCTP, highlighting its unique attributes and
benefits in ensuring reliable, message-oriented communication between hosts. SCTP ensures data
integrity through acknowledgment mechanisms and retransmission strategies, even during network
disruptions. Its messageoriented nature preserves data unit boundaries, facilitating efficient
communication between applications. One notable feature of SCTP is its support for multi-streaming,
allowing multiple streams of data to travel independently through a single connection. This enables
applications to manage different types of data traffic within the same connection, optimizing resource
usage. Additionally, SCTP's multi-homing capability provides redundancy and fault tolerance by
supporting multiple network interfaces. Its path management capabilities dynamically monitor network
conditions, enhancing fault tolerance, load balancing, and overall performance in diverse network
environments. Moreover, SCTP offers flexible ordered and unordered data delivery options, meeting
various application requirements. OBJECTIVE: This paper helps readers to understand the Stream
Control Transmission Protocol (SCTP). We will include its basic principles and how it actually works.
By dissecting SCTP's structure, features, and what it can do, we hope to make it easier for people to
grasp how SCTP functions and why it's better than traditional transport layer protocols. We'll look at
things like how reliable it is, its focus on handling messages, its ability to handle multiple streams and
connections (multi-streaming and multi-homing), and its capability to manage paths adaptively.
Ultimately, our goal is to give readers the knowledge they need to see how SCTP improves
communication reliability and efficiency in modern networking setups.

Copyright©2024, Barigat Shaik Sadiya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

SCTP (Stream Control Transmission Protocol): Invented in 2000.It's
reliable like the careful delivery service, making sure everything gets
there correctly, but it also aims to be fast like the motorbike
messenger. This is particularly useful for things like phone calls,
video chats, and online games where both speed and reliability are
important. SCTP can handle these situations smoothly, making
communication more efficient and less likely to have hiccups.
Beyond Speed and Reliability SCTP goes even further, offering some
unique features:

Multihoming: Think of having multiple internet connections. SCTP
can use any of them, ensuring smooth communication even if one
path gets congested. [4]

Multi-streaming: Imagine sending multiple messages
simultaneously.

SCTP can handle separate streams within a single connection, perfect
for video calls with audio, video, and control signals traveling
together.

WHY SCTP?

Reliable Delivery: Think of SCTP like a careful postal worker. It
makes sure all the pieces of your video call information reach your
friend's device in the right order, just like you sent them. This is
similar to how regular mail works.

Faster Speeds: Unlike regular mail, SCTP can also be speedy. It
avoids some extra checks, allowing information to travel quicker.
This is similar to sending a quick text message, but...

Message Boundaries: SCTP knows where each part of your message
(like a video frame) begins and ends. This makes it easier for your
friend's device to understand the information. Text messages don't
have this, so things can get jumbled sometimes.

ISSN: 2230-9926

International Journal of Development Research
Vol. 14, Issue, 04, pp. 65512-65516, April, 2024

https://doi.org/10.37118/ijdr.28175.04.2024

Available online at http://www.journalijdr.com

Citation: Barigat Shaik Sadiya, Suraparaju Harshini and Prof M.P Vani, 2024. “Stream control transmission protocol”. International Journal of
Development Research, 14, (04), 65512-65516.

 RESEARCH ARTICLE OPEN ACCESS

Article History:

Received 17th January, 2024
Received in revised form
26th February, 2024
Accepted 05th March, 2024
Published online 30th April, 2024
 Key Words:

Stream Control Transmission Protocol,
Message-oriented communication,
Multi-homing capability.

*Corresponding author: Barigat Shaik Sadiya

Benefits of SCTP

Clear Calls and Video Chats: Because SCTP is both reliable and fast,
it's perfect for voice calls, video conferencing, and online gaming
where smooth communication is essential. Keeps Working During
Outages: If your internet connection goes down for a moment, SCTP
can automatically switch to another one, keeping your call going
without interruption. Secure for Sensitive Data: SCTP can scramble
data like a secret code, making it unreadable to anyone who shouldn't
see it. This is useful for online banking or other private
communication.

