# International Journal of Development Research <br> Vol. 6, Issue, 03, pp. 7079-7089, March, 2016 <br> Full Length Research Article 

# TRIPLE ENCRYPTION OF MULTIPLE KEYS FOR SYMMETRIC KEY CRYPTO SYSTEMS 

${ }^{1}$ ChandraSekhar, A., ${ }^{2}$ Ch.Pragathi and ${ }^{3, *}$ Ashok Kumar<br>${ }^{1}$ Professor in Engineering Mathematics, GITAM University, Visakhapatnam, India<br>${ }^{2}$ Associate Professor in Engineering Mathematics, GITAM University, Visakhapatnam, India<br>${ }^{3}$ Research Scholar, Department of Mathematics, GITAM University, Visakhapatnam, India

## ARTICLE INFO

## Article History:

Received $19^{\text {th }}$ December, 2015
Received in revised form
$08^{\text {th }}$ January, 2016
Accepted $24^{\text {th }}$ February, 2016
Published online $31^{\text {st }}$ March, 2016

## Key Words:

Fibonacci numbers,
Lucas numbers Affine,
Vignere,
Fibonacci-Lucas Transformations.


#### Abstract

Multiple encryptions in a practical system refers to encrypting the data more than once i.e., encrypting the data twice or trice to increase the security levels. As long as the cipher is unbreakable the encryption schemes remains strong. In view of the known attacks encrypting the data more than once will strengthen the security levels. In this paper we proposed a triple encryption scheme by using two keys generated by the mathematical structures from the numbertheoretic concepts.


Copyright © 2016, ChandraSekhar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## INTRODUCTION

Multilevel encryption is a process of encrypting the information which is encrypted one or more than once. Fibonacci Lucas numbers and Fibonacci Lucas matrices play a vital role in cryptography. We construct cryptosystem Fibonacci Lucas transformation. Fibonacci Lucas matrices are used as trapdoor function in public key cryptosystem.

## Fibonacci Numbers

The Fibonacci sequence is $1,1,2,3,5,8 \ldots$ Where each entry is formed by adding the two previous ones, starting with 1 and 1 as the first two terms. This sequence is called Fibonacci sequence.

## Properties of Fibonacci numbers

Fibonacci numbers are given by the following recurrence relation $F_{n+1}=F_{n}+F_{n-1}$ with the initial conditions $F_{1}=F_{2}=1$ Lucas Number

The Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are $L_{0}=2$ and $L_{1}=1$ as opposed to the first two Fibonacci numbers $F_{0}=0$ and $F_{1}=1$. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined as follows:

[^0]$L_{n}= \begin{cases}2 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ L_{n-1}+L_{n-2} & \text { if } n>1\end{cases}$
The sequence of Lucas numbers is: $2,1,3,4,7,11,18,29,47,76,123,189 \ldots$

## Pell Numbers

The Pell numbers are defined by the recurrence relation
$P_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ 2 P_{n-1}+P_{n-2} & \text { other wise }\end{cases}$
In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are $0,1,2,5,12,29,70,169,408,985,2378,5741$, $13890, \ldots$

## Fibonacci-Lucas Transform

The Fibonacci-Lucas Transformation can be defined the mapping FL: $\mathrm{T}^{2} \rightarrow \mathrm{~T}^{2}$ such that $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}F_{i} & F_{i+1} \\ L_{i} & L_{i+1}\end{array}\right)\binom{x}{y}(\bmod N)$ Where x , y $\in\{0,1,2, \ldots \ldots . N-1\}, F_{i}$ is the $\mathrm{i}^{\text {th }}$ term of Fibonacci series and $\mathrm{L}_{\mathrm{i}}$ is the $\mathrm{i}^{\text {th }}$ term of Lucas series. Denoting $\left(\begin{array}{ll}F_{i} & F_{i+1} \\ L_{i} & L_{i+1}\end{array}\right)$. Continue in this way we can form an infinitely many transformations.

