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ARTICLE INFO                                       ABSTRACT 
 
 

In this paper n x n generalized idempotent matrix M is defined with entries 1, -1 satisfying M2 = 
mM (1 ≤ m ≤ n) with examples. It is a quite new concept. We have discussed its properties that 
the Kronecker product of two generalized idempotent matrices is also a generalized idempotent 
matrix. Also if a n x n matrices M with entries 1 and -1 satisfies M2 = m M ( 1 ≤ m ≤ n ) then the 
column of matrix M are eigen vector corresponding to eigen values of M. 
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INTRODUCTION 
 

 
 

Generalized Idempotent Matrix 
  
An n x n matrix M will be called a generalized idempotent matrix if M2 = m M ( 1 ≤ m ≤ n ) 
 
Example : - 1)  Let 
 
 
                     1       -1      -1        1 

M =              -1        1       1       -1 

                     -1        1       1       -1 

                      1       -1       -1       1 

 
 
 be 4 x 4 matrix with entries 1and -1,   then  M2 = 4 M 
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Example : - 2) Let 
 

 
 

be n x n matrix , then  M2 = n M 

 
Example : - 3)    Let 
 

 
 

 
 
Then   M2 = 2 M. Also if            
 

 
 

Kronecker Product (Tensor Product) of two matrices A and B is denoted by A x B and is defined as 
 

 
 

Example : Let 
 

 
 

 
Then 
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Eigen value of a Matrix: A number λ is called the eigen value of an n × n matrix M, if ǀ M - λ I ǀ = 0, Where I is the identity 
matrix of order n. 
 

Eigen vector of a Matrix: A matrix Ӽ is called the eigen vector corresponding to eigen value λ of a n x n matrix  M if M Ӽ = λ Ӽ 
 

Theorem 1: If M1 and M2 are two (1, -1) generalized idempotent matrices, then M1 x M2 is also a (1, -1)                         
generalized idempotent matrix. Where Ӽ denotes the Kronecker product of matrix. 
 

Proof: Since M1 and M2 are two (1, -1) generalized idempotent matrices of order n1 and n2   
 
Therefore   M2

1 = n1 M1                  (1) 
 
and M2

2 = n2 M2                              (2) 
 
Then we show that M1 × M2 is also a ( 1, -1 ) generalized matrix of order n1 n2 ie   (M1 × M2 )

2   =   n1 n2 ( M1 x M2 ),    ie    M2  = n 
M 
 

where        
 
M = M1 x M2                             (3) 
 

and   
 

n = n1 n2                                     (4) 
 

We consider M2   =   (M1 × M2 )
2  =  (M1 x M2) (M1 x M2)  = M2

1 × M2
2  

 
= ( n1 M1 ) × ( n2 M2 )  = n1 n2 (M1 x M2) = n M 
  
Therefore   M2 = n M 
 

Examples:  Let        
 

              (1) 

And        
 
                              1              1 
              M =                                            (2)            

1   1        

 
be two generalized idempotent matrix of order n and 2 are respectively,  
 
ie   M2

1 = n1 M1                                    (3) 
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&    M2
2  = 2 M2                                  (4)  

 
Then we shall show that M1 x M2  is a generalized idempotent matrix with entries 1, -1 ie (M1 × M2)

2  =  2n (M1 x M2)     
 
We consider  
 

 

 
We have 

 
 

 

  
 

                        =   2n (M1 × M2) 
 
Theorem : 2     
 
If an n × n matrix M with entries 1 and -1 satisfies M2 = n M (1 ≤ m ≤ n) then the columns of matrix M are eigen vectors 
corresponding to eigen values of matrix M. 
 

If the matrix M is of rank M then there are m repeated non zero eigen values of matrix M and other eigen value is zero. 
 

