

Available online at http://www.journalijdr.com



International Journal of DEVELOPMENT RESEARCH

International Journal of Development Research Vol. 06, Issue, 10, pp.9669-9677, October, 2016

# Full Length Research Article

# SEMI- ... -COMPACT SPACE IN A TOPOLOGICAL SPACE

# \*1Priyadarshini, M. and <sup>2</sup>Selvi, R.

<sup>1</sup>Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, India <sup>2</sup>Department of Mathematics, Sri Parasakthi College for Women, Courtallam, India

## **ARTICLE INFO**

Article History: Received 17<sup>th</sup> July, 2016 Received in revised form 29<sup>th</sup> August, 2016 Accepted 17<sup>th</sup> September, 2016 Published online 31<sup>st</sup> October, 2016

#### Key Words:

semi-L-compact, semi-R-compact, semi-L-locally compact, sequentially semi-L-compact, sequentially semi-R-compact, countably semi-L-compact, countably semi-R-compact.

# ABSTRACT

In this paper semi-L-compact, semi-R-compact, semi-L-locally compact, semi-R-locally compact, sequentially semi-L-compact, sequentially semi-R-compact, countably semi-L-compact are introduced and the relationship between these concepts are studied.

*Copyright*©2016, *Priyadarshini and Selvi.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# **INTRODUCTION**

A.S.Mashhour, M.E Abd El.Monsef and S.N.El-Deeb [6] introduced a new class of semi-open sets in 1982. R.Selvi and M.Priyadarshini introduced a new class of semi-L-open sets in 2016(October). In this paper semi-L-compact, semi-R-compact, semi-R-locally compact, semi-L-compact, sequentially semi-L-compact, sequentially semi-R-compact, countably semi-L-compact, countably semi-R-compact are defined and their properties are investigated.

# 2. Preliminaries

Throughout this paper  $f^{-1}(f(A))$  is denoted by  $A^*$  and  $f(f^{-1}(B))$  is denoted by  $B^*$ .

# **Definition 2.1**

Let A be a subset of a topological space  $(X, \downarrow)$ . Then A is called semi-open if  $A \subseteq cl(int(A))$  and semi-closed if  $int(cl(A)) \subseteq A$ ; [1].

# **Definition 2.2**

Let f:  $(X, \downarrow) \rightarrow (Y, \uparrow)$  be a function. Then f is semi-continuous if f<sup>-1</sup>(B) is open in X for every semi-open set B in Y. [1]

\*Corresponding author: Priyadarshini, M.

Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, India

# **Definition: 2.3**

Let f:  $(X, \ddagger) \rightarrow (Y, \ddagger)$  be a function. Then f is semi-open (resp. semi-closed) if f(A) is semi-open(resp. semi-closed) in Y for every semi-open(resp. semi-closed) set A in X. [1]

# **Definition: 2.4**

Let f:  $(X, \ddagger) \rightarrow Y$  be a function. Then f is

- S-L-Continuous if  $A^*$  is open in X for every semi-open set A in X.
- S-M-Continuous if  $A^*$  is closed in X for every semi-closed set A in X. [2]

## **Definition: 2.5**

Let f:  $X \rightarrow (Y, \uparrow)$  be a function. Then f is

- S-R-Continuous if  $B^*$  is open in Y for every semi-open set B in Y.
- S-S-Continuous if  $B^*$  is closed in Y for every semi-closed set B in Y. [2]

## **Definition: 2.6**

Let f:  $(X, \ddagger) \rightarrow (Y, \dagger)$  be a function, then f is said to be

- S-irresolute if  $f^{-1}(V)$  is semi-open in X, whenever V is semi-open in Y.
- S-resolute if f(V) is semi-open in Y, whenever V is semi-open in X. [4]

## **Definition: 2.7**

Let  $(X, \ddagger)$  is said to be

- Finitely S-additive if finite union of semi-closed set is semi-closed.
- Countably S-additive if countable union of semi-closed set is semi-closed.
- S-additive if arbitrary union of semi-closed set is semi-closed. [6]

## **Definition: 2.8**

Let  $(X, \ddagger)$  be a topological space and  $x \in X$ . Every semi-open set containing x is said to be a S-neighbourhood of x.[3]

