
ISSN: 2230-9926

ORIGINAL RESEARCH ARTICLE

Available online at http://www.journalijdr.com

International Journal of Development Research Vol. 07, Issue, 07, pp.13963-13967, July, 2017

Open Access

SYNTHESIS AND CHARACTERIZATION OF SCHIFF'S BASES LINKED TO NEW SUCCINIMIDES THROUGH PHENYL RING MOIETY

*Ali Abdul Kareem Raheem

Department of Chemistry, College of Sciences, Missan University, Missan-Iraq

ARTICLE INFO

Article History: Received 05th April, 2017 Received in revised form 29th May, 2017 Accepted 26th June, 2017 Published online 31st July, 2017

Keywords:

N-(4-Acetophenyl) Succinamic acid, N-(4-Aceto phenyl)Succinimide, 4-(N-Succinimidyl) Phenyl methyl , Benzylidene.

Corresponding author:

ABSTRACT

Some Schiff bases linked to new Succinimides have been synthesized via multistep synthesis. The first step involved reaction of succinic anhydride with P-Amino Acetophenone producing N-(4-acetophenyl) succinamic acid which was subsequently dehydrated to the corresponding N-(4-aceto phenyl)succinimide via treatment with acetic anhydride and anhydrous sodium acetate; and this in turn when introduced in condensation reaction with various aromatic amines afforded the target new Succinimides Linked to Schiff's bases through phenyl ring moiety. Structures of the prepared compounds were elucidated on the basis of FTIR, ¹HNMR and ¹³CNMR spectral data which agreed with the proposed structures. The newly synthesized compounds are expected to have biological activity since they are built from biologically active components including succinimide and Schiff base.

Copyright ©2017, Ali Abdul Kareem Raheem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Ali Abdul Kareem Raheem, 2017. "Synthesis and characterization of Schiff's bases linked to new Succinimides through phenyl ring moiety", International Journal of Development Research, 7, (07), 13963-13967.

INTRODUCTION

Schiff bases are some of the most widely used organic compounds. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and as polymer stabilizers (Dhar, 1982). Schiff bases have also been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, antiinflammatory, antiviral, and antipyretic properties (Dhar, 1982; Przybylski et al., 2009). Imine or azomethine groups are present in various natural, natural-derived, and non-natural compounds. The imine group present in such compounds has been shown to be critical to their biological activities (Cleiton et al., 2011; de Souza et al., 2007; Guo et al., 2007). On the other hand Cyclic imides are considered as an important functionality which have been found to maintain significant biological activities and pharmaceutical uses (Bagdahi et al., 2007) such as anticancer (Huang et al., 2004; Al-Zoubi, 2013; Rossi et al., 2006; Sondhi et al., 2009), antitumor (Al-Azzawi and Hassn, 2014; Andricopulo et al., 2000; Al-Azzawi and Mehdi, 2010), analgesic (Andricopulo et al., 2000), antiinflammatory

(Mahapatra *et al.*, 2010), anticonvulsant (Khan *et al.*, 2009; Bhat *et al.*, 2010; Vameca *et al.*, 2000), antimicrobial (Yeo et al., 2005; Shen *et al.*, 2013) and antiviral (Samee *et al.*, 2004). Succinimides and their N-substituted derivatives are key structural units in many important compounds including plant growth stimulator, additives for lubricating oils, corrosion inhibitors, drugs for memory enhancement and antitumor agents (Hargreaves *et al.*, 1970; Toja *et al.*, 1991).

MATERIALS AND METHODS

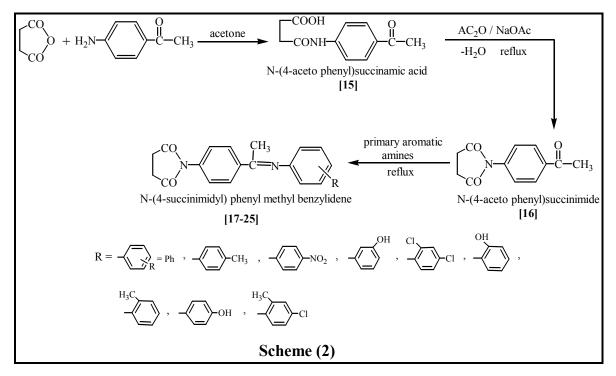
Melting points were determined on Thomas Hoover apparatus and were uncorrected. FTIR spectra were recorded on SHIMADZU FTIR-8400 Fourier Transform Infrared Spectrophotometer. ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker 300 MHz instrument in Al-Albate University in Jordan using tetramethylsilane (TMS) as an internal standard and DMSO-d6 as solvent. 2-3-1- Preparation of N-(4-aceto phenyl)succinamic acid [15] To a solution of (0.01 mol, 1g) of succinic anhydride in (25 mL) of acetone, (0.01 mol, 1.35g) of 4-amino acetophenone dissolved in (10 mL) of acetone was added dropwise with stirring and cooling (Al-Azzawi and Ali, 2008; Brana and Ramos, 2001). Stirring was continued for two hours at room temperature and the resulted solid was filtered, dried and recrystallized from ethanol. The Physical properties of compound [15] are listed in Table (1).

