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ARTICLE INFO                                       ABSTRACT 
 
 

In (1973) Littlewood and Verrall proposed a model which perhaps the best-known Bayesian 
software reliability model. For this model, the distribution of failure times was assumed to be 
exponential, with the failure rate distributed as a gamma distribution in the prior.In this paper, 
under the assumption of Weibull failure time distribution and φ is a random variable which has 
gamma distribution we will illustrate that the times till failure of the N faults are independent 
random variables having a common three parameter Burr type XII distribution.This general and 
flexible formula can produce Pareto distribution of second kind and a special case of Burr type 
XII distribution as special cases. Also, in this paper, several reliability measures of this general 
formula will be obtained. The mathematical equations that will help to obtain the parameters 
estimates for maximum likelihood, nonlinear least squares, weighted nonlinear least squares 
estimation methods will be found. In the final sections, simulated and real world data applications 
are conducted to validate our general suggested formula. 
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INTRODUCTION 
 

 
Bayesian approach may give more accurate prediction results than the maximum likelihood estimators. One of the earliest and 
very famous Bayesian reliability models is Littlewood and Verrall (L-V) model which was proposed in 1973 [see; Littlewood and 
Verrall (1973)]. The authors in their proposed model aimed to modify Jelinski -Moranda (J-M) model[ Jelinski and Moranda 
(1972)]  which assumes the improvement in failure rate φ after each fixing is a proportionality constant.  Their basic assumptions 
are: successive execution time between failures has an exponential distribution, Φ is a random variable and has the pdf 
βGAM(βφ; α), where GAM(x; α) is a gamma pdf,xα��e�� Γ(α)⁄ . Because of their assumptions, the times till failure of the N faults 
were found to be independent random variables with N unknown, having a common Pareto distribution of the second kind.  In this 
paper, we will follow Littlewood and Verrall (L-V) work [Littlewood and Verrall (1973)] but by replacing the exponential 
distribution of time between failures to Weibull distribution. Because of our assumption, the times till failure of the N faults are 
found to be independent random variables having a common three parameter Burrtype XII distribution. Pareto distribution can be 
obtained as a special case of our general formula when the shape parameter equals 1. The rest of this paper is arranged as follows: 
Section 2 illustrates theoretical proof of generalizing L-V reliability model and presents some reliability measures of our obtained 
general formula.The necessary mathematical equations that help to obtain the estimates of the unknown parameters of the 
generalized L-V model for three estimation methods will be found in Section 3. Simulation study is conducted in Section 4, and 
finally a real data application is presented in Section 5. 
 

Generalized Littlewood–Verall (GL-V) Model  
 

Following Littlewood –Verrall work in (1973) by assuming �  is a random variable which has gamma distribution [i.e. �  has the 
pdf  ���� (�� ; �)] as follows: 
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�(�│this fault not fixed in (0, ����)) =  

��� ����������������������������(0,����)� =  

��(����������������������������(0,����)|ф=� ) × �(� )= ��(� > ����) × �(� ) 
Then, by modifying the assumption of times between failures, ��

,�,  to followWeibull distribution instead of exponential 
distribution we obtain: 
 

�(�│this fault not fixed in (0,����)) =  cβαφα��e��τδ
���� β�φ/┌(α) ,  

 
where  
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βα
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���� β�� d�
∞
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(β + ��
���)α

 

 

Therefore, 
 

�(�│this fault not fixed in (0,�)) =  (��
��� + β)� � � ����(��

���� β)� /Γ(�) 
 

Which is also GAM��,���
��� + β�� �. Since ῼ = φ

�
+ φ

�
+ + φ

���
 is the sum of (N-i), i.i.d. GAM�α,�τδ

��� + β�φ� random 

variables and so has the following pdf:      
     

 �(�) =
�β� τ���

δ �
(���)α

┌[(���)� ]
�(���)� �����β� τ���

δ ��                                                                                    ………………………………….(1) 

 

Now we can obtain the marginal distributions for the times between failures, ��
,�, as follows: 
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= δ��
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(���)�

┌[(� �)�]
� �(���)� ���β� τ���

δ � ��
δ��

∞

�

�� 

 

=
(���)�δ��

δ��

��� τ���
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Let�� =  (� �)� and �� = �� + τ���
δ � then Equation (2) will be: 

 

f(t�) =
����

��δ��
δ��

[��� ��]��� �                                                                                                                       ………………………………….(3) 

 

According to Equation (3), the times till failure of the N faults are independent random variables N21 T ...,,T ,T  (units on test) 

having a common three parameter Burr type XII distribution     
 
The cumulative distribution function(cdf)of GL-V: 
 

�(��) = 1 (1 +
��

δ

� + τ���
δ

)�(���)�                                                                                                       … … … … … … … … … … … … … … … . (4) 

 
While, the reliability function of GL-V model is given by: 

 �(��) = (1 +
��

δ

� + τ���
δ

)�(���)�                                                                                                              . . … … … … … … … … … … … … … … . . (5) 

 
Also, the failure rate of GL-V model is : 
 

�(��) =
δ��

δ��(� �)�

(1 +
��

δ

�� τ���
δ )

                                                                                                                         … … … … … … … … … … … … … … … . . (6) 
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And the mean time to failure ofGL-V is: 
 

�(�) =
�β� τ���

δ �

�
δΓ�(���)α�

�

δ
�Γ�

�

δ
� ��

Γ[(���)α]
                                                                                                              …………………………(7) 

 
Its variance can be obtained as follows:  
 
���(�) =  �(��) [�(�)]� 
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�

δΓ �(� �)�
�

δ
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δ
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Then  
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δ �

�
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�

δ
+ 1� ×  
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δ
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�

δ
� Γ �

�

δ
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                                                                 … … … … … … … … … … … … (8) 

 
And the median of GL-V model can be derived as follows: 
 

� = ��� + τ���
δ ��2

�
(���)� 1��

�

δ

    ,                                                                                                       …………………………….(9)   

 
its mean value function is: 
 

μ(��) = N �1 �1 +
��

δ

�� τ���
δ �

�(���)�

�,                                                                                           ……………………………….. (10) 

 
and its failure intensity function is: 
 

λ(��) = �
δ��

δ���(���)α

�� τ���
δ � �1 +

��
δ

�� τ���
δ �

�(���)� ��

 ,                                                                               ………………………………..(11) 

 
where α ≥ 0, β ≥ 0,N ≥ 0,and δ ≥ 0 are parameters of the generalized Littlewood-Verrall (GL-V) model, i represents the failure 
number, and  t� ≥ 0 is the time between the (i 1)�� and i�� failures,  τ��� is total elapsed execution time, and N is the initial total 
number of faults in program. By assuming δ = 1  in Equation (2) Pareto distribution of second kind will be obtained as follows: 
 

f(t�) =
����

��

(t� + ��)��� �
,                                                                                                                               … … … … … … … … … … … … … … . (12) 

 
while when δ = 2, a special case of Burr type XII distribution will be given as follows: 
 

f(t�) =
2����

����

(t� + ��)��� �
                                                                                                                               … … … … … … … … … … … … … … . . (13) 

 
3.  Estimation of the Generalized Littlewood-Verrall (GL-V) Model 
 
In this section, the necessary equations for obtaining the GL-V model’s estimates by using three estimation methods will be 
mathematically derived.  
 