## Affine Cipher

An affine enciphering transformationis $C \equiv a P+b(\bmod N)$ where the pair $(\mathrm{a}, \mathrm{b})$ is the encrypting key and $\mathrm{gcd}(\mathrm{a}, \mathrm{N})=1$. If $\mathrm{y}=\mathrm{E}(\mathrm{x})$ $=(\mathrm{ax}+\mathrm{b}) \bmod 26$, [1] then we can "solve for x in terms of y " and so $E^{-1}(y)$ that is, if $y \equiv(a x+b) \bmod 26$ then $y-b \equiv a x(\bmod 26)$ or equivalently $a x \equiv(y-b) \bmod 26$

## Vignere ciphere

The Vigenere cipher was generated by Giovan Batista Belaso in 1553[1]. This cipher uses a secret keyword to encrypt the plaintext. First, each letter in the plaintext is converted into a number. Then this numerical value for each letter of the plaintext is added to the numerical value of each letter of a secret keyword to get the ciphertext. The Vigenere ciphers are more powerful than substitution ciphers.

## Proposed Work

An Algorithm for triple encryption using offs Fibonacci-Lucas transformation as the first layer of encryption, decrypting with the inverse of the Affine transformation as the second layer of encryption and finally encrypting with the Fibonacci- Lucas transformation as the third layer of encryption.

## Encryption algorithm

Step-1: Alice creates plaintexts $P=p_{1} p_{2}, p_{3} \ldots p_{m}$
Step-2: Alice computes $C_{1}=P \times(F L)$ and get $1^{\mathrm{sr}}$ ciphertext
Step-3: Alice decrypts the super encrypted message by using $E^{-1}(y)=a^{-1}(y-b) \bmod 26\left(=\mathrm{C}_{2}\right)$
Step-4: Alice computes $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
Step-5: Alice sends message $\mathrm{C}_{3}$ to Bob.
Decryption algorithm:
Step-1: Bob receives the encrypted message $\mathrm{C}_{3}$.
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$

Step-3: Now Bob compute $P_{1}$ decrypted with the Affine transformation $E(x)=(a x+b) \bmod 26, G c d(a, N)=1$ and for $a$ and $b$ are secrete, from the first level encryption message.
Step-4: Bob computes $\mathrm{P}=\mathrm{P}_{1} \times(F L)^{-1}$ to get the original plaintext message P .

| A | B | C | D | E | F | G | H | I | J | K | L | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

## VIGENERE CIPHER

Case-1: For i=1 we get $F L=\left(\begin{array}{ll}F_{1} & F_{2} \\ L_{1} & L_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$

## Encryption algorithm

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}T & E \\ X & T\end{array}\right)=\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right)$
Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right) \times\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}27 & 23 \\ 61 & 42\end{array}\right)$

|  | 27 | 23 | 61 | 42 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 1 | 23 | 9 | 16 |

Step-3: Alice Compute Inverse of Affine transformation $E^{-1}(y)=a^{-1}(y-b) \bmod 26$ for $\mathrm{a}=5 \& \mathrm{~b}=16$

| $y$ | 1 | 23 | 9 | 16 |
| :--- | :--- | :--- | :--- | :--- |
| $y-16$ | -15 | 7 | -7 | 0 |
| $21(\mathrm{y}-16)$ | -315 | 147 | -147 | 0 |
| $21(\mathrm{y}-16) \bmod 26$ | 23 | 17 | 9 | 0 |

$\mathrm{C}_{2}=\left(\begin{array}{cc}23 & 17 \\ 9 & 0\end{array}\right)$
Step-4: Alice computes $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$

$$
\left(\begin{array}{cc}
23 & 17 \\
9 & 0
\end{array}\right) \times\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
57 & 40 \\
9 & 9
\end{array}\right)
$$

Step-4: Encrypted message $\mathrm{C}_{3}$ is FOJJ

|  | 57 | 40 | 9 | 9 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 5 | 14 | 9 | 9 |

