

Available online at http://www.journalijdr.com

International Journal of DEVELOPMENT RESEARCH

International Journal of Development Research Vol. 06, Issue, 12, pp.10738-10743, December, 2016

Full Length Review Article

ENHANCING SECURITY BY ALTERING ENCRYPTION KEYS FOR SYMMETRIC ALGORITHM

^{1,} *Densy John V. and ²Dr. Agnise KalaRani, X.

¹Karpagam Academy of Higher Education, Coimbatore, India ²Department of Higher Education, Karpagam Academy of Higher Education, Coimbatore, India

ARTICLE INFO

Article History:

Received 17th September, 2016 Received in revised form 22nd October, 2016 Accepted 29th November, 2016 Published online 30th December, 2016

Key Words:

Network security, Encryption, AES, Hash functions, Cryptool, Frequency analysis, XOR encryption algorithm, Key-length.

ABSTRACT

Information security is crucial for all organizations. People are using information technology for storing data in the internet. Now-a-days Cloud Storage and Big Data are common among all kinds of people. Moreover mobile technology is becoming more popular. Therefore new technologies are derived from the existing encryption algorithms in order to resists the attacks from intruders. In this study we are experimenting a new technique of encrypting with two different algorithms and two different encryption keys so that it can be useful for resisting the man-in-the-middle attacks for the information over the internet. The results proved that eaves- dropper cannot determine the key-length to decrypt back to original message. Here we are using AES and XOR for encrypting and key generation is done using hash functions.

Copyright©2016, Densy John and Dr. Agnise KalaRani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Securing data is an important factor in all aspects of our being. Now-a-days information is send through different media which needs to be safe. Information technology is very much concerned about the security aspect of the organization. Latest technologies like mobile computing is becoming an essential part of day- to -day communication. The main advantage of mobile communication is that it is easy to use and handy. They are available with its advanced Operating System like Android or iOS. The architecture of the mobile wireless network is adhoc networks which is termed as MANET (Mobile Ad-hoc Network) and hence prone to security issues. The mobile networking is ad-hoc means that it is infrastructure less. As more and more nodes are added to the network it reconfigures itself and detects the nodes and establishes a safe peer to peer communication. The drawback of MANET is less security, has more power consumption, availability and speed. Thus the wireless networks are more prone to security issues than the wired networks (Pramendra Kumar and Vijay Kumar Sharma, 2014; Madhurya et al., 2014; Yang et al., 2004). Some of the security parameters for wireless or wired network are availability, Integrity, Access control confidentiality. There are several security models developed in order to reduce the flaws in the networks.

*Corresponding author: Densy John V. Karpagam Academy of Higher Education, Coimbatore, India. Using the encryption algorithm, Authentication tools, hash function are some of them. The way they implemented it will make them more secure. The wireless LAN (WLAN) is implemented with the protocol IEEE802.11. WEP (Wired Equivalent Privacy), WPA (Wi-Fi Protected Access) are some of the other protocols used in wireless networks. WEP is accepted by IEEE that it provides less security while WPA has a set of 802.11i features so that it is more secure. There is a secure protocol RSN (Robust Security Networks) which implements dynamic negotiation of implementing algorithms. All these algorithms use encryption but several security weaknesses are identified by the cryptanalysts (Halil Ebrahim Bulbul *et al.*, Borisov. N *et al.*, Fluhrer, S. *et al.*, A. Arbaugh. W *et al.*, Stubblefield A. *et al*).

Since the scope of wireless networks are more we need a more secure encryption algorithm to prevent vulnerabilities and to give more privacy in data transmission for each nodes. Cryptography or encryption is the process in which the messages send through the internet are transmitted in a coded form. Though the security parameters are included in the implementation of wireless networks there are vulnerabilities in the existing system. The implementation of security is easily broken with a man-in-the-middle attack, spoofing MAC address, Access Points to intercept the wireless traffic, crashing the Access Points by Denial of Service (DoS) and cracking WEP- an existing security algorithm are some of them.