# **Definition: 2.9**

Let A be a subset of X. A point  $x \in X$  is said to be semi-limit point of A if every semi-neighbourhood of x contains a point of A other than x. [3]

## **Definition: 2.10**

Let A be a subset of a topological space  $(X, \ddagger)$ , semi-closure of A is defined to be the intersection of all semi-closed sets containing A. It is denoted by pcl(A).[2]

# **Definition: 2.11**

Let A be a subset of X. A point  $x \in X$  is said to be semi-limit point of A if everysemi-neighbourhood of x contains a point of A other than x. [5]

# **Definition: 2.12**

A collection  $\ddagger$  of subsets of X is said to have finite intersection property if for every sub collection {C1, C2.....Cn} of  $\ddagger$  the intersection C1  $\cap$  C2  $\cap$ ........  $\cap$  Cn is nonempty.[7]

# **Definition: 2.13**

A collection  $\{U_{\Gamma}\}_{\Gamma \in \Lambda}$  of semi-open sets in X is said to be semi-open cover of X if  $X = \bigcup_{\Gamma \in \Lambda} U_{\Gamma}$ . [11]

## **Definition: 2.14**

A topological space  $(X, \ddagger)$  is said to be semi-compact if every semi-open covering of X contains finite sub collection that also cover X. A subset A of X is said to be semi-compact if every covering of A by semi-open sets in X contains a finite subcover[10]

# **Definition: 2.15**

A subset A of a topological space (X,  $\ddagger$ ) is said to be countably semi-compact, if every countable semi-open covering of A has a finite subcover.[11]

# Example: 2.16

Let  $(X, \downarrow)$  be a countably infinite indiscrete topological space. In this space  $\{\{x\} | x \in X\}$  is a countable semi-open cover which has no finite subcover. Therefore it is not countably semi-compact.[11]

## Definition: 2.17

A subset A of a topological space (X,  $\ddagger$ ) is said to be sequentially semi-compact if every sequence in A contains a subsequence which semi-converges to some point in A.[9]

# **Definition: 2.18**

A topological space  $(X, \ddagger)$  is said to be semi-locally compact if every point of X is contained in a semi-neighbourhood whose semi-closure is semi-compact.[9]

# **Definition: 2.19**

Let f:  $(X, \ddagger) \rightarrow Y$  be a function and A be a subset of a topological space  $(X, \ddagger)$ . Then A is called

- S-L-open if  $A^* \subseteq cl(int(A^*))$
- S-M-closed if  $A^* \supseteq int(cl(A^*))$  [7]

# **Definition: 2.20**

Let f:  $X \rightarrow (Y, \uparrow)$  be a function and B be a subset of a topological space  $(Y, \uparrow)$ . Then B is called

- S-R-open if  $\mathbf{B}^* \subseteq cl(int(\mathbf{B}))$
- S-S-closed if  $B^* \supseteq int(cl(B^*))$  [7]

#### Example: 2.21

Let  $X = \{a, b, c\}$  and  $Y = \{1, 2, 3\}$ . Let  $\ddagger \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let f:  $(X, \ddagger) \rightarrow Y$  defined by f(a)=2, f(b)=1, f(c)=3. Then f is S-L-open and S-M-Closed. [7]

# Example: 2.22

Let  $X = \{a, b, c\}$  and  $Y = \{1, 2, 3\}$ . Let  $\dagger = \{\Phi, Y, \{1\}, \{2\}, \{1,2\}\}$ .Let  $g : X \rightarrow (Y, \dagger)$  defined by g(a)=2, g(b)=2, g(c)=3. Then g is S-R-open and S-S-Closed. [7]

## **Definition: 2.23**

Let f:  $(X, \ddagger) \rightarrow (Y, \dagger)$  be a function, then f is said to be

- S-L-irresolute if  $f^{-1}(f(A))$  is semi-L-open in X, whenever A is semi-L-open in X.
- S-M-irresolute if  $f^{-1}(f(A))$  is semi-M-closed in X, whenever A is semi-M-closed in X.
- S-R-resolute if  $f(f^{-1}(B))$  is semi-R-open in Y, whenever B is semiz-R-open in Y.
- S-S-resolute if  $f(f^{-1}(B))$  is semi-S-closed in Y, whenever B is semi-S-closed in Y.[7]