3.1. Maximum likelihood estimation (MLE) method  
 
The likelihood function will be defined as follows: 
 

L(α,N,β,δ) = δ�α� ∏
(���)��

δ��

(β� τ���
δ )(��

��
δ

β� τ���
δ )(���)α� �

�
���                                                                   ……………………………………..(14)   

                                           
By taking the natural logarithm of both sided, we have: 
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ln L(α,N,β,δ) = nln δ + nln α + ∑ ln(N i)�
��� +  

 

(δ 1) � ln

�
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δ �
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 – 
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δ ���

���                                                                                                        ………………………….(15)     

 
Taking the first partial derivative of Equation (15) with respect to  α,N,β,and δ we obtain:  
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By setting    � �� �(α,�,β,δ)

�α
= 0, � �� �(α,�,β,δ)

��
= 0, � �� �(α,�,β,δ)

�δ
= 0, and 

� �� �(α,�,β,δ)

�β
 =0 the ML estimates α�,N�,δ� and β� should satisfy the 

following four equations: 
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�β� τ���
δ �

�
��� = 

  10316           Lutfiah Ismail Al Turk and Eftekhar Gabel Alsolami, On generalized littlewood-verrall model for software reliability with applications 
 



∑ �(� �)
�

∑ �(���)�����
��

�

� � ��
���

���
�� �

+ 1�×�
���  

 

�
��

δ

�β� τ���
δ �

�� �
β� τ���

δ

β� τ���
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Nonlinear least squares estimation (NLSE) method  
 
NLSE method is to minimize the objective following function:        
                

����(�,�,δ,�) = ∑ ���

��� τ���
δ �

�
δΓ�(���)��

�

δ
�Γ�

�

δ
� ��

Γ[(���)α]
�

�

�
���                                                             …………………………………(20) 

 

In the following, we will takethe first partial derivatives of the abovefunction with respect to α, N, �and �and then equate the 
obtained equations to zero: 
 

First, we set 
�����

� α
= 0 ∶ 
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After doing some mathematical simplifications, the following equation will be found: 
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Then, setting 
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= 0 we obtain: 
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Also, by setting 
�����

�δ
= 0we have: 
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After thatthe equation can be arranged as follows: 
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The derivative of ���� with respect to β (
�����

�β
)is: 
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Then, after equating 
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�β
to zero, we have 
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Where ┌′(�) = ∫ ��(���)����∞

�
��� 

 

The NLS estimates of α, N, �and � can be obtained by solving the Equations (21, 22, 23 and 24) using numerical methods.  
 
3.3. Weighted nonlinear least squares estimation (WNLSE) method  
 
WNLSE method aims to minimize the following objective function: 
 

����� (�,�,δ,�) =   
 

∑ � ����
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δ �
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In the following, we will takethe first partial derivatives of the abovefunction with respect to α, N, �and �and then equate the 
obtained equations to zero: 
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First, set 
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� �
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After doing some mathematical simplifications, the following equation will be obtained: 
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The derivative of S with respect to N [
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��
] is: 
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Also by setting
������
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= 0 we have: 
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δ
� Γ �

�

δ
+ 1�

Γ[(� �)�]
� ×

1

Γ[(� �)�]

�

���

 ×  

 

�β + τ���
� �

�

δ �Γ �(N i)α
1

δ
� ┌′ �

1

δ
+ 1� + Γ �

1

δ
+ 1� ┌′ �(N i)α

1

δ
��

+ Γ �(N i)α
1

δ
� Γ �

1

δ
+ 1� �β + τ���

� �
�

δ ��
1

δ� � ln�β + τ���
δ �+

1

δ

 τ���
� ln (τ���)

�β + τ���
δ �

�

= 0 

 
After doing some mathematical simplifications, the following equation will be found: 
 

�
� ����� + ����

� �
�

�

�[(� �)�]

�

���

 ×  
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�� �(� �)�
�

�
� ┌′ �

�

�
+ 1� + � �

�

�
+ 1� ┌′ �(� �)�

�

�
��

+ � �(� �)�
�

�
� � �

�

�
+ 1� �

 � ����
� ��(����)���� ����

� ������ ����
� �

����� ����
� �

�
 

 

 

=∑
� ��β� τ���

� �

�
�Γ�(���)� �

�

δ
�Γ�

�

δ
� ��

{Γ[(���)� ]}� ×

�Γ �(N i)α
�

δ
� ┌′ �

�

δ
+ 1� + Γ �

�

δ
+ 1� ┌′ �(N i)α

�

δ
��

+ Γ �(N i)α
�

δ
� Γ �

�

δ
+ 1� �

 � ����
� ��(����)���� ����

� ������ ����
� �

����� ����
� �

�

�
���               … … … … … … …(28) 

 

Similarly, when setting  
������

�β
= 0, we have: 

 

2 � � ����

�β + τ���
� �

�

δΓ �(� �)�
�

δ
� Γ �

�

δ
+ 1�

Γ�(� �)��
�

�

���

×  
 Γ �(� �)�

�

δ
� Γ �

�

δ
+ 1�

Γ[(N i)α]
�
1

δ
�β + τ���

� �
�

δ
��

� = 0 

 
Then, after doing some mathematical simplifications, we have: 
 

∑
� ����β� τ���

� �

�
δ

��
Γ�(���)� �

�

δ
�

δΓ[(���)α]
�
��� = ∑

� ��β� τ���
� �

�
δ

��
�Γ�(���)� �

�

δ
��

�
�Γ�

�

δ
� ���

�

δ{Γ[(���)� ]}�
�
���                             ………………...(29) 

 

Where ┌′(�) = ∫ ��(���)����∞

�
��� 

 
By solving Equations (26), (27), (28), and (29) using Gauss-Newton method we get the value of the estimates. 
 