2-3-2- Preparation of N-(4-aceto phenyl)succinimide [16]

A mixture of (0.01 mol, 2.35 g) of N-(4-aceto phenyl) succinamic acid in (25 mL) of acetic anhydride and (5 %) by weight of anhydrous sodium acetate was refluxed for two hours with stirring (Al-Azzwai and Hassan, 2010; Al-Azzwai and Hassan, 2014). The resulted homogenous solution was cooled to room temperature and poured into crushed ice with stirring. The obtained solid was filtered, dried and recrystallized from cyclohexane. The Physical properties of compound [16] are listed in Table (1).

2-3-3-Preparation of Schiffs bases: 4-(N-succinimidyl) phenyl methyl benzylidene) [17-25]

A mixture of N-(4-aceto phenyl) succinimide (0.01 mol, 2.17 g), primary aromatic amine (0.01 mol) and (2-3) drops of glacial acetic acid in absolute ethanol (20 mL) was refluxed for six hours (Konstantinova and Miladinova, 2009). After cooling the obtained precipitate was filtered, washed with cold ethanol, dried and recrystallized from a suitable solvent. The Physical properties of schiffs Bases [17-25] are listed in Table (2).


RESULTS AND DISSCUSION

This involved synthesis of new succinimides linked to Schiff's bases through phenyl ring moiety. Performing this target involved three steps which are summarized in scheme (2).

FTIR spectrum of compound [15] showed two clear characteristic absorption bands at 3338 cm⁻¹ and 3224 cm⁻¹ which are due to v(NH) amide and v(OH) carboxylic. v(C=O)carboxyl and v(C=O) amide absorption bands appeared at 1716 cm⁻¹ and 1693 cm⁻¹ while absorption bands due to v(C=C) aromatic and v(C=O) ketone appeared at 1593 cm⁻¹ and 1645 cm⁻¹ respectively. ¹H-NMR spectrum of compound [15] showed signal at (δ =2.37) ppm belong to (CH₃) protons (Silverstein and Bassler, 1981), multiplet signal at (δ =2.42-2.6)ppm belong to (CH₂CH₂) protons and signals at (δ =6.01-8.39) ppm belong to aromatic protons. The spectrum showed also singlet signal at (δ =10.3) ppm belong to (NH) proton and singlet signal at (δ =12.1) ppm belong to (OH) carboxyl proton. ¹³C-NMR spectrum of compound [15] showed signals at (\delta=25.7-26.3) ppm belong to(CH₃) carbon, signals at (28.6-31.1) ppm belong to (CH₂CH₂) carbons and signals at $(\delta = 112.4 - 153.5)$ ppm belong to aromatic carbons. Other signals appeared at (δ =170.7, 173.7 and 196.39) ppm which belong to(C=O) amide, (C=O) carboxyl and (C=O) ketone carbons respectively (Silverstein and Bassler, 1981). The FTIR spectral data of compound (15) are listed in table (3).

3-2-2- N-(4-aceto phenyl)succinimide[16]

The titled compound [16] was prepared in the second step of this part via dehydration of amic acid [15], In preparation of compound [16] acetic anhydride and anhydrous sodium acetate are used as dehydrating agent. FTIR spectrum of compound [16] showed disappearance of v(OH) carboxyl and v(NH) amide absorption bands and appearance of absorption bands at 1772 cm⁻¹ and 1712 cm⁻¹ (Silverstein and Bassler, 1981) due to asym. and sym. v(C=O) imide. These two points are excellent proofs for success of dehydration reaction. Other absorption bands appeared at 1602 cm⁻¹, 1394 cm⁻¹ and 1683 cm⁻¹ which belong to v(C=C) aromatic, v(C-N) imide and

3-2-1- N-(4-aceto phenyl)succinamic acid [15]

The first step involved synthesis of N-(4-acetophenyl) succinamic acid via reaction of succinic anhydride and 4-amino acetophenone.