Research Objectives

The objective of this study is to enhance the security of the existing algorithm. The researcher have chosen the symmetric algorithm AES. Encryption is done two times with two different keys so that the man-in-the-middle cannot guess the key or the key length. This research aims at the security of mobile networks and thus it protects the individual mobile devices. Since the communication using this networks are more convenient and fast many people are using this technology. Therefore the target audience under the study is all users who are using mobile devices. It includes professionals in all area like business, education, industry, civil and government. It is clear that the above study consists of people in all areas so that this is beneficial to the community. Everyone can send the information safe especially the sensitive information like the financial transactions and personal information. Thus the new system will be beneficial all people who are using mobile devices. The study aims the solution to security issues in networking which can be implemented to provide security enhancements to the existing system. The result of the study will be useful for the technical world to improve the security of their system. The scope of the study includes all network users. Since the mobile devices like smart phones are used by all category people irrespective of their age. The study includes the enhancement of the algorithm and does not include the development stage. The perception of the study limits to the enhancement methods in the existing algorithm and not the implementation phase. The readers can view the limitations from the results obtained.

MATERIALS AND METHODS

The wireless technology is used in many organizations like corporate, manufacturing, warehousing, retail, education, finance and healthcare. Most of the organizations use the wired and wireless combination network in the company. The wireless devices are connected to network through wireless access points. Authors Pramendra Kumar, Vijay Kumar Sharma mentions that the wireless networks use a peer-to-peer network system. The nodes themselves will be forwarding the messages and thus it will reach the destination. As more nodes are added to the network the risks associated with the network increases. The media used in wireless network is air. Anyone with right device can access the information transmitted by a node from the medium. Therefore, mobile network is called as an Ad hoc network (Pramendra Kumar and Vijay Kumar Sharma, 2014). According to H. T. Dinh, one of the security issues for wireless network is low bandwidth. The network follow Markov's decision table to distribute bandwidth among the users with respect to their needs. Each node in the network will communicate each other and find the shortest hopping distance. The security issues arise when they share information to hop between the nodes. According to the authors, an account key, friend key and content key are used along with the information send through the network. The devices access the network using different access technologies (Hoang et al., 2013). Traffic analysis is another kind of network vulnerability. The intruder can know about the activities, physical location, and communication protocol of the victim. In eavesdropping the attacker secretly listens to conversation of others. In passive eavesdropping attacker reads the messages passed between the persons while in active eavesdropping the attacker sends his own messages in between their conversation. High jacking and Replay attack are two

other attack against the authorization of the owner. Jamming is DoS attack on network availability (Umesh Kumar et al., 2014). The MAC (Media Access Control) address of a node can be changed which is not traceable and the network considers it as a true node. For this network administrator need to check MAC address in NIC. A MAC and IP combination can resolve the problem. An encryption of wireless communication between the Access Points and the nodes can also resolve the problem. All such security methods may affect the speed, throughput of the network (Mohd Izhar and Singh, 2014). Some other protocols like SEAD (Secure and Efficient Distance Vector), SMT (Secure Message Ad hoc Transmission) use MAC (Message Authentication code) or Hash function for authentication. A newer technology is ECC (Elliptic Curve Cryptography) which makes fast and efficient algorithm even though the key length is small (Ram Shringar Raw, 2013; Menezes et al., 2004). To solve security issues in MANETs, IDS (Intrusion Detection System) or Encryption algorithm can be used IDS can be stored in the nodes of original networks and false nodes can be detected. Cryptography uses symmetric or asymmetric keys. In symmetric key the distribution of the key to all nodes will destroy the security of the network. Asymmetric cryptography we need a public and a private key, where the public key of the other node is used to decrypt the messages received by the node. Hence the public key for all nodes is to be stored in every node so that messages from any valid nodes can be decrypted whenever they receive a message (Deepti Ranaut and Madal Lal, 2014). The encryption algorithms used are DES (Data Encryption Standard) which uses 56-bit secret key. DES can be defeated easily by Brute Force attack. AES (Advanced Encryption Standard) which uses 128 -bit, 192- bit or 256-bit length key for encryption. The key distribution problem exists in both algorithms. There are commonly used public key encryption algorithms. RSA (Rivest, Shamir, Adleman) algorithm is commonly used in e-commerce protocols. Its security depends on the difficulty of decomposing large numbers. Diffie-Hellman (DH) algorithm uses discrete logarithmic function which is difficult to crack but captured by man-in-the-middle attack. DSA (Data Signature Algorithm) is also based on discrete logarithms. Hashing functions uses MD-5 message digest algorithm which uses a 128-bit hash value (Deepti Ranaut and Madal Lal, 2014; Stallings, 2011). The above algorithms provide more security but have its own disadvantages. As the mobile network is expanding the need for a better security is inevitable. This research is focused on providing a stronger option for a better security so that the information passed through the network will be safer in the coming days.