Model Evaluation Techniques 
 
The mean of square errors (MSE), the root mean of square errors (RMSE), the mean absolute errors (MAE) and the mean absolute 
percentage error (MAPE) criteria are used for the evaluation purpose in ourapplications. The lower the criteria value, the better 
performance we get. The formulas of those four criteria are:  
 

MSE =  
�

���
∑ (y� y��)

��
���                                                                                                                          ………………………..(30) 

 

MAPE =        
∑ �

│������│

��
��

�� �

�
× 100%                                                                                                              ………………………..(31) 

 

RMSE = �
�

���
∑ [y� y��]

��
���                                                                                                                        ………………………(32) 

 

MAE =
�

���
∑ │y� y��│

�
���                                                                                                                        …………………………(33) 

 

Where, i : is the fault index, y�� : is the predicted value, y�:  is the true value, n: the sample size of the data, k: the number of 
parameters [for more details see; Zhang et al. (2003), Gentry et al. (1995), Chai and Draxler (2014)]. 
 
4. Simulation study 

 
In this section, we present results of some simulated numerical experiments, the experiments are divided into two parts to achieve 
two goals. In part one and in order to compare the performance of several generated sub-models’ estimators of the GL-V model, 
we simulate 5000 samples from the GL-V model of sizes n = 15, 30, 50, 100 and parameters values: α = 0.5,N = 150,β =
2 and δ = 0.5,1,2. For the estimation of the unknown parameters the maximum likelihood, the least square and weighted least 
square estimation methods are used, the MSE and RSE criteria are computed to evaluate the estimation methods. 
 
In part two, three modelselection techniques (MSE, RMSE and AME) are used to compare between six generated sub-models 
from GL-V model. Our ultimate aim to show the flexibility of our suggested four parameters general formula at finding the best fit 
model. We assume δ = 0.5, 1, 1.5, 2, 2.5, 3 to generate the sub-models. Three data sets of size n=100 are simulated; the first data is 
generated by assuming: α =   0.5, N =  150,β = 2 and δ  =3.5; the second data assumes: α =  0.5, N =  150 and δ =5.5; and the third 
data assumes: α = 0.5, N =  150 and δ=8.  The presence of heteroscedasticity is tested in our simulated data sets and appropriate 
empirical weight (w � = 1 i ⁄ ) is chosen for weighted least square estimation method in the two simulated parts. 
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4.1. Simulated studyalgorithms:  
 
This section gives detailed demonstration for the needed steps of the two experiments’ parts, those algorithms are coded by using 
R language version (3.2.3). 
 
Algorithm 1 of part 1 
 
Step 1: Generate 15, 30, 50, and100 independent uniform U(0,1) random variables. 
Step 2:  Use Equation (5) to simulate three data sets with parameters α = 0.5,N = 150 and δ = 0.5,1,2. 
Step 4: Set initial values for the sub-models’ parameters. 
Step 5: Use nlminb package and the log likelihood function in Equation (15) for obtaining the estimates of the sub-models’ 

parameters using MLE method.  
Step 6: Use minpack.lm package and objective functions in  Equations [(20) and (25)] for obtaining the estimates of the sub-

models’ parameters using  NLSE and WNLSE methods. 
Step 7:  Compute the MSE and MAPE criteria in Equations [(30) and (31)] to compare the accuracy of the obtained estimates. 
Step 8: Performing Step1-Step7 repeatedly 5000 times, and then turning into Step 9. 
Step 9: Find the average of the obtained evaluation criteria in step 7 to get the required output.  

 
Algorithm 2 of part 2 
 
Step 1: Generate 100 independent uniform U(0,1) random variables. 
Step 2:  Use Equation (5) to simulate three data sets with parameter α = 0.5,N = 150 and δ = 3.5,5.5,8. 
Step 3: Generate six sub-models as special cases of the GL-V model by assuming that: β = 0.5,1,1.5,2,2.5,and 3. 
Step 4: Set initial values for the sub-models’ parameters. 
Step 5: Use nlminb package and the log likelihood function in Equation (15) for obtaining the estimates of the sub-models’ 

parameters using MLE method. 
Step 6: Use minpack.lm package and function in  Equations [(20) and (25)] for  obtaining the estimates of the sub-models’ 

parameters using  NLSE and WNLSE methods. 
Step 7:  Use the MSE, RMSE and MAE in Equations [(30), (32), and (33)] to compare between the generated sub-models.  
 
4.2. Studying the accuracy of estimation methods 
 

For comparing the accuracy of the ML, NLS, WNLS estimators of the four parametersα, N, δ and β  of the GL-V model the 

following scenarios: (α = 0.5,N = 150, δ = 0.5,1,2 and  β = 2) are considered under four different sample sizes, the results are 
summarized in Table 1, and the points below can be seen:  
 

Table 1: ML, NLS, and WNLS estimates along with their evaluation criteria values for three sub-models 
 of GL-V model Table (1.a): n=15 

 
  

 
Method of estimation 
 

Repetition =5000 

True parameters: � = �. �,� = ���,� = �. �,�,� ��� � = � 

n=15 

α�  MSE
��

  MAPE
��
 N�  MSE�� MAPE�� δ� MSE�� MAPE�� β� MSE��  MAPE�� 

 
MLE 

4.09e-01 
1.07e-03 
0.12e+01 
4.50e-01 
4.52e-04 
6.64e-01 
4.71e-01 
2.51e-04 
3.88e-01 

1.27e+02 
1.13e+02 
0.10e+01 
1.39e+02 
3.82e+01 
5.06e-01 
1.44e+02 
1.95e+01 
2.85e-01 

4.98e-01 
6.30e-06 
2.63e-02 
9.80e-01 
1.59e-04 
1.31e-01 
0.19e+01 
1.53e-03 
2.96e-01 

0.13e+01 
8.03e-02 
0.23e+01 
0.12e+01 
9.32e-02 
0.28e+01 
0.11e+01 
1.02e-01 
0.30e+01 

 
NLSE 

4.99e-01 
6.61e-06 
7.83e-03 
5.00e-01 
2.91e-10 
6.09e-04 
5.00e-01 
2.40e-10 
5.04e-04 