Works with Modern Networks: SCTP is compatible with both older
and newer internet systems. In short, SCTP is a versatile tool that
helps information travel reliably and quickly across the internet. This
makes it a valuable asset for many of the communication tools we
use today.

Key Features of SCTP

Reliable Delivery: Makes sure all data arrives correctly.

Faster Speeds: Gets information there quicker than some other
methods.

Message Boundaries: Knows where each piece of data begins and
ends.

Multi-connection: Can use multiple internet connections for
reliability.

Multi-tasking: Can send different types of data (like video and
audio) at once.

Traffic Control: Prevents data overload on the network.

Security Features: Protects data from being tampered with.

Works with Both Networks: Compatible with modern and older
internet systems. [4]

Comparison of SCTP with other protocols:

Packet Structure: Let's see the fundamental structure of an SCTP
packet, known as a "chunk": [1][3]

1. Common Header: The common header is present at the beginning
of each SCTP chunk and contains essential information about the
packet.

Key fields include:

 Source Port Number: The port number of the sending
endpoint.

 Destination Port Number: The port number of the receiving
endpoint.

 Verification Tag: A 32-bit value used for verification
purposes to ensure that the SCTP packet belongs to an
association.

 Checksum: A 32-bit field used for error detection.

2.Chunk Type and Chunk Flags: After the common header, there
are two fields: Chunk Type (1 byte) and Chunk Flags (1 byte). These
fields specify the type of chunk and provide additional control or
information about the chunk.

3.Chunk Length: A 16-bit field indicating the length of the chunk in
bytes. This field allows the receiver to accurately determine the size
of the incoming chunk and locate the next chunk in the SCTP packet.

4.Chunk-specific Parameters: Following the common header, type,
flags, and length fields, there are parameters specific to each type of
chunk. These parameters carry various information essential for
SCTP's operation. Some common chunk types and their parameters
include: -

Data: Carries user message data and sequence numbers.

- INIT: Used during association initialization, contains
information such as supported features and initial sequence
numbers.

- SACK: Acknowledges received DATA chunks, includes
cumulative acknowledgment and selective acknowledgment
information.

- HEARTBEAT: Used for detecting the liveliness of a peer,
may include heartbeat information.

- SHUTDOW: Indicates the intention to terminate an
association, may include additional shutdown-related
parameters.

5. Padding: Sometimes padding is added to ensure alignment or for
other reasons. This padding ensures that the next chunk starts on a
32-bit boundary. It helps maintain the structure of the SCTP packet
and facilitates efficient parsing.

6. Chunk Multiplexing: SCTP supports the multiple chunks within a
single SCTP packet known as chunk multiplexing, helps reduce
packet overhead and improves efficiency by allowing multiple
operations to perform in a single packet.

 By understanding the structure of SCTP chunks, network engineers
and developers can effectively analyse and optimize SCTP-based
communication protocols for various applications and network
environments.[1]

Association setup and teardown: The setup and teardown of
associations in the Stream Control Transmission Protocol (SCTP)
involve a multi-step process known as a four-way handshake. This
process ensures reliable communication between endpoints and
allows for the establishment and termination of SCTP associations.
Here are the details of the four-way handshake for establishing and
terminating SCTP associations:

Association Setup (Four-Way Handshake)

1. Initialization (INIT): The process starts with the initiator, also
known as the client, sending an INIT chunk. This chunk contains
important information like the sender's Verification Tag, supported
features, initial sequence numbers, and other optional details. The
initiator picks an initial sequence number and sends the INIT chunk
to the other endpoint.