Proof 
 

Let  n × n matrix M be 
 

          (1) 
 

Where a’s, b’s and c’s are 1and -1. 
 

m 
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Let m be its eigen values of M, then  M2 = m M           (2) 
 
We Consider 
 

 
     M [ C1 C2   ---------     Cn]      =  m [ C1 C2   ---------   Cn ]   
 
Where 
 

          (3) 
 
        [MC1    MC2   -----------   MCn ]     =       [ mC1   mC2 ----------- mCn ]  

 

            (4) 
 

Which shows that column C1, C2  ------  Cn of matrix M are eigen values corresponding to eigen values of matrix M.  
 
Remarks 1) If rank of n x n matrix M with entries 1, -1 is one, then there exist one non zero eigen value of matrix M and other (n-
1) eigen values are zero. Then m has any integral value b/w I and n. 
                              
2) If rank of n x n matrix M with entries 1, -1 is more than one, then there exist m repeated eigen value of matrix M according to 
the matrix M has m linearly independent columns or rows. 
 
Example : 1 If an n x n matrix M with entries 1 and -1 has rank one and M2 = n M  ( 1 ≤ m ≤ n )  
 
Let 
 

 
 

be 4x 4 matrix satisfying M2 = 4 M. 
 
Rank of matrix M is one. Let λ be in eigen value. We consider Ι M  - λ Ι  = 0 
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               λ   =    0,  0,   0,   4 
 

λ 1   =0,   λ2 =0,    λ3 =0, λ4 =4  are eigen values of matrix M 
We show that column of matrix M are eigen vectors corresponding to eigen values   λ = 0, 0, 0, 4 of matrix M,  
 
We take 
 

 

 
 

Which shows that column C1 of matrix C1 is an eigen vector corresponding to eigen value 4 of matrix M. Again, 
 

 
 

 
Which shows that column C2 of matrix is an eigen vector corresponding to eigen value 4 of matrix M  
 
Similarly, columns C3 and C4 are eigen vectors corresponding to eigen value 4 of matrix M 
 
Thus the column C1,C2,C3 and C4 of matrix M are eigen vector corresponding to eigen value 0’s of matrix M is obvious.  
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Example: 2 If the rank of matrix M is more than one. We suppose that n x n matrix M with entries 1 and -1 has rank more than 
one and matrix M satisfies M2 = n M, m < n then the column of matrix M are eigen vectors corresponding eigen values of matrix 
M  
 

Let -     
 

        
be 4 x 4 matrix with entries  1 and -1  and  C1, C2   ----------- Cn are in column. The rank of matrix M is 2.  
 
Let λ be eigen vector of matrix M,   Ι M  - λ Ι  = 0  
     

    
            λ   =    2,   2,    0,   0 
 

           λ1 = 2,     λ2 =2,   λ3= 0,     λ4 =0   are eigen values of matrix M. The rank of matrix M is 2  so there are two linearly 
independent columns or rows and rest two columns or rows linearly dependent. So we get two repeated eigen values 2, 2 and rest 
are 0, 0. 
 
The column of 4 x 4 matrix M satisfying M2 = 2 M are eigen vectors corresponding to eigen value 2’s and 0’s of matrix M 
 
(1) We consider,     
 

 
 

 
 
MC1 = 2C1 

 

Which shows that column C1 of matrix M is eigen vector corresponding to eigen value 2 of matrix M Again, we consider 
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Which shows that columns C2 of matrix M is eigen vector corresponding to eigen value 2 of matrix M. Similarly column C3 and 
C4 are eigen values corresponding to eigen value 2’s of matrix M verification is that the column C1,  C2,  C3 and  C4 of matrix M are 
eigen vectors corresponding to eigen value 0’s of matrix M is obvious. In construction of n x n matrix M satisfying  M2 = m M ( 1 
≤ m ≤ n ) we find eigen vectors as the column of matrix M corresponding to its eigen value m. 
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Suggestion / Further scopes 
 
Such type of generalized idempotent matrices’ can be used as encryption coding theory and it has feature that the column of a 
generalized idempotent matrix are eigen vectors. So we can directly find eigen vector without any rigorous calculation. Also we 
can find a new generalized idempotent matrix by the Kroncker product of two other generalized idempotent matrices.  
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