# **Definition: 2.24**

Let  $(X,\ddagger)$  is said to be

- Finitely S-M-additive if finite union of S-M-closed set is S-M-closed.
- Countably S-M-additive if countable union of semi-M-closed set is semi-M-closed.
- S-M-additive if arbitrary union of semi-M-closed set is semi-M-closed. [7]

# **Definition: 2.25**

Let  $(X, \ddagger)$  be a topological space and  $x \in X$ . Every semi-L-open set containing x is said to be a S-L-neighbourhood of x.[7]

## **Definition: 2.26**

Let A be a subset of X. A point  $x \in X$  is said to be semi-L-limit point of A if every semi-L-neighbourhood of x contains a point of A other than x.[7]

# 3. Semi - ··· -compact space

# **Definition: 3.1**

- A collection  $\{U_{\Gamma}\}_{\Gamma \in \Delta}$  of semi-L-open sets in X is said to be semi-L-open cover of X if  $X = \bigcup_{\Gamma \in \Delta} U_{\Gamma}$ .
- A collection  $\{U_{\Gamma}\}_{\Gamma \in \Delta}$  of semi-R-open sets in X is said to be semi-R-open cover of X if  $X = \bigcup_{\Gamma \in \Delta} U_{\Gamma}$ .

#### **Definition: 3.2**

- $\tilde{N}$  A topological space  $(X, \ddagger)$  is said to be semi-L-compact if every semi-L-open covering of X contains finite sub collection that also cover X. A subset A of X is said to be semi-L-compact if every covering of A by semi-L-open sets in X contains a finite subcover.
- $\mathbb{N}$  A topological space  $(X, \ddagger)$  is said to be semi-R-compact if every semi-R-open covering of X contains finite sub collection that also cover X. A subset A of X is said to be semi-R-compact if every covering of A by semi-R-open sets in X contains a finite subcover.

# Theorem: 3.3

A topological space  $(X, \ddagger)$  is

1) semi-L-compact  $\Rightarrow$  compact 2) Any finite topological space is semi-L-compact.

## **Proof:**

- Let  $\{A_{\Gamma}\}_{\Gamma \in \Omega}$  be an open cover for X. Then each  $A_{\Gamma}$  is semi-L- open.Since X is semi-L-compact, this open cover has a finite subcover. Therefore  $(X, \ddagger)$  is compact.
- 2) Obvious since every semi-L-open cover is finite.

#### Example: 3.4

Let  $(X, \ddagger)$  be an infinite indiscrete topological space. In this space all subsets are semi-L-open. Obviously it is compact. But  $\{x\}x \in X$  is a semi-L-open cover which has no finite subcover. So it is not semi-L-compact. Hence compactness need not imply semi-L-compactness.

Theorem: 3.5 A semi-M-closed subset of semi-L- compact space is semi -L-compact .

#### **Proof:**

Let A be a semi-M-closed subset of a semi-L-compact space  $(X, \ddagger)$  and  $\{U_{\Gamma}\}_{\Gamma \in \Delta}$  be a semi-L-open cover for A, then  $\{\{U_{\Gamma}\}_{\Gamma \in \Delta}, \{X-A\}\}$  is a semi-L-open cover for X. Since X is semi-L-compact, there exists  $\Gamma_1, \Gamma_2, ..., \Gamma_n \in \Delta$  such that  $X = U\Gamma_1 \cup U\Gamma_2, ..., \cup U\Gamma_n \cup (X-A)$  Therefore  $A \subseteq U\Gamma_1 \cup U\Gamma_2, ..., \cup U\Gamma_n$  which proves A is semi-L-compact.

# Remark: 3.6

The converse of the above theorem need not be true as seen in the following example(3.7).

## Example: 3.7

Let  $X = \{a, b, c, \}$  and  $Y = \{1, 2, 3, \}$ . Let  $f: (X, \ddagger) \rightarrow Y$  defined by f(a)=1, f(b)=2, f(c)=3. Let  $X=\{a,b,c\}$   $\ddagger =\{W, \{a\},X\}$ -open set, closed set- $\{W, X, \{b, c\}\}$ . Here SLO(X) =  $\{W, X, \{a\}, \{a,c\}\}$  is semi-L-compact, A= $\{a,c\}$  is Semi-L-compact but not semi-M-closed

# Theorem: 3.8

A topological space  $(X, \ddagger)$  is semi-L-compact if and only if for every collection  $\ddagger$  Of semi-M-closed sets in X having finite intersection property,  $\bigcap_{c \in \ddagger} C$  of all elements of  $\ddagger$  is non empty.

