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ARTICLE INFO                                       ABSTRACT 
 
 

Multiple encryptions in a practical system refers to encrypting the data more than once i.e., 
encrypting the data twice or trice to increase the security levels. As long as the cipher is 
unbreakable the encryption schemes remains strong. In view of the known attacks encrypting the 
data more than once will strengthen the security levels. In this paper we proposed a triple 
encryption scheme by using two keys generated by the mathematical structures from the number-
theoretic concepts. 
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INTRODUCTION 
 
Multilevel encryption is a process of encrypting the information which is encrypted one or more than once. Fibonacci Lucas 
numbers and Fibonacci Lucas matrices play a vital role in cryptography. We construct cryptosystem Fibonacci Lucas 
transformation. Fibonacci Lucas matrices are used as trapdoor function in public key cryptosystem.   
 
Fibonacci Numbers  

 
The Fibonacci sequence is 1, 1, 2, 3, 5, 8. . .  Where each entry is formed by adding the two previous ones, starting with 1 and 1 as 
the first two terms. This sequence is called Fibonacci sequence.  
 
Properties of Fibonacci numbers 

Fibonacci numbers are given by the following recurrence relation 1 1n n nF F F   with the initial conditions 1 2 1F F   
 

Lucas Number 

 
The Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence. 
The first two Lucas numbers are L0 = 2 and L1 = 1 as opposed to the first two Fibonacci numbers F0 = 0 and F1 = 1. Though 
closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined as 
follows: 
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The sequence of Lucas numbers is:  2,1,3,4,7,11,18,29,47,76,123,189….. 
 
Pell Numbers  

 
The Pell numbers are defined by the recurrence relation 
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In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell 
number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169, 408,985, 2378, 5741, 
13890,... 
 
Fibonacci-Lucas Transform 
The Fibonacci-Lucas Transformation can be defined the mapping FL:T2  → T2 such that 
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. Continue in this 

way we can form an infinitely many transformations. 
 
Affine Cipher  

 
An affine enciphering transformationis  modC aP b N  where the pair (a, b) is the encrypting key and gcd (a,N)=1. If y = E(x) 

= (ax+b) mod 26, [1] then we can “solve for x in terms of y” and so 1( )E y that is, if  y ax b  mod26 then

 mod26y b ax  or equivalently  ax y b  mod 26  

 
Vignere ciphere 

 
The Vigenere cipher was generated by Giovan Batista Belaso in 1553[1]. This cipher uses a secret keyword to encrypt the 
plaintext. First, each letter in the plaintext is converted into a number. Then this numerical value for each letter of the plaintext is 
added to the numerical value of each letter of a secret keyword to get the ciphertext. The Vigenere ciphers are more powerful than 
substitution ciphers.  
 
Proposed Work 

 
An Algorithm for triple encryption using offs Fibonacci-Lucas transformation  as the first layer of encryption, decrypting with the 
inverse of the Affine transformation as the second layer of encryption and finally encrypting with the Fibonacci- Lucas 
transformation as the third layer of encryption. 
 
Encryption algorithm 
 
Step-1: Alice creates plaintexts P = p1 p2, p3 … pm 
Step-2: Alice computes C1=P×(FL)and get 1sr ciphertext  
Step-3: Alice decrypts the super encrypted message by using    1 1 mod 26E y a y b    (=C2) 

Step-4: Alice computes C2×(FL)=C3 

Step-5: Alice sends message C3 to Bob. 
Decryption algorithm: 
Step-1: Bob receives the encrypted message C3.  
Step-2: Bob compute C3 × (FL)-1=P2 
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Step-3: Now Bob compute P1 decrypted with the Affine transformation E(x) = (ax+b) mod 26, Gcd(a,N)=1 and for a and b are 
secrete, from the first level encryption message.  

Step-4: Bob computes P=P1×  
1

FL


 to get the original plaintext message P. 

