RELIABILITY OF SINGH INDEX IN GRADING OF OSTEOPOROSIS USING DIGITAL RADIOGRAPHS IN ELDERLY PATIENTS WITH PROXIMAL FEMORAL FRACTURES

*Supradeeptha Challa and Satyaprasad, J.

Department of Orthopaedics, G.S.L. Medical College, Rajahmundry, Andhra Pradesh, India

ABSTRACT

Even though dual energy X-ray absorptiometry is the gold standard for measuring the osteoporosis, many institutes in India doesn't have the facility. Singh index for osteoporosis in plain radiographs have low reliability. So in this retrospective study, we used digital radiographs to analyze the relationship between the Singh index with age, gender, fracture site, laterality, along with intra and inter-observer reliability in elderly patients having proximal femoral fractures due to simple fall.

Materials and Method: Records and digital radiographs of 87 consecutive patients (41 women, 46 men), who were older than 50 years of age and with proximal femoral fracture were retrospectively analyzed.

Results: The grade of osteoporosis was not related to age, gender and laterality in the osteoporotic patients with proximal femur fractures (p<0.05). Over all mean intra-observer agreement was 0.49±0.1 and inter-observer agreement was 0.21±0.2 (kappa value). Fracture neck femur was mostly seen in grade 2 and 3 of Singh index and intertrochanteric fractures were seen in grade 4 and 5 Singh index.

Conclusion: Even in digital radiographs, there is poor to fair inter-observer reliability, but good intra-observer reliability. Reliability is good in severe osteoporosis than mild to moderate osteoporosis. Older patients with borderline or mild osteoporosis are more prone to intertrochanteric fractures in the hip region.

The risk of femoral neck fractures increases in patients with advanced osteoporosis.

INTRODUCTION

90% of proximal femoral fractures occur in patients, older than 50 years (Zuckerman, 1996). The incidence of proximal femur fractures in the elderly persons depends on bone mass, the risk of falling, and the effective neuromuscular protective responses that protect the bones against trauma*. Measurement of bone mass can be measured by semi-quantitative techniques for assessing the trabecular morphology of the proximal femur (the Singh index), radiogrammetry, radiographic absorptiometry, quantitative computed tomography, ultrasonography, energy absorptiometry (dual/single energy X-ray absorptiometry) and single or dual photon absorptiometry (Singh et al., 1970; Rosholm, 2001; Yates et al., 1995; Adams, 2009; Benitez et al., 2000; Ann Laskey, 1996; Adams, 1997; Bilbrey et al., 1988; Wahner, 1987). Singh index is a simple means for measuring bone mass on radiographs. Most of the studies used plain film radiographs for grading osteoporosis using Singh index, with low reliability and cut-off level of osteoporosis (Pogrund et al., 1981; Koot et al., 1996; Masud et al., 1995). Very few studies have been done on reliability of Singh index in digital radiographs. So we have done this study using digital radiographs of pelvis including both hips.

MATERIALS AND METHODS

This retrospective study carried on 87 consecutive patients with aged more than 50 years and who sustained fracture neck of femur and intertrochanteric fractures. 46 were men and 41 were women with mean age of 65.82 years (mean ±S.D 65.82±7.8 years, and range is 51-84 years). Right proximal femur involved in 44 patients and left proximal femur in 43 patients (Table 1). All patients underwent antero-posterior digital radiograph of pelvis with both hip joints with...
Normal side hip, twice with one month apart, using Singh rotation. Two orthopaedic surgeons assessed radiographs of hip joints in neutral flexion, abduction, and 15 degrees internal rotation. The inter- and intra-observer reliability of the evaluations by orthopaedic surgeons was tested (kappa value).

Grade 1: Even the principal compressive trabeculae are markedly reduced in number.

Grade 2: Only the principal compressive trabeculae are prominent, the others have been more or less completely resorbed.

Grade 3: There is a break in the continuity of the principal tensile trabeculae.

Grade 4: Principal tensile trabeculae are markedly reduced in number but still be traceable from the lateral cortex to the upper part of the femoral neck.

Grade 5: The structure of principal tensile and principal compressive trabeculae is accentuated. Ward’s triangle appears prominent.

Most of the patients with proximal femoral fracture were with grade 3 Singh osteoporosis index. Most of fracture neck femurs patients have Singh grade 2 and grade 1 osteoporosis. Most of patients with inter-trochanteric fractures have Singh grade 3 and more osteoporosis (Table 2). Over all mean intra-observer agreement was 0.49±0.1 and inter-observer agreement was 0.21±0.2 (kappa value) (Table 3).

RESULTS

The intra-observer and inter-observer agreement is high in severe osteoporosis (grade 1 and grade 2) (kappa value 0.62, 0.4 respectively) than mild and moderate osteoporosis (grade 4, 5 and grade 3) (kappa value 0.21, 0.2 respectively). Using
multiple regression analysis, the grade of osteoporosis was not related to age, gender and laterality in the osteoporotic patients with proximal femur fractures (p>0.05).

DISCUSSION

Using digital X-rays, over all intra-observer agreement has moderate agreement whereas inter-observer variation has fair agreement. At higher degrees of osteoporosis, intra-observer agreement has substantial agreement whereas inter-observer agreement has fair agreement (Anthony et al., 2005). Among the radiological imaging techniques, plain radiographs are considered to be the least effective for the exact quantification of bone mass (Flynn et al., 2001). On the other hand, it was reported that, Singh grading system had an acceptable level of correlation with bone mineral density measurements of the hip by the DEXA scans, quantitative computed tomography, or microscopic morphometry and could be used to determine the degree of osteoporosis as it might reflect the local cancellous bone quality of the proximal femur (Karlsson et al., 1996; Patel and Murphy, 2006; Wachter et al., 2001). In a study performed in patients older than 60 years of age with trochanteric fractures, stable fractures were found to be more frequent in patients with better bone quality (Lizarur-Utrilla et al., 1987). In another study, a higher Singh index was found in older patients with intracapsular proximal femur fractures compared to the extracapsular ones as a result of shear forces (Scarlat, 2002). In an experimental study, it was stated that, femora with lower mechanical strength were more prone to failure at the femoral neck (Ott et al., 1999). However, these findings and the classical belief are different from the findings of the present study (Ott et al., 1999).

The rate of femoral neck (intracapsular) fractures increased in patients with moderate or severe osteoporosis and the rate of femur intertrochanteric (extracapsular) fractures was higher in patients with borderline or mild osteoporosis. The intertrochanteric fracture is due to degree of osteoporosis along with mechanical factors, especially the type and severity of fall and fracture neck femur is due to significantly reduced bone density in femoral neck region than mechanical factors (longitudinal forces) (Fujii, 1987). It has been stated that it is better to predict the factors relating to falls and fracture than mechanical factors, especially the type and severity of fall and fracture neck femur fractures. Women with hip fractures are known to be more osteoporotic than men with hip fractures. Besides, the rate of hip fracture increases when the patient’s age increases. In our study, the degree of osteoporosis was similar in women with proximal femur fractures. No significant change of patient’s age with borderline/mild and moderate/severe osteoporosis. Singh index for osteoporosis in digital radiographs has good reliability in assessing lower grades of osteoporosis. In conclusion, digital radiography can be still used as grading of osteoporosis as fractures are more common in severe osteoporosis (Singh index 1-3) where facilities for DEXA scan is available.

REFERENCES