2. Initialization Acknowledgment (INIT-ACK): When the server
receives the INIT chunk, it sends back an INIT-ACK chunk to the
initiator. This INIT-ACK chunk confirms receiving the INIT chunk

65513 Barigat Shaik Sadiya et al. Stream control transmission protocol

and contains similar information as the INIT chunk. Additionally, the
server selects its own initial sequence numbers and includes them in
the INIT-ACK chunk.

3.Cookie Echo (COOKIE-ECHO) - After getting the INIT-ACK
chunk, the initiator sends a COOKIEECHO chunk to the server. This
COOKIE-ECHO chunk includes the parameters from the original
INIT chunk, along with a new cookie. The cookie acts as a token
generated by the initiator to verify the association setup and protect
against certain attacks, like SYN flooding.

4.Cookie Acknowledgment (COOKIE-ACK) inSCTP: Imagine two
friends setting up a walkietalkie call with a secret code. Here's how
SCTP's COOKIE-ACK works in this scenario:

Secret Code Exchange: One friend (initiator) whispers the secret
code (COOKIE-ECHO chunk) to the other (responder).

Confirmation: The other friend whispers back "OK" (COOKIE-
ACK chunk) to confirm they heard the code correctly and it's valid.

Ready to Talk: Once they both whisper "OK," they can start talking
(data transmission) on their walkie-talkies! In SCTP, the "secret
code" is a data packet containing a cookie. The COOKIEACK chunk
is the responder's way of saying, "I got your secret code and it looks
good, let's chat!" Once the initiator receives the COOKIEACK, they
know both sides are connected and ready to exchange data.

Association Teardown (Four-Way Handshake)

1. Initiation of Shutdown (SHUTDOWN) - The association

teardown begins when one initiator decides to close the
association. The endpoint sends a SHUTDOWN chunk to the
peer, indicating its intention to terminate the association
gracefully. Imagine you're ending a video call with a friend.

2. Here's how SCTP ensures a cleandisconnection Initiating
Shutdown (SHUTDOWN chunk): You (the initiator) tell your
friend it's time to end the call by sending a "goodbye" signal
(SHUTDOWN chunk).

3. Acknowledging Goodbye (SHUTDOWN-ACKchunk): Your
friend responds with an "OK, goodbye" (SHUTDOWN-ACK
chunk) to confirm they received your signal and agree to end the
call.

Confirming Disconnection (SHUTDOWN): COMPLETE chunk):
You then send a final "call ended" confirmation (SHUTDOWN-
COMPLETE chunk) to your friend.

Aspects Securing SCTP Communications

Securing SCTP Communications: Transport Layer Security (TLS)
Extension: For security in SCTP communications we can use TLS
extension. It provides encryption, authentication, and integrity
protection. SCTP can operate directly over TLS, ensuring endto-end
security for applications. TLS employs certificate-based
authentication to ensure communication with trusted peers.

Message Authentication Code (MAC): SCTP can include a Message
Authentication Code (MAC) mechanism to verify packet integrity.
MAC utilizes cryptographic algorithms like HMAC to prevent
tampering during transmission.

IPsec Integration: IPsec, operating at the network layer, secures
SCTP communications with encryption and authentication for IP
packets. Integration of SCTP with IPsec ensures end-to-end security,
safeguarding against listen in and tampering.

Selective Forwarding Unit (SFU) for Multihoming Security: SCTP
supports multi-homing, but this introduces security risks that SFU
extensions mitigate through secure address management and
authentication.

Partial Reliability Extension (PR-SCTP): PRSCTP allows for
partial reliability, prioritizing critical data transmission while offering
flexibility for non-critical data.

Security Policies and Access Control: Enhancing SCTP security
involves implementing security policies and access control at the
application layer, using measures like access control lists and
firewalls.

Encryption of Payload Data: Encrypting payload data between
SCTP endpoints ensures confidence flexibility and privacy using
application-layer encryption mechanisms. Considering these
measures enhances SCTP communications' resilience against security
threats, ensuring data integrity, confidentiality, and authenticity.
However, specific security requirements should be evaluated for each
SCTP deployment to choose appropriate measures.