## Decryption algorithm

Step-1: First Decrypted Message is FOJJ
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$
$\left(\begin{array}{cc}5 & 14 \\ 9 & 9\end{array}\right) \times\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{cc}23 & -9 \\ 9 & 0\end{array}\right)$

|  | 23 | -9 | 9 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 23 | 17 | 9 | 0 |

$$
P_{2}=\left(\begin{array}{cc}
23 & 17 \\
9 & 0
\end{array}\right)
$$

Step-3: Now applying affine transformation $E(x)=(a x+b) \bmod 26$ for $a=5 \& b=16$

| X | 23 | 17 | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{x}+16$ | 131 | 101 | 61 | 16 |
| (5x+16)mod26 | 1 | 23 | 9 | 16 |
| Decrypted message is | B | X | J | Q |
| $P_{1}=\left(\begin{array}{ll}1 & 23 \\ 9 & 16\end{array}\right)$ |  |  |  |  |

Step-4: Bob Compute $\mathrm{P}_{1} \times(\mathrm{FL})^{-1}$ to get original message P
now $\left(\begin{array}{ll}1 & 23 \\ 9 & 16\end{array}\right) \times\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{cc}45 & -22 \\ 23 & -7\end{array}\right)$

|  | 45 | -22 | 23 | -7 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 19 | 4 | 23 | 19 |
| Second Decrypted message is | T | E | X | T |

Case-2: For i= 2we get $F L=\left(\begin{array}{ll}F_{1} & F_{2} \\ L_{1} & L_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$

## Encryption algorithm

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}T & E \\ X & T\end{array}\right)=\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right)$
Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{cc}23 & 50 \\ 42 & 103\end{array}\right)$

|  | 23 | 50 | 42 | 103 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 23 | 24 | 16 | 25 |
| $\mathrm{C}_{1}=\left(\begin{array}{ll}23 & 24 \\ 16 & 25\end{array}\right)$ |  |  |  |  |

Step-3: Alice Compute Inverse of Affine transformation $E^{-1}(y)=a^{-1}(y-b) \bmod 26$ for $\mathbf{a}=5 \& \mathrm{~b}=18$

| y | 23 | 24 | 16 | 25 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{y}-18$ | 5 | 6 | -2 | 7 |
| $21(\mathrm{y}-18)$ | 105 | 126 | -42 | 147 |
| $21(\mathrm{y}-18) \bmod 26$ | 1 | 22 | 10 | 17 |
|  |  |  |  |  |
| $\mathrm{C}_{2}=\left(\begin{array}{cc}1 & 22 \\ 10 & 17\end{array}\right)$ |  |  |  |  |

Step-4: Alice computes $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
$\left(\begin{array}{cc}1 & 22 \\ 10 & 17\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{cc}23 & 68 \\ 27 & 71\end{array}\right)$

|  | 23 | 68 | 27 | 71 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 23 | 16 | 1 | 19 |

Step-4: Encrypted message $\mathrm{C}_{3}$ is XQBT

## Decryption algorithm

Step-1: First Decrypted Message is XQBT
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$
$\left(\begin{array}{cc}23 & 16 \\ 1 & 19\end{array}\right) \times\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}53 & -30 \\ -16 & 17\end{array}\right)$

|  | 53 | -30 | -16 | 17 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 1 | 22 | 10 | 17 |
| $P_{2}$ | $=\left(\begin{array}{cc}1 & 22 \\ 10 & 17\end{array}\right)$ |  |  |  |

Step-3: Now applying affine transformation $E(x)=(a x+b) \bmod 26$ for $a=5 \& b=18$

| x | 1 | 22 | 10 | 17 |
| :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{x}+18$ | 23 | 128 | 68 | 103 |
| ( $5 \mathrm{x}+18$ ) $\bmod 26$ | 23 | 24 | 16 | 25 |
| Decrypted message is | X | Y | Q | Z |
| $\mathrm{P}_{1}=\left(\begin{array}{ll}23 & 24 \\ 16 & 25\end{array}\right)$ |  |  |  |  |

Step-4: Bob Compute $P_{1} \times(F L)^{-1}$ to get original message $P$
now $\left(\begin{array}{ll}23 & 24 \\ 16 & 25\end{array}\right) \times\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}45 & -22 \\ 23 & -7\end{array}\right)$

|  | 45 | -22 | 23 | -7 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 19 | 4 | 23 | 19 |
| Second Decrypted message is | T | E | X | T |