Research Methodology

Enhancing the algorithm can be done using many methods. In this research we are finding out the 'best' available networking security encryption and compare it with the updates to the algorithm. From the studies done in the past, it is obvious that AES algorithm is stronger than the DES and other symmetric algorithm. In this we use XOR and AES to encrypt the same message twice so that the security can be doubled. Key-length of AES is 16 bytes (128-bits) and represented as Hexadecimals. The study uses AES algorithm which is also called Rijndael developed by two cryptographers. It is very powerful algorithm which is used in many encryption algorithms and wireless protocols. There are two phases for the encryption. In the first phase, encryption is done using the AES and XOR using the same key. In the second phase after the encryption with AES a hash function is used to encrypt with a second key.

Frequency analysis: Finds the frequency of the appearance of a letter or group of letters. Corresponding graph representing the frequency of each of the characters will appear. If the graph contains the representation of a set of characters, which can be used as a reference point, the distance between the character set and frequency of alphabets can be considered as the key length.

Autocorrelation: it is the index of similarity between different sections of the document. It helps to find the cycle length for the automatic analysis of the encryption by Exclusive –OR used in this study.

RESULTS AND DISCUSSION

In this study we use two methods to encrypt data. In the first method we same key for both encryption whereas in the second method we use two different secret keys to encrypt the same message. Thus we prove that by using the second method we confuse the intruder or eavesdropper not to find the original message by guessing the key or even the key-length. Cryptanalysis of encrypted messages are done with the help of CRYPTOOL.

Comparing the encryption keys used in encrypting the message

The research analyses the output obtained by encrypting the text file using a key generated by the hash function MD5. In this procedure we analyze after encrypting first using the XOR and then using AES and try to find the decrypting key.

PHASE1

- Step1: Key generation is done using the cryptographic tool for a selected text.
- Step 2: Encrypt using the key generated. Here we are using the same key for XOR and AES encryption. 5F 4D CC 3B 5A A7 65 D6 1D 83 27 DE B8 82 CF 99
- Step 3: AES encryption using the same key 5F 4D CC 3B 5A A7 65 D6 1D 83 27 DE B8 82 CF 99
- **Step4:** Cryptanalysis. Autocorrelation and frequency analysis are done to analyze the changes in the encrypted message. The derived key length is found which shows that deriving the original message is not possible by cryptanalysis.

The derived key length is 7. We get a different key length than the original even though we are using the same key with different encryption algorithm.

this is a sample text file to study about the cryptographic techniques to enhance the sec CrypTool is a comprehensive free educational program about cryptography and cryptanal-XOR encryption of <sample_new>, key <5F 4D CC 3B 5A A7 65 D6 1D 83 27 DE B8 82 CF 99> CE 16 3B C5 4E 3F A0 5E 22 A0 3E 39 F9 37 BF D5 53 B6 A3 42 78 E7 B7 3D 09 F6 C3 45 33 D1 52 20 A3 54 69 A3 A2 72 0B A2 D4 45 34 C6 5A 34 A2 48 2B 25 ED 2A AC F1 FB EF 48 B5 24 32 CD F6 0A D4 37 1B F2 A3 DD A2 B0 D0 07 B7 00000000 A5 29 31 FC AC E3 D6 7A 1B 7F EB 7C A3 45 C2 33 54 32 0000001F BD AI 0000003E FBFCA4E A2 C8 0000005D FO 3D A0 39 37 30 E0 6D 48 F1 CA B3 48 00000070 FR BF FA B9 57 0000009B DD BÅ A5 E6 53 B1 DF FO Ē9 34 2B EC **B**5 6F FA 72 000000BA A2 98 AA F4 E1 A6 28 2A A2 2C 48 A0 00 C6 ED 72 00000009 F1 4ER0 DF F6 ĒÀ 000000F8 70 A7 BF 49 E2 11

