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ARTICLE INFO  ABSTRACT 
 
 

The trajectory of a robot end effector is described by a ruled surface and a spin angleabout the 
ruling of the ruled surface. In this paper, we analyzed the problem of describing trajectory of a 
robot end-effector by a spacelike ruled surface with spacelike ruling. We obtained the developed 
frame   by rotating the generator frame   at an Darboux angle   in the plane, which is on the 
striction curve   of the spacelike ruled surface. Afterword, natural frame, tool frame and surface 
frame which is necessary for the movements of robot are defined derivative formulas of the 
frames are founded by calculating the Darboux vectors. Tool frame are constituted by means of 
this developed frame. Thus, robot end effector motion is defined for the spacelike ruled surface   
generated by the orientation vector. Also, by using Lancret curvature of the surface and rotation 
angle (Darboux angle) in the developed frame the robot end-effector motion is developed. 
Therefore, differential properties and movements an different surfaces in Minkowski space is 
analyzed by getting the relations for curvature functions which are characterized a spacelike ruled 
surface with spacelike directix. Finally, to be able to get a member of trajectory surface family 
which has the same trajectory curve is shown with the examples in every different choice of the 
Darboux angle which is used to described the developed frame.   
 

 
Copyright © 2018, Gülnur Şaffak Atalay and Emin Kasap. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 
 
 

 

 

 

INTRODUCTION 
 

The motion of a robot end effector is referred to as the robot trajectory. The trajectory of a robot end effector is described by a 
ruled surface and a spin angle about the ruling of the ruled surface. A robot trajeectory consist of; (i) a sequence of positions, 
velocities and accelerations of a point fixed in the end effector, and (ii) a sequence of orientations, angular velocities and angular 
accelerations of the end effector. The point fixed in the end effector will be referred to as the Tool Center Point and denoted as the 
TCP. Ruled surfaces were first investigated by G. Monge who established the partial differential equation satisfied by all ruled 
surfaces. Ruled surfaces have been widely applied in designing cars, ships, manufacturing (e.g. CAD/CAM) of products and many 
other areas such as motion analysis and simulation of rigid body, as well as model-based object recognition system. However, 
ruled surfaces are stil widely used in many areas in modern surface modelling systems. Ruled surfaces in Minkowski 3-space have 
been studied in a lot of fields. More information about timelike ruled surfaces in Minkowski 3-space may be also found in Turgut 
and Hacısalihoğlu’s papers in (Turgut and Hacısalihoğlu, 1997; Turgut and Hacısalihoǧlu, 1998) and Öğrenmiş et al. (2006).  
Curvature theory investigates the intrinsic geometric properties of the trajectory of points, lines, and planesembedded in a moving 
rigid body. Curvature theory is also concerned with the velocity and acceleration distribution of a moving rigid body in 
constrained motion. The curvature theory is using to determine the differential properties of the motion of arobot end effector. The 
differential properties of the robot end effector motion are then relatedto the time dependent properties of the motion which are 
essential in the robot trajectoryplanning. The differential properties of the ruled surface generate the linear and angularmotion 
properties of the robot end effector for robot path planning, (Ryuh, 1989).  
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Also, the curvature theory of line trajectories seeks to characterize the shape of thetrajectory ruled surface and relates it to the 
motion of body carrying the linet hat generatesit, (McCarthy and Roth, 1981). Ryuh and Pennock, (Ryuh and Pennock, 1988) 
applied the curvature theory of a ruled surface to study the instantaneous motion properties of a robotic device. The differential 
properties of motion ofthe end effector were determined from the curvature theory. Also, they proposed amethod of robot 
trajectory planning based on the curvature theory of a ruled surface in corporated with the geometric modeling technique in [Ryuh, 
1989]. In this method, it is shown that how aruled surface may be generated using the geometric modeling technique of a curve. 
Ryuh, Leeand Moon in [Ryuh et al., 2006] studied a precision control method of a robot path generation based on thedual 
curvature theory a ruled surface. In [Chu et al., 2008], the authors are developed a new adjustment method for improving 
machining accuracy of tool path in five-axis flank milling of ruled surfaces. They proposed a feedrate adjustment rule that 
automatically controls the tool motionat feedrate-sensitive corners based on a bisection method. Also they are conducted on 
different ruled surfaces to verify the effectiveness of the proposed method (kim et al., 2001). Developed a real-time trajectory 
generation method and control approach for a five-axis NCmachine. They describe the spatial trajectory of the tool of the five axis 
machine by a ruled surface, and the differential motion parameters of the tool were obtained from the curvaturetheory of the ruled 
surface. Also, they were used the Fergusen geometric modeling techniqueto present the tool trajectory as a ruled surface. Also, in 
(Gasparetto and Zanotto, 2007; Litvin and Gao, 1988) the authors have studied manipulators.  
 
