EFFECTS OF VALERIANA OFFICINALIS AND PASSIFLORA SP ON THE BEHAVIOR OF WISTAR RATS

1Giselli Rizzi, 1Adriano Cressoni Araújo, 1,2Élen Landgraf Guiguer, 1,2,*Sandra Maria Barbalho, 2Marie Oshiiwa, 1Fábio Augusto Furlan, 1Anna Laura de Carvalho Gedda, 1Andréia Federighi Rostirola, 1Carlos Henrique Kempe, 1Filipe Natal Carezia and 1Patricia Cincotto dos Santos Bueno

1Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Av. Higino Muzzi Filho 1001, Marília, 15525-902, São Paulo, Brazil
2Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília (FATEC), São Paulo, Brazil

ARTICLE INFO

Article History:
Received 14th June, 2017
Received in revised form
22nd July, 2017
Accepted 29th August, 2017
Published online 30th September, 2017

Keywords:
Valeriana Officinalis, Passiflora sp.
Behavioral Test, Wistar rats.

ABSTRACT

Anxiety affects millions of adults worldwide. Valeriana officinalis (VO) contains several active compounds that may work as anxiolytic as well as Passiflora sp (PA). Due to this reason, the aim of this study is to evaluate the acute and chronic effects of Valeriana officinalis and Passiflora sp in the behavioral test of Wistar rats. Wistar rats were divided into seven groups (n= 5): G1: a control group that received saline solution; G2, G3, and G4 were treated respectively with 11, 22 and 44mg/kg of VO extract and G5, G6 and G7 with PA in the same doses used with VO. Our results for the behavioral test showed that the use of VO and PA significantly modify the behavior of the rats. We verified that the acute treatment with doses of 22mg/kg for VO and 11 and 22mg/kg for PA resulted in a suggestive anxiolytic effect. For the chronic uses, doses of 44mg/kg (VO) and 22mg/kg (PA) resulted in a suggestive anxiolytic effect. Our results show that both VO and PA may exhibit anxiolytic effects in Wistar rats. In acute use of the plants, we may observe stronger effects of VO when comparing with PA. The opposite was seen in the chronic use of the plants.

*Corresponding author

Copyright ©2017, Giselli Rizzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Anxiety affects millions of adults worldwide, and complementary health approaches reached almost 35% in 2012. This may be observed as a growing tendency worldwide due to the low costs and low risk of side effects and addiction (Dantas et al., 2017; Thomas et al., 2016; NHIS, 2012). Valeriana officinalis (VO) is widely known to produce sedative effects and is commonly used in popular medicine. This plant, also known as cat grass, belongs to the family Valerianaceae and contains several active compounds such as valproate, isovalproate, didovalproate and the valerenal and valernik acids. It also may work as anticonvulsant, anti-stress and anti-anxiety and may induce relaxation in the central nervous system.

These effects may help in enhancing sleep. Thus it is also used to treat insomnia (Anheyer et al., 2017; Behboodi Moghadam et al., 2016; Dietz et al., 2016; Gharib et al., 2015). Passiflora sp (PA) is popularly known as passion fruit or passion flower and belongs to the family Passifloraceae. This plant is widely distributed in tropical and warm areas and is commonly used as producing mild sedative, anxiolytic effects, in the treatment of insomnia, convulsion, in relieving neuropathic conditions and improving attention deficit hyperactivity disorder (Dantas et al., 2017; Giovannini P, Howes et al., 2017; Aman et al., 2016; Villet et al., 2016). VO and PA are commonly used for the treatment of anxiety (Giovannini P, Howes, 2017; Dantas et al., 2017; Becker et al., 2014). Mild anxiety and sleep problems are often treated with psychotropic drugs that may bring serious side effects such as chronic dependency or...
withdrawal syndrome. The use of alternative therapeutic approaches such as medicinal plants may play an important role as adjuvant or as the main therapy for anxiety. Due to this reason, the aim of this study is to evaluate the acute and chronic effects of *Valeriana officinalis* and *Passiflora sp* in the behavioral test of Wistar rats.

METHODS

Ethical principles

This study was approved by the Animal Research Ethics Committee of the Medical School of Marília, Marilia - SP, Brazil. Animals were fed and watered *ad libitum* during the experimental period and were cared for according to the recommendations of the Council’s “Guide for the care and use of experimental animals”.

Plant material and aqueous extract (EA)

VO and PA powder were purchased from a local market in the city of Marilia / São Paulo were used in the preparation of the aqueous extract by infusion. After the process, the material was filtered, and the resulting aqueous extracts were aliquoted, stored in vials (9-10 mL each) of amber glass and frozen at -4 °C. Each aliquot was withdrawn one hour before the assay to reach room temperature.