## **Proof:**

Let  $(X, \ddagger)$  be semi-L-compact and  $\ddagger$  be a collection of semi-M-closed sets with finite intersection property. Suppose  $\bigcap_{c \in \ddagger} C = W$  then  $\bigcup_{c \in C} (X - C) = X$ . Therefore  $\{X - C\}_{c \in C}$  is a semi-L-open cover for X. Then there exists  $C_1, C_2, \ldots, C_n \in \ddagger$  such that  $\bigcup_{i=1}^n (X - C_i) = X$ 

Therefore  $\bigcap_{i=1}^{n} C_i = W$  which is a contradiction. Therefore  $\bigcap_{c \in I} C \neq W$ 

Conversly assume the hypothesis given in the statement .To prove X is semi-L-compact.

Let  $\{U_{\Gamma}\}_{\Gamma \in \Delta}$  be a semi-L-open cover for X .then  $\bigcup_{\Gamma \in \Delta} U_{\Gamma} = X \Longrightarrow \bigcap_{\Gamma \in \Delta} (X - U_{\Gamma}) = W$  By hypothesis  $\Gamma_1, \Gamma_2, ..., \Gamma_n$ , there exists such that  $\bigcap_{i=1}^n (X - U_{\Gamma_i}) = W$ . Therefore  $\bigcup_{i=1}^n U_{\Gamma_i} = X$ . Therefore X is semi-L-compact.

## Corollary: 3.9

Let  $(X,\ddagger)$  be a semi-L-compact space and let  $C_1 \supseteq C_2 \supseteq \dots \supseteq C_n \supseteq C_{n+1} \dots$  be anested sequence of nonempty semi-M-closed sets in X. then  $\bigcap_{n \in \mathbb{Z}^+} C_n$  is nonempty.

# **Proof:**

Obviously  $\{C_n\}_{n \in \mathcal{T}^+}$  finite intersection property. By theorem (3.8)  $\bigcap_{n \in \mathcal{T}^+} C_n$  is nonempty.

# Theorem: 3.10

Let  $(X,\ddagger), (Y,\dagger)$  be two topological space and f:  $(X,\ddagger) \rightarrow (Y,\dagger)$  be a bijection then

- f is semi- continuous and X is semi –L-compact  $\Rightarrow$  Y is compact.
- f is semi –L-irresolute and X is semi- L-compact  $\Rightarrow$  Y is semi-L- compact.
- f is continuous and X is semi-L-compact  $\Rightarrow$  Y is compact.
- f is strongly irresolute and X is compact  $\Rightarrow$  Y is semi-L-compact.
- f is semi –L-open and Y is semi- L-compact  $\Rightarrow$  X is compact.
- f is open and Y is semi-L- compact  $\Rightarrow$  X is compact.
- f is pre-R-resolute and Y is semi-R-compact  $\Rightarrow$  X is semi-R-compact.

## **Proof:**

1)Let  $\{U_{\Gamma}\}_{\Gamma \in \Lambda}$  be a open cover for Y.

Therefore  $Y=\cup U_{\Gamma}$  . Therefore  $X=f^{-1}(Y)=\cup f^{-1}(U_{\Gamma})$  .

Then  $\{f^{1}(U_{\Gamma})\}_{\Gamma \in \Lambda}$  is a semi-L- open cover for X.

Since X is semi-L- compact, there exists  $\Gamma_1, \Gamma_2, \dots, \Gamma_n$  such that  $X = \bigcup f^{-1}(U_{\Gamma_1})$ . Therefore  $Y = f(X) = \bigcup (U_{\Gamma_1})$ .

Therefore Y is compact.

Proof of (2) to (4) are similar to the above.

5)Let  $\{U_{\Gamma}\}_{\Gamma \in \Delta}$  be a open cover for X. then  $\{f(U_{\Gamma})\}$  is a semi-L-open cover for Y.