Security: Keeping Your SCTP Conversations Safe Imagine you are
sending messages over a walkie-talkie, but worried someone might be
hearing it. SCTP security protects your communication in a few
ways:

Encryption (like AES): The data you send, making it unreadable
even if someone intercepts it. It's like whispering a secret code only
you and the receiver understand.

Authentication (like TLS): This verifies the identity of the person
you're talking to. It ensures it's actually your friend and not an
imposter trying to eavesdrop. It's like checking their secret handshake
to make sure it's them.

Message Integrity (like MACs): This makes sure the message you
send delivered without being altered. It is like having a special code
at the end of your message to confirm nothing got changed along the
way.

Key Management: This securely creates, stores, and distributes the
secret keys used for encryption and decryption. It's like keeping the
keys to your secret code safe!

Secure Associations: This creates a safe connection between you and
your friend, like a private tunnel on the walkie-talkie network.

Extra Security Tools for SCTP

DTLS over SCTP: This is a special encryption and authentication
method particularly useful for realtime communication like voice
calls (VoIP).

SCTP Authentication Extension (AE): This uses shared secret keys
to verify who you're talking to, like a pre-arranged codeword only
you and your friend know.

Other Extensions: These tools help SCTP handle different situations
securely, like dealing with firewalls (NSIS), having multiple network
connections (M-SCTP), or allowing some data loss in certain cases
(PR-SCTP). By using these security features, SCTP ensures your
conversations are confidential (no eavesdropping!), messages arrive
unchanged (no tampering!), and you're talking to the right person
(proper authentication!).

Dynamic Address Reconfiguration (DAR): Dynamic Address
Reconfiguration (DAR) is an extension to the SCTP protocol that
allows endpoints to modify their IP addresses in their associated
lifetime. This is useful in scenarios where endpoints need to switch
between different network interfaces or change IP addresses due to
movability. Here's how DAR works and its benefits:

1. Address Addition and Removal: DAR allows endpoints to

dynamically add or remove IP addresses from the list of
addresses corelated with an SCTP association. This can be done

65514 International Journal of Development Research, Vol. 14, Issue, 04, pp. 65512-65516, April, 2024

using the ADD_IP_ADDRESS or REMOVE_IP_ADDRESS
chunk types.

2. Address Replacement: DAR also supports in replacing an
existing IP address with a new one. This is useful when an
endpoint is IP address that changes and it needs to inform the
peer about the new address. This is done using the
REPLACE_IP_ADDRESS chunk type.

3. Smooth Handover: DAR enables smooth handover in mobile
scenarios. When a mobile moves between different networks and
collects a new IP address, it can use DAR to update the peer
about the change without disturbing the ongoing communication.

4. Redundancy and Load Balancing: DAR can also be used for
redundancy and load balancing purposes. Endpoints can add
multiple IP addresses to their list and use DAR to switch between
them based on network conditions or load.

5. Improved Resilience: By supporting dynamic address
reconfiguration, SCTP can improve the flexibility of
communications. If one IP address is not available, the endpoint
can switch to another address without interrupting the
communication.

It's important to note that the DAR extension introduced additional
complexity to the SCTP protocol, especially for handling address
changes and ensuring that ongoing data transmission is not affected.
Proper implementation and testing are crucial for the reliable
operation of DAR in SCTP implementations.[2]

Ongoing Standardization and Development: SCTP has been
standardized and the people are developing it which will be suitable
to the next generation.

1. SCTP in future: there are efforts that make the SCTP suitable to
next generation and which increase its performance. The
improvements are made in areas like congestion control,
multihoming, and security.

2. WebRTC: SCTP is used as a transport protocol in WebRTC (Web
Real-Time Communication) in web browsers for communication
purposes. The people are trying to make SCTP much better so that it
helps in communications (real time communication), web browsers.