 
A B C D E F G H I J K L M 
0 1 2 3 4 5 6 7 8 9 10 11 12 
N O P Q R S T U V W X Y Z 
13 14 15 16 17 18 19 20 21 22 23 24 25 

 
VIGENERE CIPHER  
 

Case-1: For i=1 we get 1 2

1 2

F F
FL

L L

 
  
 

 = 1 1

2 1

 
 
   

Encryption algorithm 
 

Step-1: Let the Plain text P=

 

T E

X T

 
 
 

= 
19 4

23 19

 
 
   

 
Step-2: Alice computes C1= P×(FL) 
 

19 4 1 1 27 23

23 19 2 1 61 42

     
      

       

 27 23 61 42 

Mod 26 1 23 9 16 

C1
1 23

9 16

 
  
   

Step-3: Alice Compute Inverse of Affine transformation    1 1 mod 26E y a y b    for a = 5 & b= 16 

 
y 1 23 9 16 
y-16 -15 7 -7 0 
21(y-16)  -315 147 -147 0 
21(y-16) mod 26 23 17 9 0 

C2 = 23 17

9 0

 
 
 

 

Step-4:   Alice computes C2×(FL)=C3 

 

23 17 1 1 57 40

9 0 2 1 9 9

     
      

       

 57 40 9 9 

Mod 26 5 14 9 9 

Step-4:   Encrypted message C3 is FOJJ 
 
Decryption algorithm 
 
Step-1:  First Decrypted Message is FOJJ 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 
5 14 1 1 23 9

9 9 2 1 9 0

      
      

       

 

 23 -9 9 0 

Mod 26 23 17 9 0 
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P2 =  
23 17

9 0

 
 
 

 

Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 for a = 5 & b= 16 

 

x 23 17 9 0 
5x+16 131 101 61 16 
(5x+16)mod26 1 23 9 16 
Decrypted message is  B X J Q 

P1 =  
1 23

9 16

 
 
 

 

Step-4: Bob Compute P1×(FL)-1 to get original message P 
 

now  
1 23 1 1 45 22

9 16 2 1 23 7

      
      

        

 
  45 -22 23 -7 
Mod 26 19 4 23 19 
Second  Decrypted  message is  T E X T 

 

Case-2: For i= 2we get 1 2

1 2

F F
FL

L L

 
  
 

 = 
1 2

1 3

 
 
 

 
 
Encryption algorithm 
 

Step-1: Let the Plain text P=

 

T E

X T

 
 
 

= 
19 4

23 19

 
 
   

 
Step-2: Alice computes C1= P×(FL) 
 

19 4 1 2 23 50

23 19 1 3 42 103

     
      

       

 23 50 42 103 

Mod 26 23 24 16 25 

C1
23 24

16 25

 
  
 

 

Step-3: Alice Compute Inverse of Affine transformation    1 1 mod 26E y a y b    for a = 5 & b= 18 

y 23 24 16 25 
y-18 5 6 -2 7 
21(y-18)  105 126 -42 147 
21(y-18) mod 26 1 22 10 17 

C2 = 
1 22

10 17

 
 
   

Step-4:   Alice computes C2×(FL)=C3 

 
 

1 22 1 2 23 68

10 17 1 3 27 71
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 23 68 27 71 

Mod 26 23 16 1 19 

 
Step-4:   Encrypted message C3  is XQBT 
 
Decryption algorithm 
 
Step-1:  First Decrypted Message is XQBT 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 

23 16 3 2 53 30

1 19 1 1 16 17

      
      
        

 53 -30 -16 17 

Mod 26 1 22 10 17 

P2 =  
1 22

10 17

 
 
   

Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 for a = 5 & b= 18 
 

x 1 22 10 17 
5x+18 23 128 68 103 
(5x+18)mod26 23 24 16 25 
Decrypted message is  X Y Q Z 

P1 =  
23 24

16 25

 
 
 

 

Step-4: Bob Compute P1×(FL)-1 to get original message P 
 

now  
23 24 3 2 45 22

16 25 1 1 23 7

      
      
        

 

  45 -22 23 -7 
Mod 26 19 4 23 19 
Second  Decrypted  message is  T E X T 

 

Case-3: For i=3 we get 1 2

1 2

F F
FL

L L

 
  
 

 = 
2 3

3 4

 
 
   

Encryption algorithm:  

Step-1: Let the Plain text P=

 

T E

X T

 
 
 

= 
19 4

23 19

 
 
 

 

 

Step-2: Alice computes C1= P×(FL) 
 