Case-3: For i=3 we get $F L=\left(\begin{array}{ll}F_{1} & F_{2} \\ L_{1} & L_{2}\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$

## Encryption algorithm:

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}T & E \\ X & T\end{array}\right)=\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right)$
Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}19 & 4 \\ 23 & 19\end{array}\right) \times\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)=\left(\begin{array}{cc}50 & 73 \\ 103 & 145\end{array}\right)$

|  | 50 | 73 | 103 | 145 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 24 | 21 | 25 | 15 |
| $\mathrm{C}_{1}=\left(\begin{array}{ll}24 & 21 \\ 25 & 15\end{array}\right)$ |  |  |  |  |

Step-3: Alice Compute Inverse of Affine transformation $E^{-1}(y)=a^{-1}(y-b) \bmod 26$ for $\mathrm{a}=5 \& \mathrm{~b}=21$

| $y$ | 24 | 21 | 25 | 15 |
| :--- | :--- | :--- | :--- | :--- |
| $y-21$ | 3 | 0 | 4 | -6 |
| $21(\mathrm{y}-21)$ | 63 | 0 | 84 | -126 |
| $21(\mathrm{y}-21) \bmod 26$ | 11 | 0 | 6 | 4 |

Step-4: Alice computes $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
$\left(\begin{array}{cc}11 & 0 \\ 6 & 4\end{array}\right) \times\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)=\left(\begin{array}{cc}22 & 33 \\ 24 & 34\end{array}\right)$

Step-4: Encrypted message $\mathrm{C}_{3}$ is WHYI

## Decryption algorithm

Step-1: First Decrypted Message is WHYI
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$

$$
\left(\begin{array}{cc}
22 & 7 \\
24 & 8
\end{array}\right) \times\left(\begin{array}{cc}
-4 & 3 \\
3 & -2
\end{array}\right)=\left(\begin{array}{cc}
-67 & 52 \\
-72 & 56
\end{array}\right)
$$

|  | -67 | 52 | -72 | 56 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 11 | 0 | 6 | 4 |

$$
P_{2}=\left(\begin{array}{cc}
11 & 0 \\
6 & 4
\end{array}\right)
$$

Step-3: Now applying affine transformation $E(x)=(a x+b) \bmod 26$ for $a=5 \& b=21$

| x | 11 | 0 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $5 \mathrm{x}+21$ | 76 | 21 | 51 | 41 |
| $(5 \mathrm{x}+21) \bmod 26$ | 24 | 21 | 24 | 15 |
| Decrypted message is | Y | V | Y | P |

Step-4: Bob Compute $P_{1} \times(F L)^{-1}$ to get original message $P$
now $\left(\begin{array}{cc}24 & 21 \\ 25 & 15\end{array}\right) \times\left(\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right)=\left(\begin{array}{ll}-33 & 30 \\ -55 & 45\end{array}\right)$

|  | -33 | 30 | -55 | 45 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 19 | 4 | 23 | 19 |
| Second Decrypted message is | T | E | X | T |

## VIGENERE CIPHER

Case: 1 For i=1 we get $F L=\left(\begin{array}{ll}F_{1} & F_{2} \\ L_{1} & L_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$

## Encryption algorithm:

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}G & O \\ L & D\end{array}\right)=\left(\begin{array}{cc}6 & 14 \\ 11 & 3\end{array}\right)$
Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}6 & 14 \\ 11 & 3\end{array}\right) \times\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}34 & 20 \\ 17 & 14\end{array}\right)$
$\mathrm{C}_{1}=\left(\begin{array}{ll}34 & 20 \\ 17 & 14\end{array}\right)$

Using vigenere ciphers for key

| L | O | V | E |
| :--- | :--- | :--- | :--- |
| 11 | 14 | 21 | 4 |

Step-3: Alice compute reverse offset rule with the first encrypted message $C_{1}$

|  | 34 | 20 | 17 | 14 |
| :--- | :--- | :--- | :--- | :--- |
| Reverse offset rule with key | 34 | 20 | 17 | 14 |
|  | - | - | - | - |
|  | 11 | 14 | 21 | 4 |
|  | 23 | 6 | -4 | 10 |
| Mod 26 | 23 | 6 | 22 | 10 |
| Second Encrypted message is | X | G | W | K |