Since Y is semi-L-compact, there exists  $\Gamma_1, \Gamma_2, ..., \Gamma_n$  such that  $Y = \bigcup f(U_r)$ 

Therefore  $X = f^{-1}(Y) = \bigcup_{r \in \Lambda} (U_r)$ . Therefore X is compact.

Proof of (6) and (7) are similar.

## Remark:3.11

From (3) and (6) it follows that "Semi-L- compactness" is a Semi-L- topological property.

## Theorem: 3.12(Generalisation of Extreme Value theorem)

Let f: X  $\rightarrow$  Y be semi-L-continuous where Y is an ordered set in the ordered topology. If X is semi-L-compact then there exists c and d in X such that  $f(c) \le f(x) \le f(d)$  for every  $x \in X$ .

#### Proof

We know that semi-L-continuous image of a semi-L-compact space is compact Bytheorem(3.10). Therefore A=f(X) is compact. Suppose A has no largest element then  $\{(-\infty, a) / a \in A\}$  form an open cover for A and it has a finite subcover.

Therefore  $A \subseteq (-\infty, a_1) \cup (-\infty, a_2) \cup \dots \cup (-\infty, a_n)$ . Let  $a = \max_i a_i$ .

Then  $A \subseteq (-\infty, a)$  which is a contradiction to the fact that  $a \in A$ 

Therefore A has a largest element M. Similarly it can be proved that it has the smallest element m.

Therefore  $\exists$  c and d in X  $\exists$  f(c) = m, f(d) = M and f(c)  $\leq$  f(x)  $\leq$  f(d)  $\forall$  x  $\in$  X.

# 4. Countably semi - ··· -compact space

# **Definition: 4.1**

- $\hat{\mathbb{N}}$  A subset A of a topological space  $(X, \ddagger)$  is said to be countably semi-L-compact, if every countable semi-L-open covering of A has a finite subcover.
- $\mathbb{N}$  A subset A of a topological space  $(X,\ddagger)$  is said to be countably semi-R-compact, if every countable semi-R-open covering of A has a finite subcover.

## Example: 4.2

Let  $(X, \ddagger)$  be a countably infinite indiscrete topological space.

In this space  $\{\{x\} | x \in X\}$  is a countable semi-L-open cover which has no finite subcover . Therefore it is not countably semi-L-compact.

# Remark: 4.3

- Every semi-L-compact space is countably semi-L-compact.It is obvious from the definition.
- Every countably semi-L compact space is countably compact. It follows since open sets are semi-Lopen.

#### Theorem: 4.4

In a countably semi-L-compact topological space, every infinite subset has a semi-L-limit point. **Proof:** 

Let  $(X, \ddagger)$  be countably semi-L-compact space. Suppose that there exists an infinite subset A which has no semi-L-limit point. Let  $B = \{a_n \mid n \in N\}$  be a countable subset of A.

Since B has no semi-L-limit point of B, there exists a semi-L-neighbourhood  $U_n$  of  $a_n$  such that  $B \cap U_n = \{a_n\}$ . Now  $\{U_n\}$  is a semi-L-open cover for B. Since  $B^c$  is semi-L-open,  $\{B^c, \{U_n\}_{n \in Z^+}\}$  is a countable semi-L-open cover for X. But it has no finite sub cover, which is a contradicition, since X is countably semi-L-compact. Therefore every infinite subset of X has a semi-L-limit point.

#### Corollary: 4.5

In a semi-L-compact topological space every infinite subset has a semi-L-limit point.

## **Proof:**

It follows from the theorem (4.4), since every semi-L-compact space is countably semi-L-compact.

## Theorem: 4.6

A semi-M-closed subset of countably semi-L-compact space is countably semi-L-compact.

#### **Proof:**

Let X be a semi-L-compact space and B be a semi-M-closed subsets of X Let  $\{A_i \mid i = 1, 2, 3, ..., \infty\}$  be a countable semi-L-open cover for B. Then  $\{\{A_i\}, X-B\}$ Where  $i = 1, 2, 3, ..., \infty$  is a semi-L-open cover for X. Since X is countably semi-L-compact, there exists  $i_1, i_2, i_3, ..., i_n \ni (X - B) \bigcup_{k=1}^n A_{ik} = X$ .

Therefore  $B = \bigcup_{k=1}^{n} A_{ik}$  and this implies B is countably semi-L-compact.