Figure 1. Encrypted message after XOR analysis

00000000	6B	06	AA	Α2	4E	D6	97	40	B5	1D	92	95	7A	Α9	B8	2C	51	Α8	06	29	D.
0000001F	1C	E1	62	9A	B7	38	E9	ЗD	71	71	09	A8	DE	33	78	3A	CA	6E	68	59	B.
0000003E	B5	1F	CE	3A	C6	EE	88	23	FC	6D	E4	7F	BO	9F	C8	EB	ED	AD	77	3F	C:
0000005D	A3	C5	75	D2	35	FC	F9	FC	CC	7C	45	68	DA	50	D1	FE	A7	AO	D6	5F	0
0000007C	A8	13	E9	8F	94	49	FD	C1	8F	D3	24	9A	BO	2F	26	7E	85	E7	2E	1C	3.
0000009B	BF	CD	B2	6C	82	23	76	AB	12	3B	69	54	24	18	40	27	F6	95	C9	93	2
000000BA	6B	F6	07	7A	74	4F	5D	27	7B	54	A7	A6	FA	3C	99	30	D6	25	72	CE	9.
000000D9	48	9C	53	69	65	7D	3E	0D	92	7A	92	79	D9	F8	EE	4B	CE	1B	30	CB	7
000000F8	EF	43	FF	E6	04	7E	9E	27	07	44	6B	DO	7E	2C	B6	32	C5	73	E6	22	8

Figure 2. Result: Encrypted message

Figure 3. Analysis: Autocorrelation of AES encryption

Figure 4. Fig Analysis: Finding the key length

Figure 5. Analysis: Floating frequency

00000000	2B	25	A5	48	7A	CE	16	F6	7C	Å3	54	BF	D5	F2	Å3	FC	7F	39	A
0000001F	ED	2A	29	B5	1B	3B	C5	0A	A3	69	A3	53	B6	DD	A2	AC	EB	26	3
0000003E	AC	F1	31	24	BD	4E	3F	D4	45	A2	72	A3	42	BO	DO	E3	A1	FA	3
0000005D	FB	EF	FO	32	3D	AO	5E	37	C2	0B	A2	78	E7	07	B7	D6	A2	BB	F
0000007C	CA	FB	BF	CD	30	22	AO	1B	33	D4	45	B7	3D	EO	48	B3	C8	FO	A
0000009B	FE	DD	E6	BA	FA	3E	39	A5	54	34	C6	09	F6	6D	F1	48	B9	CA	E
000000BA	53	B1	DF	FO	ÀΕ	E9	37	34	EC	5A	34	C3	45	B5	6F	FA	57	AA	D
000000D9	F1	4E	BO	DF	A2	AA	E1	2B	28	A2	48	33	D1	00	F6	72	ED	4B	В
000000F8	70	E2	49	Α7	98	F4	Å6	ΕA	2Å	2C	ÅΟ	52	20	C6	11	BF	72	ED	5

Figure 6. encrypted message after XOR (step2)