The motion of robot end-effector is a research topic of various studies in Minkowski 3-space. Ekici et al. studied the differential 
properties of robot end-effectors motion using the curvature theory of timelike ruled surfaces with timelike ruling in (Ekici et al., 
2008). In (Turhan and Ayyıldız, 2011), Turhan and Ayyıldız used the curvature theory of ruled surfaces with lightlike ruling in 
Minkowski 3-space. They also derived the relation between these functions and the curvature functions of the central normal 
surface whose ruling spacelike. In this paper, we address the path planning problem using the curvature theory of a ruled surface. 
The objects consist of point in the coordinate plane. We can locate such coordinates by rotating these objects in a specific 
direction. This allows the calculation of the robot's next motion. So, any errors and miscalculations that may arise in trajectory 
planning can be prevented. Each robot has a unique coordinate system. However, the appropriate choice of coordinates for the 
robot motion allows us to define the work area of the robot more efficiently. Therefore, we obtained the developed frame

 1 1 1, ,k r t by rotating the generator framer, t, kat an angle(s) in the planer, kto provide a practical work area. It is useful 

in animation motion planning, and tool path planning in CAD/CAM. Thus, this study represents robot path as a ruled surface 

generated at the Tool Center Point and by the unit vector ( 1k O ) of the tool frame. The vector 1k O is depending on the 

Darboux angle functionNew direction vectors are achieved by changing the angle function. The robot trajectory 
changes depending on the angle function. Therefore, we obtained trajectory ruled surface family with a common trajectory curve 
in the rotation trihedron. Any other generated trajectory corresponds to a member of this trajectory ruled surface family. The given 
calculations (i.e, positional variation of the TCP, linear velocity, angular velocity) are valid for all members of the trajectory ruled 
surface family. Therefore, we defined the desired trajectory of the robot end effector motion and give the differential properties of 
robot endeffectors motion using thecurvature theory. Also, the motion of robot end effector is illustrated with examples by two 
members of the spacelike trajectory ruled surface family. 
 
2. Preliminaries 

Let us consider Minkowski 3-space 
3 3
1 1[ ,( , , )]IR IR     and let the Lorentzian inner product of  1 2 3, ,X x x x  and 

  3
1 2 3 1, ,Y y y y IR   be  

 

1 1 2 2 3 3,X Y x y x y x y    . 

 

The norm of
3
1IRX   is denotedby X  and defined as XXX , . A vector ),,( 321 xxxX  3

1IR  called a 

spacelike, timelike and null (lightlike)vector if ,X X >0 or X=0 , ,X X <0 and 0, XX for 0X ,respectively. A 

timelike vector is to be positive(resp.negative) if and only if 3x >0(resp. 3x <0) , [15]. 

 

The vector product of vectors  1 2 3, ,X x x x and  1 2 3, ,Y y y y  in 
3
1IR is defined by  

 

2 3 3 2 1 3 3 1 2 1 1 2( , , )X Y x y x y x y x y x y x y     . 
 

For  X and Y  spacelike vectors in
3
1IR , 

 
 

If the inequality ,X Y > X Y  is satisfied, there is a unique real number a such that, 
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cosh, YXYX  . 