19 4 2 3 50 73

23 19 3 4 103 145

     
      

       

 

 50 73 103 145 

Mod 26 24 21 25 15 

C1

24 21

25 15

 
  
 

 
 

Step-3: Alice Compute Inverse of Affine transformation    1 1 mod 26E y a y b    for a = 5 & b= 21 
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y 24 21 25 15 
y-21 3 0 4 -6 
21(y-21)  63 0 84 -126 
21(y-21) mod 26 11 0 6 4 

C2 = 
11 0

6 4

 
 
 

 

Step-4:   Alice computes C2×(FL)=C3 

 

11 0 2 3 22 33

6 4 3 4 24 34

     
      

       

 

 22 33 24 34 

Mod 26 22 7 24 8 

Step-4:   Encrypted message C3  is WHYI 
 
Decryption algorithm 
 
Step-1:  First Decrypted Message is WHYI 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 

22 7 4 3 67 52

24 8 3 2 72 56

      
      

        

 -67 52 -72 56 

Mod 26 11 0 6 4 

P2 =  
11 0

6 4

 
 
   

 
Step-3: Now applying affine transformation E(x)=(ax+b) mod 26 for a = 5 & b= 21 

 
x 11 0 6 4 
5x+21 76 21 51 41 
(5x+21)mod26 24 21 24 15 
Decrypted message is  Y V Y P 

P1 =  
24 21

24 15

 
 
 

 

Step-4: Bob Compute P1×(FL)-1 to get original message P 
 

now  
24 21 4 3 33 30

25 15 3 2 55 45

      
      

        

 
  -33 30 -55 45 
Mod 26 19 4 23 19 
Second  Decrypted  message is  T E X T 

 
VIGENERE CIPHER 

 

Case:1 For i=1 we get 1 2

1 2

F F
FL

L L

 
  
 

 = 
1 1

2 1

 
 
   

 
Encryption algorithm: 
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Step-1: Let the Plain text P = 
G O

L D

 
 
 

= 
6 14

11 3

 
 
   

 
Step-2: Alice computes C1= P×(FL) 
 

6 14 1 1 34 20

11 3 2 1 17 14

     
      

       

C1= 
34 20

17 14

 
 
   

 
Using vigenere ciphers for key   
 

L O V E 

11 14 21 4 

 
Step-3:  Alice compute reverse offset rule with the first encrypted message C1 

 
 34 20 17 14 
 
Reverse offset rule with key 

34 
- 
11 

20 
- 
14 

17 
- 
21 

14 
- 
4 

 23 6 -4 10 
Mod 26 23 6 22 10 
Second Encrypted  message is X G W K 

 

Second Encrypted  message is  C2= 
23 6

22 10

 
 
   

 
Step-4: Alice compute C2×(FL)=C3 

 

23 6 1 1 35 29

22 10 2 1 42 32

     
      

       
 

 35 29 42 32 
Mod 26 9 3 16 6 
Third  encrypted  message is  J D Q H 

 
Step-5: Alice send message C3 to bob JDQH 
 
Decryption algorithm 
 
Step-1: First Decrypted Message is JDQH 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 

9 3 1 1 3 6

16 6 2 1 4 10

      
      

        
 
Step-2: Bob Decrypts with the offset rule with  vigenere transformation  
 

 -3 6 -4 10 
 
Offset rule with key 

-3 
+ 
11 

6 
+ 
14 

-4 
+ 
21 

10 
+ 
4 

 8 20 17 14 
Mod 26 8 20 17 14 
Second Decryption  message is I U R O 
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P2=
I U

R O

 
 
 

 

Step-3: Bob Compute P2×(FL)-1 to get original message P

   

now  
8 20 1 1 32 12

17 14 2 1 11 3

      
      

       

 
  32 -12 11 3 
Mod 26 6 14 11 3 
Third Decrypted  message is  G O L D 

 

Case-2: For i=2 
2 3

2 3

F F
FL

L L

 
  
 

 = 
1 2

1 3

 
 
   

 
Encryption algorithm 
 

Step-1: Let the Plain text P = 
N E

W S

 
 
 

= 
13 4

22 18

 
 
   

 
Step-2: Alice computes C1= P×(FL) 
 