3. 5G Networks: as the 5G networks are increasing in the usage, and
SCTP is also being used for purposes like network slicing,
lowlatency communication, and massive machine-type
communication.

4. Security Enhancements: The security of SCTP is also important,
like authentication, encryption, and protection against security
threats. We need to make SCTP more secure and safe to use.

5. Performance improvements: the performance of SCTP is main of
all, like its latency, ability to operate, throughput etc SCTP is a
mature protocol, there are efforts for increasing its capabilities,
security, performance etc.

Future……..

 SCTP (Stream Control Transmission Protocol) is expected to remain
important and improve in the future of networking. With more 5G
networks and Internet-connected devices, SCTP's ability to handle
multiple connections and deliver messages reliably could make it a
top choice for applications needing dependable, fast communication.
For things like internet calls (VoIP) and online games, SCTP's ability
to send multiple data streams and handle data loss without disrupting
the whole connection could make these experiences smoother.
Security is a big deal, and SCTP's built-in features for keeping data
safe make it a good option for secure communication needs. As edge
computing becomes more popular, SCTP's abilities could be very
useful for devices at the edge to talk to the cloud. The future of SCTP
depends on how much it's used and improved to fit with new
networking technologies. Its role and impact in the future of

networks will be decided by how well it's adopted and integrated into
these new technologies.

5G and IoT: As 5G networks become more common and the number
of connected devices in the Internet of Things (IoT) keeps growing,
there will be a greater need for communication protocols that are
reliable and fast. SCTP, because it can handle multiple connections,
send messages efficiently, and manage traffic well, might become
more important in these situations.

Real-time Communication: As real-time communication apps like
VoIP, video calls, and online games become more popular, there's a
need for protocols that can deliver messages quickly and reliably.
SCTP's abilities to send multiple streams of data and handle lost data
make it a good fit for these apps.

Security: Security is a big worry in today's networks, so protocols
must ensure secure communication. SCTP's ability to use encryption
and authentication makes it a good choice for secure communication
needs.

Edge Computing: As edge computing becomes more common,
protocols that can help edge devices communicate with the cloud are
important. SCTP's ability to handle multiple connections and support
mobility could be very useful in these situations.

Standardization and Adoption: SCTP's future will also rely on how
widely it's standardized and used. Continued efforts to make the
protocol a standard and to get more people and companies to use it,
along with integrating it into new and existing networking tech, will
be crucial for its future.

Implementation: Implementing SCTP (Stream Control

Transmission Protocol) involves using the SCTP API provided by
the operating system or a networking library. Steps involved are:

1. Choose a Programming Language: You can implement SCTP

using a programming language that provides access to socket
programming APIs, such as C, C++, Java, or Python.

2. Include the SCTP Header File: In C/C++, include the header
file that defines the SCTP API. For example, in Linux, you
would include ‘<netinet/sctp.h>’.

3. Create a Socket: Use the `socket()` function to create an SCTP
socket. Specify the address family (`AF_INET` for IPv4 or
`AF_INET6` for IPv6) and the socket type (`SOCK_STREAM`
for a stream socket or `SOCK_SEQPACKET` for a message-
oriented socket).

4. Bind the Socket: Use the `bind()` function to bind the socket to a
specific IP address and port number.

5. Listen for Incoming Connections (Optional): If you're
implementing a server, use the `listen()` function to listen for
incoming connections.

6. Accept Connections (Optional): If you're implementing a server,
use the `accept()` function to accept incoming connections and
create a new socket for each connection.

7. Connect to a Server (Client Only): If you're implementing a
client, use the `connect()` function to connect to a server.

8. Send and Receive Data: Use the `sendmsg()` and `recvmsg()`
functions to send and receive data over the SCTP socket. These
functions allow you to specify the stream number for message-
oriented communication.