Open field model (OFM)

The open field model is performed with wooden boxes (1m x 1m x 20cm), with the white background divided into quadrilaterals with 10cm² where the exploratory behavior of each animal was observed for 10 minutes. The parameters evaluated were the time of locomotion (in seconds) and the number of quadrilaterals the animals visited. The movement time was considered from the moment the animal moved on the ground (excluding movements when they stayed in the same place). The displacement was considered only from the moment the animal completely or partially surpassed the limits of the other quadrilateral.

Administration of extract of VO and PA

Thirty-five male Wistar rats with 200g-220g were housed in collective cages under a dark/light cycle of 12 hours, room temperature of 22 ± 2°C, and relative air humidity of 60 ± 5% at the University of Marilia, Marília – São Paulo, Brazil. After seven days of acclimation to the laboratory conditions, the animals were divided randomly into seven groups (n= five each group) as follows:

- **G1**: control group that received 500μl of saline solution by intraperitoneal route;
- **G2**: treated with 11mg/kg of VO extract by intraperitoneal route;
- **G3**: treated with 22mg/kg of VO extract by intraperitoneal route;
- **G4**: treated with 44 mg/kg of VO extract by intraperitoneal route;
- **G5**: treated with 11 mg/kg of PA extract by intraperitoneal route;
- **G6**: treated with 22 mg/kg of PA extract by intraperitoneal route;
- **G7**: treated with 44 mg/kg of PA extract by intraperitoneal route.

All groups were fed water and rat food *ad libitum* and were treated for 21 days, and weight gain was evaluated each three days to adjust the administered dose. At the end of the treatment, the locomotor behavior of the animals was assessed using the Open Field Test (OFT). The locomotor activity was evaluated on the first day of administration of the plants (acute effect) and the twenty-first day (chronic effect).

Statistical analysis

The variables: time of movement (in seconds) and displacement of the animals (number of quadrilaterals) were adjusted in Quadratic Regression models, and the estimated values were submitted to Analysis of Variance and complemented with the Bonferroni test, which compared the means two by two.

RESULTS

Results for the behavioral test show that the acute and chronic use of VO and PA significantly modify the behavior of the rats Table 1 and figure 1 express the acute effect of EA of *Valeriana officinalis* and *Passiflora sp* on the activity of rats.

Table 1. Mean of movement time, standard deviation (sd) and result of the statistical analysis of the acute effects of *Valeriana officinalis* (G2-G4) e *Passiflora sp* (G5-G7) in different concentrations.

<table>
<thead>
<tr>
<th>Groups</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>13.4±</td>
<td>19.2±</td>
<td>33.7±</td>
<td>19.5±</td>
<td>17.8±</td>
<td>17.8±</td>
<td>12.4±</td>
</tr>
<tr>
<td>Sd</td>
<td>1.0</td>
<td>0.2</td>
<td>0.8</td>
<td>0.7</td>
<td>0.4</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

1 Different letters indicate a significant difference between the treatments at a level of 5%.

In Table 2 and figure 2 we may see the results for the chronic effects of *Valeriana officinalis* and *Passiflora sp* on the activity of rats. Significant differences were found between the groups.

Table 2. Mean of movement time, standard deviation and result of the statistical analysis of the chronic effects of *Valeriana officinalis* (G2-G4) e *Passiflora sp* (G5-G7) in different concentrations.

<table>
<thead>
<tr>
<th>Groups</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>9.4±</td>
<td>6.8±</td>
<td>15.0±</td>
<td>16.9±</td>
<td>12.9±</td>
<td>20.8±</td>
<td>16.4</td>
</tr>
<tr>
<td>Sd</td>
<td>1.1</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td>C</td>
<td>F</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

1 Different letters indicate a significant difference between the treatments at a level of 5%.
Elevated Plus Maze (EPM) and found significant differences in receptors in the brain.

Quality

Driving simulator performance after acute ingestion of this dose, commonly used to reduce insomnia, does not impair vagus nerve anxiety disorder possibly due to the modulation of GABA VO is commonly used to treat insomnia and generalized effects than VO in the chronic use of the plants. Suggestive anxiolytic effect. PA seems to produce stronger of 44mg/kg (VO) and 22mg/kg (PA) affects the number of lines crossed at doses of 400 and 600 mg/kg, what is comparable to diazepam. Our results show that both PASSIFLORA species have been popularly used as promoting sedative and tranquilizer activities such as PASSIFLORA incarnata, PASSIFLORA quadrangularis, PASSIFLORA edulis, PASSIFLORA actinia, and PASSIFLORA alata (Ofiyi et al., 2015; Braga et al., 2014; Barbosa et al., 2008). Grundmman et al. (2009) investigated the anxiolytic effect of PASSIFLORA incarnata L. in mice performing the EPM. Animals in this study were treated with three different concentrations of the plant and exhibited a significant increase in a number of entries in the open arm at a concentration of 375 mg/kg. However, no activity was seen in 150 and 600 mg/kg, indicating a U-shaped dose response curve. We found similar results in the acute use of VO. Authors have concluded that this plant may display putative anxiolytic effects in these animals. Barbosa et al. (2008) investigated the acute effects of PASSIFLORA alata and PASSIFLORA edulis on anxiety and memory process of male Wistar rats performing the EPM and OFT and found anxiolytic results similar to diazepam that is a drug commonly used in the clinical practice. Memory was not affected by the treatment with PASSIFLORA sp but was disrupted with the use of the drug. Authors have shown that anxiolytic-like activity of PA is linked with lower doses and sedative effects have been associated to higher doses of plant extracts. Aman et al. (2015) found an anxiolytic-like effect when performing the OPT, where the use of PA extract decreased the number of lines crossed at doses of 400 and 600 mg/kg what is comparable to diazepam. Sedative and anxiolytic effects of PA4 have been linked to benzodiazepine and GABA receptor leading to biochemical mechanisms promoted by the binding to GABA_{AT} sites and inhibition of GABA uptake (Aman et al., 2015; Appel et al., 2011; Sampath et al., 2011; Grundmann et al., 2009; Grundmann et al., 2008; Dhawan et al., 2001; Soulimani et al., 1997).