Second Encrypted message is $\mathrm{C}_{2}=\left(\begin{array}{cc}23 & 6 \\ 22 & 10\end{array}\right)$

Step-4: Alice compute $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
$\left(\begin{array}{cc}23 & 6 \\ 22 & 10\end{array}\right) \times\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}35 & 29 \\ 42 & 32\end{array}\right)$

|  | 35 | 29 | 42 | 32 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 9 | 3 | 16 | 6 |
| Third encrypted message is | J | D | Q | H |

Step-5: Alice send message $\mathrm{C}_{3}$ to bob JDQH

## Decryption algorithm

Step-1: First Decrypted Message is JDQH
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$
$\left(\begin{array}{cc}9 & 3 \\ 16 & 6\end{array}\right) \times\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{cc}-3 & 6 \\ -4 & 10\end{array}\right)$
Step-2: Bob Decrypts with the offset rule with vigenere transformation

|  | -3 | 6 | -4 | 10 |
| :--- | :--- | :--- | :--- | :--- |
| Offset rule with key | -3 | 6 | -4 | 10 |
|  | + | + | + | + |
|  | 11 | 14 | 21 | 4 |
|  | 8 | 20 | 17 | 14 |
| Mod 26 | 8 | 20 | 17 | 14 |
| Second Decryption message is | I | U | R | O |

$$
\mathbf{P}_{2}=\left(\begin{array}{ll}
I & U \\
R & O
\end{array}\right)
$$

Step-3: Bob Compute $P_{2} \times(F L)^{-1}$ to get original message $P$
now $\left(\begin{array}{cc}8 & 20 \\ 17 & 14\end{array}\right) \times\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{cc}32 & -12 \\ 11 & 3\end{array}\right)$

|  | 32 | -12 | 11 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 6 | 14 | 11 | 3 |
| Third Decrypted message is | G | O | L | D |

Case-2: For $\mathrm{i}=2 \quad F L=\left(\begin{array}{ll}F_{2} & F_{3} \\ L_{2} & L_{3}\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$

## Encryption algorithm

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}N & E \\ W & S\end{array}\right)=\left(\begin{array}{cc}13 & 4 \\ 22 & 18\end{array}\right)$

Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}13 & 4 \\ 22 & 18\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{ll}17 & 38 \\ 40 & 98\end{array}\right)$
$C_{1}=\left(\begin{array}{ll}17 & 38 \\ 40 & 98\end{array}\right)$

Using vigenere ciphers for key

| $L$ | $O$ | $V$ | $E$ |
| :--- | :--- | :--- | :--- |
| 11 | 14 | 21 | 4 |

Step-3: Alice compute reverse offset rule with the first encrypted message $C_{1}$

|  | 17 | 38 | 40 | 98 |
| :--- | :--- | :--- | :--- | :--- |
| Reverse offset rule with key | 17 | 38 | 40 | 98 |
|  | - | - | - | - |
|  | 11 | 14 | 21 | 4 |
|  | 6 | 24 | 19 | 94 |
| Mod 26 | 6 | 24 | 19 | 16 |
| Second Encrypted message is | G | Y | T | Q |

Second Encrypted message is $\mathrm{C}_{2}=\left(\begin{array}{cc}6 & 24 \\ 19 & 16\end{array}\right)$
Step-4: Alice compute $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
$\left(\begin{array}{cc}6 & 24 \\ 19 & 16\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}30 & 84 \\ 35 & 86\end{array}\right)$

|  | 30 | 84 | 35 | 86 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 4 | 6 | 9 | 8 |
| Third encrypted message is | E | G | J | I |