v(C=O) ketone respectively. ¹HNMR spectrum of compound [16] showed disappearance of signals belong to (OH) carboxyl and (NH) amide protons and this is a very important proof for success of imide formation. The spectrum showed signal at

(δ =2.52) ppm belong to (CH₃) protons, signals at (δ =2.61-2.81) ppm belong to (CH₂CH₂) protons and signals at (δ =7.45-8.4) ppm belong to aromatic protons. ¹³CNMR spectrum of compound [16] showed signals at (δ =24.11) ppm belong to (CH₃) carbon, signals at (δ =26.32-29.15) ppm belong to (CH₂CH₂) carbons and signals at (δ =114.2-136.71) ppm belong to aromatic carbons. Other signals appeared at (δ =176.54-197.24) ppm which belong to (C=O) imide and (C=O) ketone carbons. The FTIR spectral data of compound (16) are listed in table (3).

3-2-3- Schiffs Bases:N-(4-succinimidyl) phenyl methyl benzylidene [17-25]

The third step involved preparation of new succinimides linked to Schiff's bases via introducing of compound [16] in condensation reaction with different primary aromatic amines. FTIR spectra of compounds [17-25] showed disappearance of v(C=O) ketone absorption band at 1683 cm⁻¹ and appearance of absorption bands at (1596-1676) cm⁻¹ due to \Box (C=N) imine

Table (1): Physical properties of compound	is 15,16	
--	------------------	--

Comp.No.	Compound structure	Color	Melting Points °C	Yield%	Recrystallization solvent
15	COOH CO-N-C-CH ₃	Yellow	203-205	84	Ethanol
16	CON-C-CH ₃	White	162-163	72	Cyclohexane

Comp. No.	Compound structure	Color	Melting Points °C	Yield %	Recrystallization solvent
17	$ \begin{array}{c} CO \\ CO \\ CO \end{array} \begin{array}{c} -C \\ -C \\ CH_3 \end{array} \begin{array}{c} -C \\ -C $	White	192-194	86	Acetone
18	$ \begin{array}{c} CO \\ CO \\ CO \\ CO \\ CH_3 \end{array} \begin{array}{c} -C \\ -C \\ -NO_2 \\ -NO_2 \end{array} $	Yellow	190-191	73	Acetone
19		Brown	174-176	76	Ethanol
20	$ \begin{array}{c} CO \\ CO \\ CO \\ CO \\ CO \\ CH_3 \\ \end{array} \right) \begin{array}{c} OH \\ OH $	White	186-188	77	Dioxane
21		White	178-180	84	Acetone
22	$ \begin{array}{c} CO \\ CO \\ CO \\ CO \\ CO \\ CO \\ CH_3 \end{array} $	White	182-183	85	Ethanol
23	$ \begin{array}{c} CO \\ CO \\ CO \\ CO \\ CO \\ CH_3 \\ H_3C \end{array} $	White	184-186	82	Acetone
24		Brown	171-173	80	Ethanol
25	$ \begin{array}{c} CO \\ CO \\ CO \\ CH_3 \\ H_3C \end{array} \right) - Cl $	White	197-198	81	Acetone

Table (2): Physical properties of compounds [17-25]

Table (3): FTIR spectral data (cm⁻¹) of compounds [15,16]

Comp. No.	v(O-H) carboxylic	v(N-H) amide	v(C-H) aromatic and aliphatic	v(C=O) carboxylic	v(C=O) ketone	v(C=O) amide	v(C=C) aromatic
15	3338	3224	3090 2937	1716	1645	1693	1593
Comp. No.	v(C-H) aromatic	v(C-H) aliphatic	v(C=O) imide	v(C=C) aromatic	v(C=O) ketone		(C-N) mide
16	3060	2970	asym.1772 sym.1712	1602	1683	1	1394

Comp. No.	FTIR spectral data cm ⁻¹								
	v(C-H) aromatic	v(C-H) aliphatic	v(C=O) imide	V(C=N) imine	v(C=C) aromatic	v(C-N) Imide	Others		
17	3045	2930	1778 asym. 1706 sym.	1629	1602	1390	-		
18	3062	2923	1676 asym. 1699 sym.	1676 1645	1598	1392	V(NO2) 1500,1342		
19	3080	2923	1774 asym. 1706 sym.	1604	1558	1390	V(OH) phenolio 3460		
20	3070	2954	1740 asym. 1715 sym.	1664	1600	1375	-		
21	3060	2923	1720 asym. 1689 sym.	1598	1560	1370	V(C-Cl) 1095		
22	3080	2970	1730 asym. 1689 sym.	1596	1570	1357	V(OH) phenolic 3427		
23	3199 3060	2972	1672	1650	1598	1396	-		
24	3120	2920	1740 asym. 1706 sym.	1652	1548	1369	V(OH) phenoli 3400		
25	3080	2943	1780 asym. 1703 sym.	1637	1600	1398	V(C-Cl) 1097		