1.46e+02 
4.05e-04 
2.61e-04 
1.46e+02 
2.26e-04 
3.86e-04 
1.46e+02 
2.28e-04 
4.25e-04 

4.27e-01 
0 
0 

0.10e+01 
0 
0 

0.20e+01 
0 
0 

0.19e+01 
2.32e-04 
1.21e-02 
0.20e+01 
2.21e-09 
2.77e-04 
0.20e+01 
4.81e-10 
1.57e-04 

WNLSE 4.99e-01 
8.88e-06 
8.06e-03 
5.00e-01 
2.46e-10 
5.30e-04 
5.00e-01 
2.15e-10 
4.66e-04 

1.46e+02 
2.17e-04 
2.31e-04 
1.46e+02 
2.23e-04 
3.00e-04 
1.46e+02 
2.25e-04 
3.43e-04 

4.33e-01 
0 
0 

0.10e+01 
0 
0 

0.20e+01 
0 
0 

0.19e+01 
3.27e-04 
1.22e-02 
0.20e+01 
1.30e-09 
2.50-04 

0.20e+01 
1.24e-09 
1.98e-04 
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Table (1.b): n=30 
 

 
Method of estimation 

 

Repetition =5000 

True parameters: � = �. �,� = ���,� = �. �,�,� ��� � = � 

n=30 

α� 
 MSE

��
 

 MAPE
��
 

N� 
 MSE�� 

MAPE�� 

δ� 
MSE�� 

MAPE�� 

β� 
MSE�� 

 MAPE�� 

 
MLE 

4.38e-01 
2.55e-04 
4.16e-01 

 
4.82e-01 
4.74e-05 
1.23e-01 

 
4.94e-01 
1.33e-05 
4.40e-02 

1.35e+02 
1.91e+01 
3.29e-01 

 
1.45e+02 
0.45e+01 
1.21e-01 

 
1.48e+02 
0.13e+01 
4.38e-02 

5.00e-01 
1.46e-08 
8.51e-04 

 
9.99e-01 
6.82e-07 
2.24e-03 

 
0.20e+01 
3.12e-07 
3.09e-04 

0.20e+01 
3.33e-10 
1.67e-04 

 
0.20e+01 
3.33e-10 
1.67e-04 

 
0.19e+01 
1.91e-03 
6.49e-02 

 
NLSE 

4.99e-01 
3.95e-06 
2.84e-03 

 
5.00e-01 
8.77e-11 
1.98e-04 

 
5.00e-01 
4.43e-11 
1.06e-04 

1.46e+02 
1.13e-04 
7.69e-05 

 
1.46e+02 
1.09e-04 
1.12e-04 

 
1.46e+02 
1.09e-04 
8.17e-05 

4.48e-01 
0 
0 
 

0.10e+01 
0 
0 
 

0.20e+01 
0 
0 

0.19e+01 
1.25e-04 
3.92e-03 

 
0.20e+01 
7.26e-10 
1.06e-04 

 
0.20e+01 
8.78e-11 
4.52e-05 

WNLSE 4.99e-01 
3.83e-06 
2.84e-03 

 
5.00e-01 
9.96e-11 
2.27e-04 

 
5.00e-01 
8.15e-11 
1.84e-04 

1.46e+02 
1.09e-04 
8.76e-05 

 
1.46e+02 
1.10e-04 
1.22e-04 

 
1.46e+02 
1.11e-04 
1.37e-04 

4.43e-01 
0 
0 
 

0.10e+01 
0 
0 
 

0.20e+01 
0 
0 

0.19e+01 
1.12e-04 
3.37e-03 

 
0.20e+01 
8.01e-10 
1.29e-04 

 
0.20e+01 
2.91e-10 
7.79e-05 

 

Table (1.c): n=50 
 

 
 
 

Method of estimation 
 

Repetition =5000 

True parameters:  

n=50 

 

 

 

 
 
 

 
 

 

 
 
 

MLE 4.29e-01 
1.55e-04 
2.81e-01 
4.84e-01 
2.06e-05 
6.63e-02 
4.96e-01 
3.83e-06 
1.66e-02 

1.40e+02 
0.61e+01 
1.34e-01 
1.46e+02 
0.13e+01 
4.92e-02 
1.49e+02 
2.89e-01 
1.43e-02 

5.00e-01 
2.00e-10 
4.00e-04 
0.10e+01 
9.17e-09 
2.31e-04 
0.20e+01 
2.00e-10 
1.00e-04 

0.20e+01 
2.00e-10 
1.00e-04 
0.20e+01 
2.00e-10 
1.00e-04 
0.20e+01 
2.00e-10 
1.00e-04 

 
NLSE 

4.99e-01 
1.27e-06 
7.71e-04 
5.00e-01 
1.57e-12 
4.90e-05 
5.00e-01 
4.27e-12 
1.72e-05 

1.46e+02 
6.43e-05 
1.82e-05 
1.46e+02 
6.41e-05 
1.74e-05 
1.46e+02 
6.40e-05 
1.28e-05 

4.29e-01 
0 
0 

0.10e+01 
0 
0 

0.20e+01 
0 
0 

0.19e+01 
3.25e-05 
1.00e-03 
0.20e+01 
1.94e-10 
4.84e-05 
0.20e+01 
3.45e-11 
1.75e-05 

WNLSE 4.99e-01 
9.42e-07 
5.42e-04 
5.00e-01 
2.98e-11 
8.12e-05 
5.00e-01 
1.03e-11 
3.55e-05 

1.46e+02 
6.42e-05 
2.16e-05 
1.46e+02 
6.44e-05 
2.53e-05 
1.46e+02 
6.41e-05 
1.55e-05 

4.32e-01 
0 
0 

0.10e+01 
0 
0 

0.20e+01 
0 
0 

0.19e+01 
1.64e-05 
6.01e-04 
0.20e+01 
4.00e-10 
7.36e-05 
0.20e+01 
8.91e-11 
3.61e-05 
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Table (1.d): n=100 
 

 
 