If the inequality YXYX ,  is satisfied , there is a unique real number a such that  

 

cos, YXYX  . 

 

Let Xbe a spacelike vector and Y be a positive timelike vector in 
3
1IR . Then there is a unique nonnegative real number   such  

 

that sinh, YXYX  . 

 

For  X and Y be timelike vectors in 
3
1IR .Then there is a unique real number   such that cosh, YXYX  , [ 16]. 

Theorem 2.1: Let  X, Y 
3
1IR . We have 

 

i) If X and Y are the spacelike vectors, YX is a timelike vector 
 

ii) If X and Y are the timelike vectors, YX  is a spacelike vector 
 

iii) If X is the spacelike vector and Y is the timelike vector, YX is a spacelike vector where   is Lorentzian cross product , 
(Turgut and Hacısalihoğlu, 1997; Turgut and Hacısalihoǧlu, 1998). 
 

3
1: IRIRI   

 

A smooth regular curve  is said to be timelike, spacelike or lightlike curve if the velocity vector '  is a timelike, spacelike or 
lightlike vector, respectively [15]. In fact, a timelike curve corresponds to the path of on observer moving at less than the speed of  
light. Null curves correspond to moving at the speed of light and spacelike curves to moving faster than light. 

Let )(s   be a unit speed curve in 
3
1IR ; by ( )s  and ( )s we denote the natural curvature and torsion of  ( )s , 

respectively. Consider the Frenet frame  1 2 3, ,e e e associated with curve )(s   such that 1 1( )e e s , 2 2( )e e s  and 

3 3( )e e s are the unit tangent, the princibal normal and the binormal vector fields, respectively. If )(s   is a spacelike 

curve, then the structural equations (or Frenet formulas) of this frame are given as  
 

1 2'( ) ( ) ( )e s s e s   ,   2 1 3'( ) ( ) ( ) ( ) ( )e s s e s s e s   ,  3 2'( ) ( ) ( )e s s e s , 

 

where 3

3

1 , ,

1 , .

e is timelike

e is spacelike



 

  
 
If )(s   is a timelike curve, then above equations are given as (O'Neill, 1983) 

 

1 2'( ) ( ) ( )e s s e s   ,   2 1 3'( ) ( ) ( ) ( ) ( )e s s e s s e s   ,  3 2'( ) ( ) ( )e s s e s , 

 

A surface M in 
3
1IR  is called a timelike surface if the induceded metric on the surface is a positive defination metric. The normal 

vector on the spacelike surface is a timelike vector , [O'Neill, 1983]. A spacelike ruled surface in 
3
1IR  is obtained by a spacelike 

straight line moving along spacelike curve [O'Neill, 1983]. The spacelike ruled surface M is given parameterization  
 

3
1: , ( , ) ( ) ( )I IR IR s v s vX s      in

3
1IR . 

 
3. Frames of Reference 

 
A timelike ruled surface which indicates the tool path has a parametric representation,  
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( , ) ( ) ( )X s v s vR s                                                                                                                     ……………………… (3.1) 

where ( )s a spacelike curve is the specified path of the TCP, v is a real-valued parameter, and ( )R s spacelike straight line is the 

vector generating the timelike ruled surface(called the ruling).  
 
The striction curve of spacelike ruled surface X is 
 

       s s s R s                                                                                                             …………………………. (3.2) 

 
where the parameter 
 

     
'' ,s s R s  

                                                    
                                                        ………………………….(3.3) 

 
Indicates the distance from the striction point of the spacelike ruled surface to the TCP. 

 
For the generator trihedron, there are two cases. The generator trihedron is defined by three mutually orthogonal unit vectors, 
namely; 

i) Thes pace like generator vector    1/r R R s , the space like central normal vector 
'

t R , and the Time like central 

tangent vector k t r  , where R  is ( )R s . 

 

ii) The space like generator vector    1/r R R s , the time like central normal vector 
'

t R , and the space like central 

tangent vector k t r  , where R  is ( )R s . 