Step-5: Alice send message $\mathrm{C}_{3}$ to bob EGJI

## Decryption algorithm

Step-1: First Decrypted Message is EGJI
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$
$\left(\begin{array}{ll}4 & 6 \\ 9 & 8\end{array}\right) \times\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}6 & -2 \\ 19 & -10\end{array}\right)$
Step-2: Bob Decrypts with the offset rule with vigenere transformation

|  | 6 | -2 | 19 | -10 |
| :--- | :--- | :--- | :--- | :--- |
| Offset rule with key | 6 | -2 | 19 | -10 |
|  | + | + | + | + |
|  | 11 | 14 | 21 | 4 |
|  | 17 | 38 | 40 | 20 |
| Mod 26 | 17 | 12 | 14 | 20 |
| Second Decryption message is | $\mathbf{R}$ | $\mathbf{M}$ | $\mathbf{O}$ | $\mathbf{U}$ |

$$
\mathbf{P}_{2}=\left(\begin{array}{ll}
R & M \\
O & U
\end{array}\right)
$$

Step-3: Bob Compute $P_{2} \times(F L)^{-1}$ to get original message $P$
now $\left(\begin{array}{ll}17 & 12 \\ 14 & 20\end{array}\right) \times\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}39 & -22 \\ 22 & -8\end{array}\right)$

|  | 39 | -22 | 22 | -8 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 13 | 4 | 22 | 18 |
| Third Decrypted message is | N | E | W | S |

Case-3: For i=3 $F L=\left(\begin{array}{ll}F_{3} & F_{4} \\ L_{3} & L_{4}\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$

## Encryption algorithm

Step-1: Let the Plain text $\mathrm{P}=\left(\begin{array}{ll}T & E \\ C & H\end{array}\right)=\left(\begin{array}{cc}19 & 4 \\ 2 & 7\end{array}\right)$
Step-2: Alice computes $\mathrm{C}_{1}=\mathrm{P} \times(\mathrm{FL})$
$\left(\begin{array}{cc}19 & 4 \\ 2 & 7\end{array}\right) \times\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)=\left(\begin{array}{ll}50 & 73 \\ 25 & 34\end{array}\right)$
$\mathrm{C}_{1}=\left(\begin{array}{ll}50 & 73 \\ 25 & 34\end{array}\right)$
Using vigenere ciphers for key

| $L$ | O | V | E |
| :--- | :--- | :--- | :--- |
| 11 | 14 | 21 | 4 |

Step-3: Alice compute reverse offset rule with the first encrypted message $C_{1}$

|  | 50 | 73 | 25 | 34 |
| :--- | :--- | :--- | :--- | :--- |
|  | 50 | 73 | 25 | 34 |


| Reverse offset rule with key | - | - | - | - |
| :--- | :--- | :--- | :--- | :--- |
|  | 11 | 14 | 21 | 4 |
|  | 39 | 59 | 4 | 30 |
| Mod 26 | 13 | 7 | 4 | 4 |
| Second Encrypted message is | N | H | E | E |

Second Encrypted message is $\mathrm{C}_{2}=\left(\begin{array}{cc}13 & 7 \\ 4 & 4\end{array}\right)$
Step-4: Alice compute $\mathrm{C}_{2} \times(\mathrm{FL})=\mathrm{C}_{3}$
$\left(\begin{array}{cc}13 & 7 \\ 4 & 4\end{array}\right) \times\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)=\left(\begin{array}{ll}47 & 67 \\ 20 & 28\end{array}\right)$

|  | 47 | 67 | 20 | 28 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 21 | 15 | 20 | 2 |
| Third encrypted message is | V | P | U | C |

Step-5: Alice send message $\mathrm{C}_{3}$ to bob VPUC

## Decryption algorithm

Step-1: First Decrypted Message is VPUC
Step-2: Bob compute $\mathrm{C}_{3} \times(\mathrm{FL})^{-1}=\mathrm{P}_{2}$
$\left(\begin{array}{cc}21 & 15 \\ 20 & 2\end{array}\right) \times\left(\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right)=\left(\begin{array}{cc}-39 & 33 \\ -74 & 56\end{array}\right)$
Step-2: Bob Decrypts with the offset rule with vigenere transformation

|  | -39 | 33 | -74 | 56 |
| :--- | :--- | :--- | :--- | :--- |
|  | -39 | 33 | -74 | 56 |
| Offset rule with key | + | + | + | + |
|  | 11 | 14 | 21 | 4 |
|  | -28 | 47 | -53 | 60 |
| Mod 26 | 24 | 21 | 25 | 8 |
| Second Decryption message is | $\mathbf{Y}$ | $\mathbf{V}$ | $\mathbf{Z}$ | $\mathbf{I}$ |