XOR encrys	ption	of <s< th=""><th>amp</th><th>le_ne</th><th>- «W</th><th>key -</th><th>CSF -</th><th>ID O</th><th>C 38</th><th>5A /</th><th>7.65</th><th>D6 1</th><th>0.83</th><th>27 0</th><th>E B8</th><th>82.0</th><th>F 99</th><th>*</th><th></th><th></th><th></th></s<>	amp	le_ne	- «W	key -	CSF -	ID O	C 38	5A /	7.65	D6 1	0.83	27 0	E B8	82.0	F 99	*			
00000000 0000001F 0000003E 0000005D 0000007C 0000009B 0000009B 000000098 000000098	2B ED AC FB CA FE 53 F1 70	25 2A F1 EF DD B1 4E E2	A5 29 31 F0 BF E6 DF B0 49	48 B5 24 32 CD BA F0 DF A7	7A 1B 3D 3D FA AE 98	CE 3BE 40 22 3E 4 4 5 4 5 4	16 C5 3F 39 37 E1 A6	F6 0A D4 37 1B A5 34 2B EA	7C A3 45 C2 33 54 EC 28 2A	A3 69 A2 0B D4 34 5A 2C	54 Å3 72 Å5 6 34 Å0	BF 53 A3 78 B7 09 C3 33 52	D5 B6 42 E7 3D F6 45 D1 20	F2 DD B0 6D B5 00 C6	A3 A2 D0 B7 48 F1 6F F6 11	FC AC E3 D6 B3 48 FÀ FÀ BF BF	7F EB A1 A2 C8 B9 57 ED 72	39 26 FA BB F0 CA AB ED	A9 3D 3A F1 A3 D9 54	43 6D 3A F1 A2 EC F0	2E 54 6D 3A 89 AE E7
🕂 Rijndael (/	AES) e	ncrys	ption	cť <	XOR	enci	ypti	on c	f <sa< th=""><th>mple</th><th>e_ne</th><th>N>, \$</th><th>cey <</th><th>3F 4</th><th>D CC</th><th>38 5</th><th>A A</th><th>65 1</th><th>D6 10</th><th>0 83 2</th><th>27 DE</th></sa<>	mple	e_ne	N>, \$	cey <	3F 4	D CC	38 5	A A	65 1	D6 10	0 83 2	27 DE
00000000 0000003E 0000003E 0000005D 0000007C 0000009B 0000000BA 000000D9	30 35 95 95 95 95 95 95 95 95 95 95 95 95 95	A7 1A B5 5F A3 C2 89 B5 30	C6 93 30 6C A2 0C FA B7	F0 4F7 70 E 60 58 59	17 DB 69 28 61 45 06 22	22 AF 3D E5 8D 50 50	49 8A D7 5B 75 87 6E	8D D4 7C 08 BA ED 1F 97 C7	53 12 4C 9F 0B D9 66 D6 40	D9 FF 77 70 A5 67 D0 84	55 85 85 85 85 85 85 85 85 85 85 85 85 8	69 C7 D7 14 D1 E6 16	E8 69 03 AB 45 D7 37 8D 98	5D 0F F7 EE 4E F0 49 22	8E 39 28 04 89 26 27 52	D0 C7 E13 6BC FF B2	22 D9 6F B2 84 D1 10 10	BE 6F 42 62 C4 ED 47 66 95	E8 ED 2E CD 6F 29 80 30 10	90 1Å B8 E2 B7 98 65 CD 48	CF 88 51 37 20 Å7 Å8

Figure 7. application of AES is done with new password

Figure 9. Derived key length: 2

Figure 8. Analysis: Autocorrelation

Figure 10. Floating frequency

Figure 11. Autocorrelation

Figure 12. Derived key-length is 32.

l	00000000	00	18	05	00	4E	1Å	53	00	0E	00	00	08	03	11	4C	0D	45
L	0000001F	17	01	14	15	53	0F	11	4F	55	1B	00	07	01	0B	41	43	1Å
L	0000003E	43	0B	1Å	19	1D	06	0B	00	00	54	00	00	16	07	06	00	4E
l	0000005D	00	00	ΟA	19	00	00	16	03	16	4E	54	ΟÀ	44	53	00	00	41
l	0000007C	15	00	50	37	1B	1F	00	53	07	00	00	41	4F	43	1C	04	1E
l	0000009B	00	02	1D	55	00	15	04	05	1C	00	12	4C	00	1F	52	1C	0E
l	000000BA	06	4F	00	0B	41	13	1C	09	4C	12	00	17	00	43	1D	59	03
l	000000D9	17	1B	4E	00	59	45	1B	00	15	02	00	07	05	45	00	00	4E
	000000000000000000000000000000000000000	0E	04	1C	59	47	0F	49	10	01	11	00	1Å	14	12	54	49	00
L																		

Figure 13. Intermediate decrypted message by the derived key

The character set of the similar frequency pattern cannot be identified easily by this analysis. Therefore in the phase1 we found that using analysis we cannot retrieve the original message. In phase1 we are using the same key for XOR and AES encryption.

PHASE 2

In this phase we will change the key after the XOR encryption.

Step1: Select the text file to encrypt. Choose the first password. 5F 4D CC 3B 5A A7 65 D6 1D 83 27 DE B8 82 CF 99

Step2: XOR

- Step3: Take the second password and apply hash function (MD5) 8E 70 38 3C 69 F7 A3 B7 EA 3F 71 B0 2F 3E 97 31
- Step4: Applying AES encryption

Step5: Analysis of encrypted message is done with autocorrelation and frequency analysis.