Table (4): FTIR spectral data (cm⁻¹) of Schiff's bases [17-25]

(Silverstein and Bassler, 1981). Other absorption bands appeared at (1720-1780) cm⁻¹, (1672-1715) cm⁻¹, (1548-1602) cm⁻¹ and (1357-1398) cm⁻¹ which belong to asym. v(C=O)imide, sym. \Box (C=O) imide, v(C=C) aromatic and v(C-N) imide respectively. FTIR spectra of compounds [19], [22] and [24] showed absorption bands at (3400-3460) cm⁻¹ due to v(OH) phenolic while FTIR spectra of compounds [21] and [25] showed absorption band at (1095-1097) cm⁻¹ due to v(C-Cl) and FTIR spectrum of compound [18] showed absorption bands at 1500 cm⁻¹ and 1342 cm⁻¹ due to $v(NO_2)$. ¹H-NMR spectrum of compound [18] showed signal at δ =(2.51) ppm belong to (CH₃) protons, signals at (δ =2.61-2.8) ppm belong to (CH_2CH_2) protons and signals at (δ =7.09-8.21) ppm belong to aromatic protons. ¹³C-NMR spectrum of compound [18] showed signal at (δ =17.38) ppm belong to (CH₃) carbon and signals at (δ = 26.32-28.52) ppm belong to (CH₂CH₂) carbons. Signals belong to aromatic carbons appeared at (δ =118.14-136.7) ppm while signals belong to (C=N) imine and (C=O) imide carbons appeared at (δ =168 and 176.55) ppm respectively. ¹H-NMR spectrum of compound [19] showed signal at (δ =2.36) ppm belong to (CH₃) protons and signals at $(\delta=2.5-2.6)$ ppm belong to (CH_2CH_2) protons. Signals for phenolic (OH) was appeared at ($\delta = 5.15$) ppm while signals belong to aromatic protons appeared at (δ =6.45-8.45) ppm. ¹³C-NMR spectrum of compound [19] showed signal at $(\delta=23.1)$ ppm belong to (CH₃) carbon (Silverstein and Bassler, 1981) and signal at (δ =29.4) ppm belong to (CH₂CH₂) carbons. Signals for aromatic carbons appeared at (δ =105-138.1) ppm and signals at (δ = 149.7) and (δ =169.2) ppm belong to (C=N) imine and (C=O) imide carbons respectively. The FTIR spectral data of compounds (17-25) are listed in table (4).

Conclusion

A series of new Schiff bases containing two biologically active components was synthesized successfully by application of multistep synthesis. The newly synthesized compounds were expected to possess high biological activity since they contain two known biologically active moieties.

Acknowledgements

Author is thankful who share their knowledge, and all who participates in this work.

REFERENCES

- Al-Azzawi A. M. and Mehdi S.A., 2010. Baghdad Sci. J., Synthesis, characterization and biological activity study of N-substituted with different heterocycles 7(1),641.
- Al-Azzawi A.M. and Ali M.S., 2008. J. of Al-Nahrain University Sci. Synthesis and curing of novel phenolformaldehyde resins containing pendant citraconimides.,11(3),15.
- Al-Azzawi A.M. and Hassan A.S. 2014. Iraqi Journal of Science, Synthesis and Evaluation of Antimicrobial Activity of Some New Bis Cyclic Imides Linked to Nitrogen Heterocycles, 55,(3A), pp:865-877.
- Al-Zoubi W., 2013.International Journal of Organic Chemistry, Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works3 (3A),24.
- Andricopulo, A.D., L.A. Muller and V.C. Filho, IL Farmaco, 2000.Analgesic activity of cyclic imides: 1,8-naphthalimide and 1,4,5,8-naphthalenediimide derivatives, 55(4), 319.
- Bhat M.A., Al-Omar M.A. and Siddiqui N., 2010.Synthesis, anticonvulsant and neurotoxicity of some novel 1,3,4oxadiazole derivatives of phthalimide, Der. Pharma. Chemica., 2 (2), 1.
- Brana M.F. and Ramos A. 2001. Curr. Med. Chem. AnticancerAgents, Naphthalimides as Anticancer Agents: Synthesis and Biological Activity, 1, 237.
- Bringmann, G., M. Dreyer, J.H. Faber, P.W. Dalsgaard, D. Staerk, J.W. Jaroszewski, et al(2004). Ancistrotanzanine C and related 5,1'- and 7,3'-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensisJ Nat Prod, 67 (5), pp. 743-748.
- Cleiton M. da Silva, L. da Silva Daniel, V. Modolo Luzia, B.Alves Rosemeire, *et al.* 2011. Journal of Advanced Reaserch, Schiff bases: A short review of their antimicrobial activities, 2(1),8.
- De Souza, A.O., F.C.S. Galetti, C.L. Silva, B. Bicalho, M.M. Parma, S.F. Fonseca, *et al.* 2007. Antimycobacterial and