# **Definition: 4.7**

In a topological space  $(X,\ddagger)$  a point  $x \in X$  is said to be a semi-L-isolated point of A if there exists a semi-L-open set containing x which contains no point of A other than x.

## Theorem: 4.8

A topological space  $(X, \ddagger)$  is countably semi-L-compact if and only if for everycountable collection  $\ddagger$  of semi-L-closed sets in X having finite intersection property,  $\bigcap_{c \in C} C$  of all elements of  $\ddagger$  is nonempty.

**Proof:** It is similar to the proof of theorem(3.8).

## **Corollary: 4.9**

X is countably semi-L-compact if and only if every nested sequence of semi-M-closednon empty sets  $C1 \supset C2 \supset \dots$  has a nonempty intersection.

#### **Proof:**

Obviously  $\{C_n\}_{n \in \mathbb{Z}^+}$  has finite intersection property. By theorem (4.8)  $\bigcap_{n \in \mathbb{Z}^+} C_n$  isonempty.

## 5. Sequentially semi- ··· L-compact space

## **Definition: 5.1**

- A subset A of a topological space  $(X,\ddagger)$  is said to be sequentially semi-L-compactif every sequence in A contains a subsequence which semi-L-converges to some point in A.
- A subset A of a topological space  $(X,\ddagger)$  is said to be sequentially semi-R-compactif every sequence in A contains a subsequence which semi-R-converges to some point in A.

# Theorem: 5.2

Any finite topological space is sequentially semi-L-compact.

## **Proof:**

Let  $(X, \ddagger)$  be a finite topological space and  $\{x_n\}$  be a sequence in X. In this sequence except finitely many terms all other terms are equal. Hence we get a constant subsequence which semi-L-converges to the same point.

## Theorem: 5.3

Any infinite indiscrete topological space is not sequentially semi-L-compact.

## **Proof:**

Let  $(X,\ddagger)$  be infinite indiscrete topological space and  $\{x_n\}$  be a sequence in X. Let  $x \in X$  be arbitrary. Then  $U=\{x\}$  is semi-Lopen and it contains no point of the sequence except x. Therefore  $\{x_n\}$  has no subsequence which semi-L-converges to x. Since x is arbitrary, X is not sequentially semi-L-compact.

# Theorem: 5.4

A finite subset A of a topological space  $(X, \ddagger)$  is sequentially semi-L-compact.

# **Proof:**

Let  $\{x_n\}$  be an arbitrary sequence in X. Since A is finite, at least one element of thesequence say  $x_0$  must be repeated infinite number of times. So the constant subsequence  $x_0, x_0, \dots$  must semi-L-converges to  $x_0$ .

## Remark: 5.5

Sequentially semi-L-compactness implies sequentially compactness, since allopen sets are semi-L-open. But the inverse implication is not true as seen from(5.6).

## Example: 5.6

Let  $(X, \ddagger)$  be an infinite indiscrete space is sequentially compact but notsequentially semi-L-compact.

## Theorem: 5.7

Every sequentially semi-L-compact space is countably semi-compact.

## **Proof:**

Let  $(X, \ddagger)$  be sequentially semi-L-compact. Suppose X is not countably semi-L-compact. Then there exists countable pre-open cover  $\{U_n\}_{n\in\mathbb{Z}^+}$  which has no finite sub cover .Then  $X = \bigcup_{n\in\mathbb{Z}^+} U_n$ . Choose  $X_1 \in U_1, X_2 \in U_2 - U_1, X_3 \in U_3 - \bigcup_{i=1,2} \bigcup_i \dots X_n \in U_n - \bigcup_{i=1}^n U_i$ . This is possible since  $\{U_n\}$  has no finite sub cover. Now  $\{x_n\}$  is a sequence in X. Let  $x \in X$  bearbitrary .then  $x \in U_k$  for some K. By our choice of  $\{x_n\}$ ,  $x_i \notin U_k$  for all  $i \ge k$ . Hence there is no subsequence of  $\{x_n\}$  which can semi-L-converge to x. Since x is arbitrary the sequence  $\{x_n\}$  has no semi-L-convergent subsequence which is a contradiction. Therefore X is countably semi-L-compact.