 
Method of estimation 
 

Repetition =5000 

True parameters: � = �. �,� = ���,� = �. �,�,� ��� � = � 

n=100 

α
�

 
 MSE

α
�  

 MAPE
α
�  

N� 
 MSE�� 

MAPE�� 

δ� 
MSE�� 

MAPE�� 

β� 
MSE�� 

 MAPE�� 

 
MLE 

4.20e-01 
7.28e-05 
1.59e-01 

 
4.88e-01 
5.03e-06 
2.41e-02 

 
4.99e-01 
4.10e-07 
2.85e-03 

1.49e+02 
1.30e-01 
7.78e-03 

 
1.49e+02 
6.54e-02 
5.70e-03 

 
1.50e+02 
1.09e-02 
1.38e-03 

5.00e-01 
1.00e-10 
2.00e-04 

 
0.10e+01 
1.00e-10 
1.00e-04 

 
0.20e+01 
1.00e-10 
5.00e-05 

0.20e+01 
1.00e-10 
5.00e-05 

 
0.20e+01 
1.00e-10 
5.00e-05 

 
0.20e+01 
1.00e-10 
5.00e-05 

 
NLSE 

4.99e-01 
6.76e-07 
3.68e-04 

 
5.00e-01 
1.05e-12 
1.05e-05 

 
5.00e-01 
3.11e-13 
3.80e-06 

1.46e+02 
3.20e-05 
6.41e-06 

 
1.46e+02 
3.20e-05 
6.19e-06 

 
1.46e+02 
3.20e-05 
6.18e-06 

4.27e-01 
0 
0 
 

0.10e+01 
0 
0 
 

0.20e+01 
0 
0 

0.19e+01 
1.60e-05 
4.54e-04 

 
0.20e+01 
3.49e-11 
1.76e-05 

 
0.20e+01 
1.06e-11 
5.47e-06 

WNLSE 4.99e-01 
4.77e-07 
2.64e-04 

 
5.00e-01 
7.45e-12 
2.59e-05 

 
5.00e-01 
4.05e-12 
1.51e-05 

1.46e+02 
3.71e-05 
9.01e-06 

 
1.46e+02 
3.20e-05 
6.39e-06 

 
1.46e+02 
3.20e-05 
6.36e-06 

4.30e-01 
0 
0 
 

0.10e+01 
0 
0 
 

0.20e+01 
0 
0 

0.19e+01 
8.27e-06 
2.84e-04 

 
0.20e+01 
1.23e-10 
3.07e-05 

 
0.20e+01 
3.83e-11 
1.71e-05 

 

Table 2: Some evaluation criteria for six sub-models of GL-V general formula based on three simulated data sets 

 
Table (2.a): MSE 

 

 
Data 

Model 

 
Data 1 

 
Data 2 

 
Data 3 

MLE 
(Model 1)NLSE 
WNLSE 

116.97140000 
0.01679808 
0.01679829 

55.51383000 
0.01670480 
0.01670479 

36.40230000 
0.01668556 
0.01668556 

MLE 
(Model 2)   NLSE 
WNLSE 

408.38630000 
0.01748136 
0.01748156 

87.89873000 
0.01678571 
0.01678566 

30.75588000 
0.01669962 
0.01669962 

MLE 
(Model 3)NLSE 
WNLSE 

821.84180000 
0.01974045 
0.01974150 

154.42238000 
0.01711996 
0.01711951 

35.90904000 
0.01675650 
0.01675683 

MLE 
(Model 4)   NLSE 
WNLSE 

875.85820000 
0.02324615 
0.02324639 

520.70288000 
0.01805338 
0.01805341 

188.25210000 
0.01691616 
0.01691592 

MLE 
(Model 5)NLSE 
WNLSE 

531.23800000 
0.02441724 
0.02441774 

767.81774000 
0.01989524 
0.01989532 

334.53586000 
0.01730241 
0.01730241 

MLE 
(Model 6)NLSE 
WNLSE 

131.50400000 
0.02171921 
0.02171960 

859.59493000 
0.02234919 
0.02234934 

520.85833000 
0.01807457 
0.01807459 
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Table (2.b): RMSE 
 

 
Data  

Model 

 

 
Data 1 

 
Data 2 

 
Data 3 

             MLE 
(Model 1)NLSE        

             WNLSE 

10.789020000 
0.004358005 
0.004344932 

7.439199000 
0.004191479 
0.004190181 

6.028069000 
0.004187132 
0.004187234 

             MLE 
(Model 2)   NLSE   

             WNLSE 

20.148200000 
0.004811570 
0.004871714 

9.322270000 
0.004225278 
0.004215230 

5.513928000 
0.004190507 
0.004190591 

            MLE 
(Model 3)NLSE        
             WNLSE 

28.622120000  
0.004562686 
0.004687179 

12.348047000 
0.004287888 
0.004260191 

5.920673000 
0.004213435 
0.004220662 

            MLE 
(Model 4)   NLSE 
             WNLSE 

29.582870000 
0.004936309 
0.005092893 

22.772776000 
0.004355448 
0.004374776 

13.653440000 
0.004235506 
0.004219402 

            MLE 
(Model 5)NLSE        
             WNLSE 

22.952780000 
0.005047441 
0.005259742 

27.686010000 
0.004564908 
0.004617776 

18.228348000 
0.004267516 
0.004273119 

            MLE 
(Model 6)NLSE        
             WNLSE 

10.738590000 
0.004765470 
0.004942615 

29.307224000 
0.004826719 
0.004913817 

22.775620000 
0.004356634 
0.004368962 

 
Table (2.c): MAE 

 

 
Data 

Model 

 

 
Data 1 

 
Data 2 

 
Data 3 

             MLE 
(Model 1)   NLSE 

             WNLSE 

7.698305000 
0.004408101 
0.004385285 

4.978310000 
0.004277224 
0.004275850 

3.863492000 
0.004273286 
0.004273335 

             MLE 
(Model 2) NLSE   

             WNLSE 

15.095525000 
0.004593507 
0.004615200 

5.823163000 
0.004311575 
0.004300051 

3.044328000 
0.004276439 
0.004276386 

            MLE 
(Model 3)  NLSE         

             WNLSE 

23.660980000 
0.004616307 
0.004685787 

7.774899000 
0.004371393 
0.004340438 

3.019953000 
0.004299710 
0.004305878 

            MLE 
(Model 4)  NLSE 
             WNLSE 

26.507598000 
0.004968420 
0.00508787 

17.158952000 
0.004429314 
0.004439477 

8.862687000 
0.004320634 
0.004301676 

            MLE 
(Model 5)   NLSE        
             WNLSE 

21.570949000 
0.005051264 
0.005235997 

22.677586000 
0.004623500 
0.004655740 

12.732437000 
0.004349534 
0.004349386 

            MLE 
(Model 6) NLSE         
             WNLSE 

10.243245000 
0.004654718 
0.004816379 

25.625671000 
0.004867624 
0.004931575 

17.084915000 
0.004431208 
0.004437174 

 
Table 3: Some evaluation criteria for six sub-models of GL-V general formula based on four real data sets 