$$
\mathbf{P}_{2}=\left(\begin{array}{ll}
Y & V \\
Z & I
\end{array}\right)
$$

Step-3: Bob Compute $P_{2} \times(F L)^{-1}$ to get original message $P$
now $\left(\begin{array}{cc}24 & 21 \\ 25 & 8\end{array}\right) \times\left(\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right)=\left(\begin{array}{cc}-33 & 30 \\ -76 & 59\end{array}\right)$

|  | -33 | 30 | -76 | 59 |
| :--- | :--- | :--- | :--- | :--- |
| Mod 26 | 19 | 4 | 2 | 7 |
| Third Decrypted message is | T | E | C | H |

## Conclusions

In the proposed technique only two keys were employed for triple encryption instead of using three keys for three layers of encryption. Time complexity is less for encryption by this method than the original triple encryption method.

## REFERENCES

Branstad, D.K., Gait,J. and Katzke, S. 1976. Report of the workshop on cryptography in support of computer security, National Bureau of Standards Rep.NBSIR 77-1291(Sept.21-22).

Chandra Sekhar, A., Ch.prgathi, B. Ravi Kumar, S. and Ashok kumar 2016. "Multiple encryption of various ciphers" International Journal od Engineering Science Invention Research \& Development; Vol.II Issue VIII February.
ChandraSekhar, A., Chaya Kumari, D. and Ashok Kumar S. 2016. "Symmetric Key Cryptosystem for Multiple Encryptions", International Journal of Mathematics Trends and Technology, (IJMTT). V29 (2):140-144 January. ISSN:2231-5373.
Diffie,W. and Hellman, M. 1977. Exhaustive cryptanalysis of the NBS data encryption Standard. Computer (June),74-84.
Fibonacci and lucas numbers with applications thomas Khoshy ISBN: 978-0-471-39939-8.
Fibonacci, Lucas and Pell numbers andpascal's triangle, Thomas Khoshy, Applied Probability Trust, PP 125-132.
Hellman, M.E. 1977. An extension of the Shannon theory approach to cryptography,IEEE Trans.Info.IT-23, (May),289-294.
Hoggat, V.E. 1969. "Fibonacci and Lucas numbers" palo Alto,CA:Houghton-Mifflin.
International journal on cryptography and information security(IJCI") "Image encryption using Fibonacci-Lucas transformation" Vol.2,No3,September 2012.
Kolata, G.B 1977. Computer encryption and the national security agency,Science 1977(July 29,)438-440.
Koshy, T. 2001. Fibonacci and Lucas Numbers with applications, John Wiley and Sons,NY.
Linear independent spanning sets and linear transformations for multi-level encryption, A.ChandraSekhar, V.Anusha, B.Ravi Kumar, S.Ashok Kumar Vol36(2015), No.4, PP;385-392.
Lock Wood, E.H. 1967. A single-light on pascal's triangle, Math, Gazette 51, PP 243-244.
On the security of multiple encryption, Ralphe.merle, Elxs, Inti Martin E.Hellmon Standford University, Communication of the ACM July 1981, Vol 24 No 7.
Shannon,C.E. 1949. Communication theory of security systems.Bell. syst.Tech.J.28(OCT.),656-715.
Stakhov, A.P. 1998. "The Golden section and modern harmony mathematics. Applications of Fibonacci numbers" ,kluwer Academic publishers. pp393-399.
Stakhov, A.P. 2007 ." The Golden matrices and a new kind of cryptography" chaos, solutions and Fractals 32 pp1138-1146.
Tianping Zhang, Yuankui Ma" 2005. On Generalized Fibonacci Polynomials and Bernouli Numbers" Journal of Integer sequence, Vol.8,PP 1-6
Tuchman,W.L. 1978. Talik presented at the Nat.Computer conf.,Anaheim,C.A.,June.


[^0]:    *Corresponding author: Ashok Kumar,
    Research Scholar, Department of Mathematics, GITAM University, Visakhapatnam, India.