#### Theorem: 5.8

Let f:  $(X, \ddagger) \rightarrow (Y, \dagger)$  be a bijection, then

1) f is semi-R-resolute and Y is sequentially semi -R-compact  $\Rightarrow$  X is sequentially semi -R-compact.

2) f is semi -L-irresolute and X is sequentially semi -compact  $\Rightarrow$  Y is sequentially semi -L-compact.

3) f is continuous and X is sequentially semi -L-compact  $\Rightarrow$  Y is sequentially semi -L-compact.

4) f is strongly semi -L-continuous and X is sequentially semi -L-compact  $\Rightarrow$  Y is sequentially semi -L-compact.

## **Proof:**

1) Let  $\{x_n\}$  be a sequence in X. Then  $\{f(x_{nk})\}$  is a sequence in Y. It has a semi –R-convergent subsequence  $\{f(x_{nk})\}$  such that  $\{f(x_{nk})\} \xrightarrow{pre} y_0$  in Y. Then there exists  $x_0 \in X$  such that  $f(x_0) = y_0$ . Let U be semi -R -open set containing x0 then f(U) is a semi -R-open set containing y0. Then there exists N such that  $f \in f(U)$  for all  $k \ge N$ .

Therefore  $f^{-1} \circ f(x_{nk}) \in f^{-1} \circ f(U)$ . Therefore  $x_{nk} \in U$  for all  $k \ge N$ .

This proves that X is sequentially semi -R-compact. Proof for (2) to (4) is similar to the above.

#### Remark: 5.9

From theorem (5.8), (1) and (2) it follows that "Sequentially compactness" is a semi - ... -topological property.

# 6.Semi - ··· -locally compact space

#### **Definition: 6.1**

A topological space  $(X, \ddagger)$  is said to be semi -L-locally compact if every point of X is contained in a semi -L-neighbourhood whose semi -L-closure is semi -L-compact.

# Theorem: 6.2

Any semi -L-compact space is semi -L-locally compact.

# **Proof:**

Let  $(X, \ddagger)$  be semi -L-compact, Let  $x \in X$  then X is semi -L-neighbourhood of x and Scl(X)=X which is semi -L-compact.

#### Remark: 6.3

The converse need not be true as seen in the following example(6.4)

## Example: 6.4

Let  $(X,\ddagger)$  be an infinite indiscrete topological space. it is not semi -L-compact. But for every  $x \in X$ ,  $\{x\}$  is a semi -L-neighbourhood and  $\{\overline{x}\} = \{x\}$  is semi -L-compact. Therefore it is semi -L-locally compact.

## REFERENCES

Dube, K.K. and Panwar, O.S Indian, 1984. J.Pure. Appl. Math. 343-354, April (some properties of 'S-connectedness between sets', and 'Set S-connected mappings'.

Fu-Gui-Shi, 2005. "International Journal of Mathematical and Mathematical Science", 12(2005) page no: 1869-1878.

Hamlett, T.R.1977. Semi-continuous and irresolute functions, Texas Academy of science, vol.27.

James, R.Munkers, Topology. Ed. 2., PHI Learning Pvt . Ltd., New Delhi. 2010.

Kene Crossley, S. and Hildebrand, S.K. 1972. Semi-topological properties. Fund. Math. 74.

Levine, N. 1963. Semi-open sets and semi-continuity in Topological spaces, Amer.Math.Monthly, 70 (1963), 36-41.

Mahanta, J. and Das, D. 2014. "Semi-Compactness in Multiset Topology", ar Xiv: 1403.5642v2[math.GM]. 21 Nov.

Popa, V."Characterization of H-almost continuous functions" Glasnik Mat.

Selvi, R.and M. Priyadarshini, 2015. "on semi- ... -continuity where ... ∈ {L, M, R, S}", *International Journal of Technical Research and Applications*. Volume 3, Issue 3, May-June.

Selvi, R.and Priyadarshini, M. 2016. "on S-... -connected space in a Topological space", *International Journal of Emerging Trend in Science and Technology*, Volume 3, Issue 8, August, page no 4498-4506.

Selvi, R. and Priyadarshini, M. 2016. "on P-... -compact space in a Topological space", *International Journal of Current Research*, Volume 8, Issue 09, September, page no 38649-38658.

Topology and Field Theories: page: 96 Google book Result, semi-additive(page:28).

\*\*\*\*\*\*