 
Now let's make the necessary calculations for the second of these cases. Likewise it can be done in the other. 
 
The first order positional variation of the striction line of the spacelike ruled surface may be expressed in the generator trihedron as  

 
' r k   (3.4) 

 
Where 
 

' '

''

1
,

1
,

R R
R

R R
R

 



  

                                                                                                                     …………………....................(3.5) 

Is referred to as the curvature functions of the spacelike ruled surface. 
 
First order angular variation of the generator trihedron may be expressed in the matrix form as 
 

0 1 0
1

1 0

0 0

r r
d

t t
ds R

k k





     
          
          

(3.6) 

 
where  
 

'' '
,R R R    

Is referred to as the geodesic curvature of the curve drawn by the ruling vectors  R s  of the spacelike ruled surface. 

For the Darboux vector of generator trihedron of space like ruled surface, we can write 
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 
' 1

rU t t r k
R

                                                                                                                …………………...............(3.7) 

 
Also, the Lancret curvature of spacelike ruled surface Xis 
 

2
'

2

1
t

R





                                                                                                                    ……………………………….(3.8) 

 
4. Developed Trihedron 
 

Let us rotate the generator trihedron  , ,r t k  on the striction curve of the spacelike ruled surface X  at the central point at an 

Darboux Lorentzian angle  s  ,   fixed, in the plane  ,r k . So, it can be written in matrix form as 

 

1

1

cos sin

sin cos

r r

k k

 

 

     
     

                                  

                                                                   ………………………………..(4.1) 

 
In fact, by using the above rotation equation and we have relations 
 

1

1

1

cos sin ,

,

sin cos .

r r k

t t

k r k

 

 

 



 
 

The orthonormal system  1 1 1, ,k U r t is called the developed trihedron of the spacelike ruled surface X.Here, 1k  is Darboux 

vector of generator trihedron of thespacelike ruled surface X. 
 
Eqns. (3.7) and (3.9) may be written as 

 
sin cos 0                                        

                                                                     ………………………………….(4.2) 

 
By using Eqn. (4.2) into Eqn.(3.8) we get the relations 
 

1
cos

sin

R

R

 


 



 

                                                                                                               …...………………………………..(4.3) 

The first-order angular variation of developed trihedron  1 1 1, ,k r t  may be expressed in the matrix form as 

 
'

1 1

'
1 1

1 1

0 0

0

0 0

k k
d

r r
ds

t t



 



    
         
        

                                                                                   ……………………………………(4.4) 

where '  is the curvature and   is the Lancret curvature of thespacelike ruled surface X .Also; 1k , 1r and 1t  be the spacelike 

generator vector, the spacelike central normal vector and the timelike central  tangent vector, respectively. 
 
Each vector of developed trihedron in end effector defines its own ruled surface while the robot moves. Let us take the following 
spacelike ruled surface (robot trajectory ruled surface) as  
 

     1,s v s vk s                                                                                                          ..……………………………….(4.5) 

where   s spacelikecurve  is the specified path of the TCP (called the directrix of the timelike ruled surface X  and ), v is a 

real valued parameter, and 1( )k s  is the spacelike vector generating thespacelike ruled surface   (called the ruling or direction). 

Also, this surface is trajectory surface of robot. 
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If you take a surface formed by a 1t  timelike central tangentvector , such a surface is not defined in 
3
1IR .  So, is not talk about the 

robot trajectory ruled surface. 

If you take a surface formed by a 1r spacelike central normalvector , such a surface is to be central normal surface, will examine in 

section 5.  
 