9. Handle Events: Use the `sctp_recvmsg()` function to handle
incoming messages and events on the SCTP socket.

10. Close the Socket: Use the `close()` function to close the SCTP
socket when you're done with it.

This is a basic explanation of how SCTP can be implemented. The
exact steps might be different based on the programming language
and the specific API provided by your operating system or
networking library. Check the documentation for your environment
for detailed instructions on how to implement SCTP. [3]

65515 Barigat Shaik Sadiya et al. Stream control transmission protocol

Implementations and Supported Features: Different operating
systems offer SCTP implementations, each with unique supported
features. Here's an overview of SCTP implementations on various
systems:

Linux: Linux operating system has been in use for many years, it
does use SCTP in it which controls mechanisms like multi-homing,
message-oriented communication, and advanced congestion control.

Windows: Windows OS are the widely used operating system. It has
been supporting SCTP like from its Windows Vista and Windows
Server 2008 time. The implementation is not better than linux.

FreeBSD: FreeBSD supports the SCTP and its advanced features. It
is known for its stability and performance in SCTP-based
applications.

macOS: macOS is also one of the known OS. It supports the SCTP
from its macOS 10.7 (Lion) version. Its implementation provides
basic SCTP functionality but doesn’t support some advanced features
found in other OS.

Solaris: Solaris supports the SCTP and make it suitable for high-
performance networking applications.

Other Operating Systems: Other operating systems like AIX, HP-
UX, and OpenVMS also support the SCTP in their own ways The
availability and features of SCTP implementations changes across
operating systems. Before using we need check the suitable SCTP
version to use.

CONCLUSION

SCTP (Stream Control Transmission Protocol) is a modern way for
devices to talk to each other online. It's like a smarter version of
older methods like TCP and UDP.

It can do more things, like making sure messages arrive in order,
handling different types of data, and keeping information safe from
unauthorized access. SCTP is a good choice for many different kinds
of internet communication because it's reliable, secure, and can work
well with new technology. SCTP is not as widely used as TCP or
UDP. But it has many unique features compared to the other
protocols. As you see the network communications have been
evolving and SCTP still remains reliable.

REFERENCES

Daniel Wallace; T. Abdallah ShamiDepartment of Electrical and

Computer Engineering, University of Western Ontario, London,
ONT, Canada, Publishedin: IEEE Communications Surveys &
Tutorials (Volume: 14, Issue: 2, Second Quarter 2012).
https://ieeexplore.ieee.org/document/5875919

Dierks T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.3," Internet Engineering Task Force, RFC
8446, Aug. 2018. https://dl.acm.org/doi/pdf/10.17487/RFC8446

Shruti Saini School of Computing, Information and Mathematical
Sciences, The University of the South Pacific Suva, Fiji; Ansgar
Fehnker Department of Computer Science University of Twente
Enschede, the Netherlands; “Evaluating The Stream Control
Transmission Protocol Using Uppaal”. https://arxiv.org/pdf/
1703.06568.pdf

Stewart, R. M. Ramalho, Q. Xie, M. Tuexen, P. Conrad, and L. Ong,
"Stream Control Transmission Protocol (SCTP) Dynamic
Address Reconfiguration," Internet Engineering Task Force, RFC
5061. https://www.researchgate.net/publication/247654732_
Stream_Control_Transmission_Protocol_SCTP_Dynamic_Addre
ss_Reconfiguration

Stewart, R. M. Tüxen, "Stream Control Transmission Protocol
(SCTP) Chunk Flags," Internet Engineering Task Force, RFC
4960, Sep. 2007. https://www.semanticscholar.org/paper/Stream-
Control-Transmission-Protocol-(SCTP)-Chunk-T%C3%BCxen-
Stewart/d8d6307f8e4181a219472c7f949377e8ccd8b27b

65516 International Journal of Development Research, Vol. 14, Issue, 04, pp. 65512-65516, April, 2024