13 4 1 2 17 38

22 18 1 3 40 98

     
      

       

 

C1= 
17 38

40 98

 
 
   

 
Using vigenere ciphers for key   
 

L O V E 

11 14 21 4 

 
Step-3:  Alice compute reverse offset rule with the first encrypted message C1 

 
 17 38 40 98 
 
Reverse offset rule with key 

17 
- 
11 

38 
- 
14 

40 
- 
21 

98 
- 
4 

 6 24 19 94 
Mod 26 6 24 19 16 
Second Encrypted  message is G Y T Q 

 

Second Encrypted  message is  C2= 
6 24

19 16

 
 
   

 
Step-4: Alice compute C2×(FL)=C3 

 

6 24 1 2 30 84

19 16 1 2 35 86

     
      

       
 

 30 84 35 86 
Mod 26 4 6 9 8 
Third  encrypted  message is  E G J I 

 
Step-5: Alice send message C3 to bob EGJI 
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Decryption algorithm 
 
Step-1: First Decrypted Message is EGJI 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 

4 6 3 2 6 2

9 8 1 1 19 10

      
      
      

 

Step-2: Bob Decrypts with the offset rule with  vigenere transformation  
 

 6 -2 19 -10 
 
Offset rule with key 

6 
+ 
11 

-2 
+ 
14 

19 
+ 
21 

-10 
+ 
4 

 17 38 40 20 
Mod 26 17 12 14 20 
Second Decryption  message is R M O U 

 

P2=
R M

O U

 
 
   

 
Step-3: Bob Compute P2×(FL)-1 to get original message P

   

now  
17 12 3 2 39 22

14 20 1 1 22 8

      
      
        

 
  39 -22 22 -8 
Mod 26 13 4 22 18 
Third Decrypted  message is  N E W S 

 
 

Case-3: For i=3 
3 4

3 4

F F
FL

L L

 
  
 

 = 
2 3

3 4

 
 
 

 

 
Encryption algorithm 

Step-1: Let the Plain text P = 
T E

C H

 
 
 

= 
19 4

2 7

 
 
   

 
Step-2: Alice computes C1= P×(FL) 
 

19 4 2 3 50 73

2 7 3 4 25 34

     
      

       

 

C1= 
50 73

25 34

 
 
   

 
Using vigenere ciphers for key   
 

L O V E 

11 14 21 4 

 
Step-3:  Alice compute reverse offset rule with the first encrypted message C1 

 
 50 73 25 34 
 50 73 25 34 
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Reverse offset rule with key - 
11 

- 
14 

- 
21 

- 
4 

 39 59 4 30 
Mod 26 13 7 4 4 
Second Encrypted  message is N H E E 

 

Second Encrypted  message is  C2= 
13 7

4 4

 
 
 

 

Step-4: Alice compute C2×(FL)=C3 

13 7 2 3 47 67

4 4 3 4 20 28

     
      

       
 

 47 67 20 28 
Mod 26 21 15 20 2 
Third  encrypted  message is  V P U C 

 
Step-5: Alice send message C3 to bob VPUC 
 
Decryption algorithm 
 
Step-1: First Decrypted Message is VPUC 
 
Step-2: Bob compute C3 × (FL)-1=P2 

 

21 15 4 3 39 33

20 2 3 2 74 56

      
      

      
 

 
Step-2: Bob Decrypts with the offset rule with  vigenere transformation  
 

 -39 33 -74 56 
 
Offset rule with key 

-39 
+ 
11 

33 
+ 
14 

-74 
+ 
21 

56 
+ 
4 

 -28 47 -53 60 
Mod 26 24 21 25 8 
Second Decryption  message is Y V Z I 

 

P2=
Y V

Z I

 
 
 

 

 
Step-3: Bob Compute P2×(FL)-1 to get original message P

   

now  
24 21 4 3 33 30

25 8 3 2 76 59

      
      

        

 
  -33 30 -76 59 
Mod 26 19 4 2 7 
Third Decrypted  message is  T E C H 

 
Conclusions 

 
In the proposed technique only two keys were employed for triple encryption instead of using three keys for three layers of 
encryption. Time complexity is less for encryption by this method than the original triple encryption method. 
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