Table (3.a): MSE criteria 
 

 
Model 

 
 

Data 
������ 
������� 

  �������� 

Model 1 
(� = �. �) 

 

 

������ 
������� 

  �������� 

Model 2 
(� = �) 

(L-V model) 

 

������ 
������� 

  �������� 

Model 3 
(� = �. �) 

 
������ 
������� 

  �������� 

Model 4 
(� = �) 

 

������ 
������� 

  �������� 

Model 5 
(� = �. �) 

 
������ 
������� 

  �������� 

Model 6 
(� = �) 

 

 

NTDS 
data 
(26) 

50.112820 
1.840101 
1.939517 

90.223890 
1.542047 
1.546562 

48.415070 
1.265915 
1.263916 

55.782070 
1.080672 
1.046899 

55.452710 
0.949841 
0.917598 

55.038380 
0.865392 
0.835313 

F11-D 
Program (15) 

1.463839 
3.390283 
3.424685 

49.729850 
2.655278 
2.576620 

29.378670 
2.084433 
2.085440 

5.075495 
1.644661 
1.568176 

4.738345 
1.347134 
1.282586 

4.407195 
1.162802 
1.107078 

AT&T Bell 
Data 
(22) 

18.90583 
1.495127 
1.495142 

22.637100 
1.218116 
1.280310 

9.309572 
1.075025 
1.101041 

25.857230 
1.167761 
1.067331 

30.107980 
1.179592 
1.172082 

32.780070 
1.180890 
1.172628 

JDM-II data 
(15) 

7.323222 
3.631158 
3.631330 

25.305690 
3.035973 
3.034637 

11.246 
2.505312 
2.503343 

11.909310 
2.124632 
2.123430 

10.041730 
1.859937 
1.859624 

8.133296 
1.683431 
1.683361 
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Table (3.b): RMSEcriteria 
 

 
Model 

 
 

Data 
�������   
�������� 

  ���������  

Model 1 
(� = �. �) 

 

 

�������   
�������� 

  ���������  

Model 2 
(� = �) 

(L-V model) 

 

�������   
�������� 

���������  

Model 3 
(� = �. �) 

 
(� = �) 

�������   
�������� 

  ���������  

Model 4 

 

 

�������   
�������� 

  ���������  

Model 5 
(� = �. �) 

 
�������   
�������� 

 ���������  

Model 6 
(� = �) 

 

NTDS 
data  
(26) 

7.079041 
1.356503 
1.392665 

9.498626 
1.241792 
1.243608 

6.958094 
1.125129 
1.124240 

7.468739 
1.039554 
1.023181 

7.446657 
0.974598 
0.957913 

7.418785 
0.930265 
0.913955 

F11-D 
Program (15) 

1.209892 
1.841272 
1.850590 

7.051939 
1.629502 
1.605185 

5.420209 
1.443756 
1.444105 

2.252886 
1.282443 
1.252268 

2.176774 
1.160661 
1.132513 

2.099332 
1.078333 
1.052178 

AT&T Bell 
Data 
(22) 

4.348083 
1.222754 
1.222760 

4.757846 
1.103683 
1.103645 

3.051159 
1.036834 
1.049305 

5.085000 
1.080630 
1.033117 

5.487074 
1.086090 
1.082627 

5.725388 
1.086688 
1.082879 

JDM-II data 
 (15) 

2.706145 
1.905560 
1.905605 

5.030476 
1.742404 
1.742021 

3.353604 
1.582818 
1.582196 

3.450987 
1.457612 
1.457199 

3.168869 
1.363795 
1.363680 

2.851893 
1.297471 
1.297444 

 
 
 

 

Table (3.c): MAE criteria 
 

 
Model 

 
 

Data 
������ 
������� 

 �������� 

Model 1 
(� = �. �) 

 

 

������ 
������� 

 �������� 

Model 2 
(� = �) 

(L-V model) 

 

������ 
������� 

 �������� 

Model 3 
(� = �. �) 

 
������ 
������� 

   �������� 

Model 4 
(� = �) 

 

������ 
������� 

 �������� 

Model 5 
(� = �. �) 

 
������ 
�������  

  �������� 

Model 6 
(� = �) 

 

NTDS 
data  
(26) 

6.597929 
1.444180 
1.484252 

8.702301 
1.322657 
1.324664 

5.755717 
1.140736 
1.139828 

5.778166 
1.001074 
0.985278 

5.373902 
0.900523 
0.885220 

5.015621 
0.827684 
0.813313 

F11-D 
Program (15) 

1.386443 
2.037485 
2.047245 

7.956197 
1.780908 
1.753569 

5.850465 
1.572711 
1.573035 

2.201467 
1.389044 
1.356549 

2.049167 
1.233852 
1.204560 

1.871558 
1.110769 
1.084643 

AT&T Bell 
Data 
(22) 

4.263691 
1.331569 
1.331574 

4.153288 
1.181113 
1.181068 

2.214923 
1.095716 
1.108897 

3.662885 
1.138395 
1.088209 

3.774289 
1.143061 
1.139397 

3.825967 
1.143495 
1.139462 

JDM-II data 
 (15) 

2.852091 
2.061922 
2.062007 

5.014366 
1.859702 
1.859322 

2.838642 
1.716556 
1.716041 

2.787884 
1.616245 
1.615921 

2.428478 
1.542187 
1.542095 

2.083768 
1.487884 
1.487861 

 
Table (3.d): MAPE criteria 

 
 
 

 
 

 
Model 

 
 

Data 
�������  
�������� 

   ��������� 

Model 1 
(� = �. �) 

 

 

�������  
�������� 

   ��������� 

Model 2 
(� = �) 

(L-V model) 

 

�������  
�������� 

   ��������� 

Model 3 
(� = �. �) 

 

 

�������  
�������� 

  ��������� 

Model 4 
(� = �) 

 

 

�������  
�������� 

   ��������� 

Model 5 
(� = �. �) 

 

 

�������  
�������� 

 ��������� 

Model 6 
(� = �) 

 

 

NTDS 
data  
(26) 

19.510210 
4.376274 
4.494364 

32.562530 
5.075944 
5.082642 

30.544820 
5.630186 
5.626339 

37.462810 
6.005403 
5.949841 

41.071600 
6.263758 
6.203439 

43.790200 
6.461628 
6.403548 

F11-D 
Program (15) 