VO is commonly used to treat insomnia and generalized anxiety disorder possibly due to the modulation of GABA receptors and increase in GABA levels, leading to decrease of vagus nerve stimulation. Thus, the extract of this plant may be a drug target. Some authors point that the use of 1600 mg dose, commonly used to reduce insomnia, does not impair driving simulator performance after acute ingestion of this plant (Thomas et al., 2016; Kessler et al., 2012; Kessler et al., 2005; Yuan et al., 2004). Valeric acid and valepotriates present in the roots of VO reduces anxiety and improve the quality of sleep possibly due to relation to Valium-like receptors in the brain. Furthermore, there are no side effects related to the use of this plant, and it has been allowed to be used in food products by FDA in the USA (Gharib et al., 2015; Agwn, Okoye, 2005). You et al. (2012) studied the effects of different doses of Valeriana jatamansi in mice performing the Elevated Plus Maze (EPM) and found significant differences in the time spent in the open arms and the percentage of open-arm entries. Higher concentrations significantly increased the percentage of time spent in the open arms and the number of entries into the open arm, when compared to control group. Becker et al. (2014) found similar effects and showed that VO extract might a significant anxiolytic effect. Murphy et al. (2014) studied the effects of VO extract in rats as well as a solution of valerenic acid and exogenous GABA and evaluated the number of entries and time spent on the open arms of the EPM. These authors found a significant decrease in anxious behavior supporting the evidence that this plant may play an important role as a potential alternative to treat anxiety.

Many PASSIFLORA species have been popularly used as promoting sedative and tranquilizer activities such as PASSIFLORA incarnata, PASSIFLORA quadrangularis, PASSIFLORA edulis, PASSIFLORA actinia, and PASSIFLORA alata (Ofiyi et al., 2015; Braga et al., 2014; Barbosa et al., 2008). Grundmman et al. (2009) investigated the anxiolytic effect of PASSIFLORA incarnata L. in mice performing the EPM. Animals in this study were treated with three different concentrations of the plant and exhibited a significant increase in a number of entries in the open arm at a concentration of 375 mg/kg. However, no activity was seen in 150 and 600 mg/kg, indicating a U-shaped dose response curve. We found similar results in the acute use of VO. Authors have concluded that this plant may display putative anxiolytic effects in these animals. Barbosa et al. (2008) investigated the acute effects of PASSIFLORA alata and PASSIFLORA edulis on anxiety and memory process of male Wistar rats performing the EPM and OFT and found anxiolytic results similar to diazepam that is a drug commonly used in the clinical practice. Memory was not affected by the treatment with PASSIFLORA sp but was disrupted with the use of the drug. Authors have shown that anxiolytic-like activity of PA is linked with lower doses and sedative effects have been associated to higher doses of plant extracts. Aman et al. (2015) found an anxiolytic-like effect when performing the OPT, where the use of PA extract decreased the number of lines crossed at doses of 400 and 600 mg/kg what is comparable to diazepam. Sedative and anxiolytic effects of PA4 have been linked to benzodiazepine and GABA receptor leading to biochemical mechanisms promoted by the binding to GABA_{AT} sites and inhibition of GABA uptake (Aman et al., 2015; Appel et al., 2011; Sampath et al., 2011; Grundmann et al., 2009; Grundmann et al., 2008; Dhawan et al., 2001; Soulimani et al., 1997).

Conclusion

Our results show that both Valeriana officinalis and Passiflora sp may exhibit anxiolytic effects in Wistar rats. In acute use of this plant, we may observe stronger effects of VO when comparing with PA. The opposite was seen in the chronic use of the plants.

REFERENCES

Agwn, K. K. and Okoye I. J. 2005. The effect of music on the anxiety levels of patients undergoing hystericalpigraphy. Elsevier INC.

Dantas, L.P., de Oliveira...