cytotoxicity activity of synthetic and natural compoundsQuim Nova, 30 (7), pp. 1563-1566.

- Dhar, D.N. and Taploo C.L., 1982. J Sci Ind. Schiff bases and their applications. Res, 41 (8), pp. 501-506.
- Guo, Z., R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang, *et al.* 2007. Antifungal properties of Schiff bases of chitosan, Nsubstituted chitosan and quaternized chitosanCarbohydr Res, 342 (10), pp. 1329-1332.
- Haider N., Jbara R., Käferböck J. and Traar U.,2009. ARKIVOC,ARKAT USA, Inc.,Synthesis of tetra- and pentacyclic carbazole-fused imides aspotential antitumor agents, (38-47).
- Hargreaves, M.K., J.G. Pritchard and H.R. Dave, 1970. Chem. Rev., Cyclic carboxylic monoimides.70, 439.
- Huang, L.H., C.C. Lin, L.W. Lee and P.Y. Lin, 2004. chem. Pharm. Bull., Effects of Cantharidinimides on Human Carcinoma Cells 52, 855.
- Khan S.A., N. Siddiqui, M. Kamal, O. Alam and T. Jawaid, 2009. Acta Poloniac Pharmaceutica-Drug Research, 66(1),65.
- Konstantinova T., M. Miladinova, 2009. J. Appl Polym Sci., Synthesis and properties of some fluorescent 1,8naphthalimide derivatives and their copolymers with methyl methacrylate, 111, 1991.
- Mahapatra S.P., P. Ghode and D.K. Jain, S. C. Chaturvedi, B. C. Maiti and T. K. Maity, 2010. J. Pharm. Sci. and Res., Synthesis and Hypoglycemic Activity of some Phthalimide Derivatives, 2(9), 567.

- Przybylski P., A. Huczynski, K. Pyta, B. Brzezinski and F. Bartl.2009. Curr Org Chem., Biological properties of schiff bases and azo derivatives of phenols.13 (2), pp. 124-148.
- Rossi A.D., L. Rossi, A. Laudisi, V. Sini, L. Toppo, F. Marchesi, G.Tortorelli and M. Leti., 2006. J. Exp.Clin.Cancer Res., Focus on fotemustine. 25:461.
- Shen, Z., Y.Fan, F.Li, X. Chem and Y. Shen, 2013. J. Pest. sci., Synthesis of N-substituted dimethylmaleimides and their antifungal activities against Sclerotinia sclerotiorum 86(2),353.
- Silverstein R.M. and G.C. Bassler, 1981. "spectrophotometric identification of organic compounds", 4th Edition, NewYork.
- Sondhi S.M., R.Rani, P. Roy, S.K. Agrawal and A.K.Saxena, 2009.Bioorg.Med.Chem.Let.,Microwav-assisted synthesiof N-substituted cyclic imides and their evaluation for anticancer and anti-inflammatory activities,19(5),1534.
- Toja E., C.Gorini, C. Zirotti, F. Barzaghi and G. Galliani, 1991. Eur. J.Med Chem. Amnesia-reversal activity of a series of 5-alkoxy-1-arylsulfonyl-2-pyrrolidinones, 26,403.
- Vameca J., P. Bac., C. Herrenknecht, P. Maurois, P. Delcourt and J. P. Stables.2000.J. Med. Chem., Synthesis, Anticonvulsant and Neurotoxic Properties of Substituted N-Phenyl Derivatives of the Phthalimide Pharmacophore, 43, 1311.
- Yeo H., Li Y., Fu L. and Austin Dj., 2005. J.med. Chem., Synthesis and antiviral activity of helioxanthin analogues, 27;48(2):534-46.