Similarity between the sections of the document from the output shown in figure 8 cannot be determined using the Autocorrelation. In the frequency analysis (figure10) distance between the character set and frequency of alphabets can be considered as the key length. From the given output the frequency of alphabets cannot be identified by an intruder. It is the index of similarity between different sections of the document. It helps to find the cycle length for the automatic analysis of the encryption by Exclusive OR. XOR analysis is done but the key-length derived will not match with the original message. The key-length derived from autocorrelation will also produce a different value. Analysis XOR using the previous key will not derive back the original message. Figure below shows the output after the decryption with the XOR. This explains that the man-in-the-middle will not be able to derive the key-length or the key and thus the original message is not retrieved.

Conclusion

The frequency analysis and the derived key using XOR analysis of the Cryptool are taken as the output where the parameters show different values than the previous encryption procedure. This proves that the man-in-the-middle attack can be minimized with the above technique. When the packets forward from one network to another the change in keys will be implemented to avoid the hackers or intruders to attack the network easily. This technique can be implemented in MANETs where risk of security is found. The results shows that when a message is encrypted using two different keys it will make the information more secure. We can extend the technology to other complicated encryption algorithms to implement more security in the network.

REFERENCES

- Deepti Ranaut, Madal Lal, 2014. "A review on Security Issues and Encryption Algorithms in Mobile Ad hoc Networks", *International Journal of Science and Research (IJSR)*, Vol 3 Issue 6, June pg. 146-148
- Halil Ebrahim Bulbul, Ihsan Batmaz, Mesut Ozel, Wireless Network Security: Comparison of WEP (Wired Equivalent Privacy) Mechanism, WPA (Wi-Fi Protected Access) and RSN (Robust Security Network) Security Protocols.
- Borisov. N., Goldberg, I., Wagner, D., Intercepting Mobile Communications :The Insecurity of 802.11. http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf
- Fluhrer, S., Mantin, I., Shamir, A., Weaknesses in the Key Scheduling Algorithm of RC4.
 - $http://www.drizzle.com/\!\!\sim\!\!aboba/IEEE/rc4_ksaproc.pd\ f$
- A. Arbaugh, W., Shankar N., Justin Wan, Y.C., Your 802.11 Wireless Network Has No Clothes. http://www.cs.umd.edu/~waa/wireless.pdf
- Stubblefield A., Ioannidis J., D. Rubin A., Using the Fluhrer, Mantin, and Shamir Attack. to Break WEP. Revision 2, August 21,2001, AT&T Laboroties and Rice University. http://www.uninett.no/wlan/download/wep attack.pdf
- Hoang, T. Dinh, Chonho Lee, Dusit Niyato and Ping Wang 2013. "A survey of Mobile cloud computing: Architecture, Application and Approaches", *Wireless Communications* and Mobile Computing, 13:1587-1611

Madhurya, M., B. Anandakrishna, T. Subhakshini, 2014.

Implementation of Enhanced Security Algorithms in Mobile Adhoc Networks I. J. Computer Networks and Information Security, 2, 30-37

- Menezes, S. Vanstone and D. Hankerson, 2004. "Guide to elliptic curve cryptography", Springer Professional Computing (Springer, New York).
- Mohd Izhar and Dr. V.R. Singh, 2014. "Network Security Vulnerabilities: Malicious node attack" *International Journal of Scientific and research Publications*, Volume 4, Issue &, July.
- Pramendra Kumar, Vijay Kumar Sharma, 2014. Contemporary exploration of Wireless Network Security issues and Design challenges for an Enterprise network, *International Journal of Engineering, Management and Sciences*, Volume-1, Issue-3 March.
- Ram Shringar Raw, Manish Kumar, Nayhay Singh, "Security challenges, Issues and their solutions for VANET", *International Journal of Network Security and its Applications (IJNSA)*, Vol.5, September 2013
- Stallings W. 2011. "Cryptography and network security Principle and Practice", 5th Edition, Prentice Hall, PP 149-174, 192-206, 266-290, 300- 317, 362-374
- Umesh Kumar, Sapna Gambhir, 2014. "A literature Review of Security Threats to Wireless Networks" *International Journal of Future Generation Communication and Networking*, Vol. 7 No. 4, pp. 25-34
- Yang, H, H. Y. Luo, F. Ye, S. W. Lu and L. Zhang, 2004. "Security in mobile Ad hoc networks: challenges and solutions", *IEEE Wireless Communications*, PP. 38-47