7.523784 
13.224660 
13.289440 

43.755810 
11.999120 
11.811680 

37.402470 
11.787840 
11.791300 

19.019910 
11.800850 
11.538430 

21.835210 
11.890790 
11.633000 

24.337390 
11.988130 
11.742610 

AT&T Bell 
Data 
(22) 

15.111630 
4.520075 
4.520104 

17.206870 
4.401446 
4.400794 

11.672930 
4.206463 
4.257230 

16.773320 
4.383030 
4.206158 

17.467970 
4.424661 
4.411912 

18.095200 
4.464392 
4.450285 

JDM-II data 
 (15) 

13.569700 
11.433950 
11.435480 

21.783100 
9.032878 
9.029477 

12.060750 
7.895124 
7.891468 

11.639030 
7.229811 
7.227804 

10.041740 
6.792079 
6.791560 

8.566306 
6.495405 
6.495285 
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Figure 1.a. NTDS data 
 

     
 

Figure 1.b. F11-D program data 
 

   
 

Figure 1.c.AT&T Bell failure data 
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For MLE method 
 

 When the sample size n=15 as seen in Table (1.a): MLE method gives the least accurate results comparable with NLSE and 
WNLSE methods for all the studied cases.  

 For n=30 in Table (1.b): the average MSEβ�  and MAPEβ�   for  MLE are smaller than WNLSE and NLSE methods for the 

case when δ = 0.5, and only MSEβ�  is smaller than WNLSE and NLSE methods for the case when δ = 1. 

 For n=50 and 100 in Tables [(1.c) and (1.d)]: the average MSEβ�  and MAPEβ�   for MLE are smaller than WNLSE and NLSE 

methods for the case when δ = 0.5. 
 
While for NLSE method 
 

 By assuming n=15 in Table (1.a): the average MSE
α�
, MAPE

α�
 for NLSE method are smaller than the MLE and WNLSE 

methods when δ = 0.5, while the average  MSEβ�   and MAPEβ�  are smaller than the MLEand WNLSE methods when δ =

0.5, 2.  

 For n=30 in Table (1.b):  the average MSE
α�
,MAPE

α�
,MSEN� , MAPEN�  for NLSE method are smaller than MLE and 

WNLSE methods when δ = 1,2. Also, the average MSEβ�  and MAPEβ�  for NLSE method are smaller than MLE and 

WNLSE methods when δ = 2. While, the averageMAPE
α�
 has the same value for both NLSE and WNLSE methods which 

is smaller than MLE method. Additionally, we can see that the average  MAPEN�  for NLSE method are smaller than MLE 
and WNLSE when δ = 0.5. Finally, the average MAPEβ�  for NLSE method are smaller than MLE and WNLSE methods 

when δ = 1. 

 For n=50 in Table (1.c): the average MSE
α�
,MAPE

α�
,MSEN� , MAPEN�  ,MSEβ�  and MAPEβ�  for NLSE method are smaller 

than MLE and WNLSE methods when δ = 1,2, also the average MAPEN�  for NLSE method are smaller than MLE and 
WNLSE when δ = 0.5. 

 For n=100 in Table (1.d): the average MSE
α�
,MAPE

α�
,MSEN� , MAPEN�  ,MSEβ�  and MAPEβ�  for NLSE method are smaller 

than MLE and WNLSE methods when δ = 1,2, also the average MSEN�  and MAPEN�  for NLSE method are smaller than 
MLE and WNLSE when δ = 0.5. 
 

For WNLSE method 
 

 Considering the sample size n=15 in Table (1.a): the average MSE
α�
,MAPE

α�
,MSEN� , MAPEN�  for WNLSE method are 

smaller than MLE and NLSE methods when δ = 1,2. While, the average MSEN� , MAPEN�  for WNLSE method are smaller 
than MLE and NLSE methods when δ = 0.5. Also, the average MSEβ� and MAPEβ�  for WNLSE method are smaller than 

MLE and NLSE methods when δ = 1. 

    
 

Figure 1.d. JDM-II failure data 
 

Figure 1. Several criteria for comparing some sub-models of GL-V general formula using four real data set 
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 After that we consider the case when n=30 in Table (1.b) and we can see that: the average MSE
α�
, MAPE

α�
 for WNLSE 

method are smaller than MLE and NLSE methods when δ = 0.5, while the average MAPEN�  for WNLSE are smaller than 
MLE and NLSE methods when δ = 0.5. 

 Then for n=50 in Table (1.c): the average MSE
α�
,MAPE

α�
 for WNLSE method are smaller than MLE and NLSE methods 

when δ = 0.5, also the average MAPEN�  for WNLSE method are smaller than MLE and NLSE when δ = 0.5. 
 Finally, with n=100 in Table (1.d): the average MSE

α�
,MAPE

α�
 for WNLSE method are smaller than MLE and NLSE 

methods when δ = 0.5, also the MAPEN�  for WNLSE method has the same value of NLSE and smaller than MLE when 
δ = 1 and 2. 
 

With respect to the parameter δ  we can see that in all considered cases the average MSEδ�  and MAPEδ�  for WNLSE and NLSE 
method is equal to zero, and the MLE gives the worst performance method.  
 
4.3. Comparing between several generated models 
 
In this section, we present results of the second numerical experiment part which aims to compare the performance of the six 
considered special cases of the GL-V model based on three simulated data sets. The sub-models are generated by assuming δ = 
0.5, 1, 1.5, 2, 2.5. The results are presented in Table 2, and from this experiment part the following points can be seen: 
 
According to MSE criteria in Table (2.a): 
 
For Data 1: NLSE method gives the most accurate prediction results for all the six cases comparable with the other two selected 
estimation methods, Model 1 is the best fit model with Model 2 and Model 3 are the second and third best fit models respectively. 
Though, for Data 2: we can see that half of the considered cases gives prediction results in favor of NLSE method while the 
prediction results of the other half of cases are in favor of WNLSE method. Model 1, Model 2, and Model 3 take the first, second, 
and third rank respectively and all of them are obtained by using WNLSE method. While, with Data 3: NLSE and WNLSE 
methods give the same predictive accuracy for three cases, two cases show that WNLSE method has better predictive accuracy 
than the other two estimation methods, and one case shows that NLSE method gives better predictive ability comparable with the 
other two estimation methods. Also, Model 1, Model 2, and Model 3 have the first, second, third fitness rank respectively. 
 
According to RMSE criteria in Table (2.b): 
 
For Data 1: in five cases NLSE method gives more accurate estimates than the other two studied estimation methods, and one case 
which has the smallest RMSE criteria and give the best fit model (Model 1) are obtained by using WNLSE method. Model 3 and 
Model 6 are the second and third best fit modelsrespectively. For Data 2: RMSE criteria gives the same preferences results like 
MSE criteria. For Data 3: in five cases NLSE method gives more accurate estimates than the other two selected estimation 
methods, and one case shows that WNLSE method is superior. Model 1 is the best fit model with Model 2 and Model 3 are the 
second and third best fit models respectively and all are obtained by using NLSE method. 
 
According to MAE criteria in Table (2.c): 
 
For Data 1: MAE values are the smallest in five cases when using WNLSE method, and in one case when using NLSE method. 
Model 1 is the best fit model with Model 2 and Model 3 the second and third best fit models respectively. For Data 2 and Data 3: 
MAE values are the smallest in half of the cases when using WNLSE method and half of the cases when using NLSE method. 
Model 1 is the best fit model with Model 2 and Model 3 the second and third best fit models respectively. 
According to this part we can conclude that the best prediction resultshave been obtained by using the WNLSE method for most of 
our application’s cases. However, with the large real data sets the MLE method has produced the more accurate prediction results. 
Hence, our general formula provides several sub-models to test the reliability of a wide range of software projects, and with 
applying different method of estimation the best appropriate descriptive model can be found with much more prediction accuracy.  
 
5. Real Data Application 
 
In this section, a set of real data examples are given to illustrate the applicability of the GL-V reliability model, several sub-models 
will be generated. For the estimation of parameters of the GL-V model maximum likelihood (ML), nonlinear least square (NLS) 
and weighted nonlinear least square (WNLS) estimation methods are used. The best sub-model will be determined for each 
selected data set based on MSE, RMSE, MAE and MAPE criteria. The results of this section are presented in Table 3 and Figure 
1. 
 
5.1. Selected models and data sets 
 
Six sub-models are generated in this real application by varying the value of the shape parameter � and four real data sets are used. 
Those real data sets are: the NTDS data and consists of 26 failures [see; Goel and Okumoto(1979)], the F11-D program data which 
includes 15 failures [see; Moranda(1975)], the AT&T Bell failure data and its size is 22 [see; Pham and Pham (2000)],JDM-II 
failure data which includes 15 failures[see; Musa et al. (1987)]. 
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5.2. Application algorithm  
 
Step 1: Enter real data set.  
Step 2: Check the fitness between the real data set and our studied reliability models using ks.test() function from stats package, if 

it is significant go to Step 3 otherwise return to Step 1. 
Step 3: Testing the existence of the hetroscadisty problem using qqtest() function from lmtest package, if it is significant go to 

Step 4 otherwise return to Step 1. 
Step 4: Generate six sub-models as special cases of the GL-V model by assuming that: β = 0.5,1,1.5,2,2.5,and 3. 
Step 5: Set initial values for the sub-models’ parameters.  
Step 6:  Estimate the generated models’ parameters based on MLE method, to accomplish this step:  the sub-models’ parameters 

are initialized, Equations (15) will be used, and nlminb packages will be utilized.   
Step 7: Estimate the generated models’ parameters based on NLSE method, to accomplish this step: the sub-models’ parameters 

are initialized,   Equations (20) will be used, and minpack.lm packages will be utilized. 
Step 8: Estimate the generated models’ parameters based on WNLSE method, to accomplish this step: the sub-models’ parameters 

are initialized, w � is supposed to be the optimal weight which computed by finding the inverse of variance, where i = 1, 2, 
…n, Equations (25) will be used, and minpack.lm packages will be utilized. 

Step 9: Select the best fit model among the six generated models based on four selection methods MSE, MAPE, RMSE, and AME 
using their mathematical formulas in Equations (30, 31, 32 and 33). 

 
5.3. Application results and discussions 
 
According to MSE, RMSE, and MAE criteria in Tables [(3.a)-3.c)] we can see that: for NTDS data, F11-D program data and 
JDM-II failure data; the best fit model is Model 6 ( δ = 3), it has the smallest evaluation criteria value at using WNLSE method. 
Whereas, for AT&T bell data; the best fit model is Model 4 ( δ = 2), it also has the smallest value of evaluation criteria at using 
WNLSE method. Based on MAPE criteria in Table (5.d) we can see that: for NTDS data the best fit model is Model 1 ( δ = 0.5) 
as it has the smallest MAPE value at NLSE method. For F11-D program; the best fit model is Model 1 ( δ = 0.5), it has the 
smallest MAPE value at MLE method. For AT&T bell data; the best fit model is Model 4 ( δ = 2), it has the smallest MAPE 
value at WNLSE method. For JDM-II failure data; the best fit model is Model 6 ( δ = 3), it has the smallest MAPE value at 
WNLSE method. All these results can be also clearly seen in Figure 1, in this figure the superiority of WNLSE and NLSE over the 
MLE is clearly shown, in addition NLSE and WNLSE estimates values are very close to each other for all cases. 
 
6. Conclusion 
 
In software engineering, it is a crucial issue to find appropriate model that can always best suit all cases or even specific case. Best 
fit model varies from data to another, and more than that different model selection criteria can give different best fit models for a 
specific data. Simulated data helps to generate different real pattern to validate our suggested general formula and test the accuracy 
of our selected estimation methods, this will be difficult with the limited available reliability data. After that more examination can 
be done base on real world data. In our simulated and real application, we have tried to give several cases with different setting to 
validate our suggested general model which we think will help with the problem of finding the fitted model much easier. By 
generating several sub-models, varying the sample size, using different estimation methods, and using several real-world data we 
offer several validation cases for our suggested general formula. Based in these studied cases we have found that: 
 

 As a sample size increases, higher precision estimates can be obtained, that’s may indicate to the necessity for longer 
testing time phase.   

 The NLSE and WNLSE estimates values are very close to each other for all cases, so in reliability data fitting problem, a 
good accurate and simple alternative to MLE method is NLSE and WNLSE methods.  

 MLE method appeared to perform better for real data sets with larger sample size. 
 When the data suffer from the heteroscedasticity problem WNLSE method enhance the reliability prediction results, and it 

worth to try to consider more empirical weighted function. 
 Generated several sub-models from the GL-M model helps to find the best fit model faster and easier.  
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