The striction curve of spacelikeruled surface   is  

 

       
1 1 1k ks s s k s                                                                                                   ……………………………….(4.6) 

 
Where the parameter  
 

 
1

'

'

cos sin cos
k

R
s

   




  
                                                                        ……………………………………(4.7) 

 

Also,   and   are referred to as the curvature functions of the space like ruled surface ( Eqn. (3.1) ). Differentiating Eqn.(4.6) 
gives first order positional variation of the striction point of the space like ruled surface  . By using Eqns. (4.4) and (4.7) we can 

write Eqn.(4.6) with respect to developed trihedron as 
 

 
1 1

'
1 1k ks k t                                                                                                   ………………………………………(4.8) 

Where 
 

1 1

'sin cos ' sink kR                                                                           ….……………………………………(4.9) 

 

How that,   and   are curvature functions which characterize the spacelike ruled surface here 
1k

  and  are curvature 

functions which characterize the robot trajectory space like ruled surface. 
 
The positional variation of the striction line may be considered as the linear velocity. As in the case of the developed frame (4.4) 
may also be written as 
 

'

1

'
1 1 1 1kU r r t k    

                                                                                                        ………………………………..(4.10) 
 

Which is Darboux vector of the developed frame. In a planar curve, the first term will drop out and the developed frame will rotate 

around the 1k  vector with an angular velocity. This formulation is useful for studying the rotational motions of rigid body 

attached to the developed frame moving along a curve. 
 
5. Central Normal Surface 
 

As the developed trihedron moves along the striction curve 
1k

 , the central normal vector generates another space like ruled 

surface which is called thespacelike central normal surface. The spacelike central normal surface is defined as 
 

     
1 1 1,r ks v s vr s                                                                                           …….……………………………… (5.1) 

 
The striction curve of spacelikecentral normal surface is 
 

       
1 1 1 1r k rs s s r s                                                                                     …….………………………………..(5.2) 

 
Differentiating (5.2) and by using Eqn.(4.8) into Eqn. (4.4) gives 

 
 
                                                                                          ………..……..……………………...(5.3) 
 

  1

1

'

'2 2

k

r s
 


 

 
 


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The natural trihedron is defined by the following three orthonormal vectors; the timelike central normal vector 1r, spacelike 

principal normal vector 2r , and spacelike binormal vector 3r , as shown in figure 1. Also, the natural trihedron is  used to study 

the angular and positional variation of the normal vector. 

For the natural trihedron  1 2 3, ,r r r , there are two cases: 

i) 2r  timelike vector, 1r and 3r  spacelike generator vector: 

 
These three vectors are defined, respectively, as 
 

'

'

1
1

'
2 1

3 2 1

1

k
r

r r

r r r









 

                                                                                                                                ..………………………………..(5.4) 

 

where 
'

1r   is the curvature of thespacelike ruled surface  .Also, here is 1 2 3r r r  , 2 3 1r r r   and 3 1 2r r r  . 

 

ii) 3r  timelike vector, 1r and 2r  spacelike generator vector: 
 

These three vectors are defined, respectively, as 
 

'

'

1
1

'
2 1

3 1 2

1

k
r

r r

r r r









 
 

 

Where 
'

1r   is the curvature of the spacelike ruled surface  . Also, here is 1 2 3r r r  , 2 3 1r r r   and 3 1 2r r r  . 

Now let's make the necessary calculations for the first of these cases. Likewise it can be done in the other. 
 

Let  be the angle between the spacelike vectors 1k  and 3r , see figure1.Here, the developed trihedron and the natural trihedron 

have the time like central normal vector in common. Then, we have  
 

1 2 3

1 2 3

sinh cosh

cosh sinh

k r r

t r r

 

 

 

 
                                                                                               ……………………………………(5.5) 

Substituting Eqn. (4.4) into Eqn. (5.5) and using 
'

1 2r r  it follows that  

'

cosh    ,   sinh .
 

 
 

                                                                                           …………………………………….(5.6) 

 

From Eqn. (5.6), adding the result and rearranging gives the curvature  
 

2 '2                                                                                                                         ……………………………………..(5.7) 
 

The Darboux vector of developed trihedron may be obtained in the natural trihedron as follows. Substituting Eqn. (5.6) into Eqn. 
(5.5) gives 
 

1 1

'
2 1

'
3 1

0 0
1

0

0

r k

r r

r t



 


 

     
           
          

                                                                                            …………………………………..(5.8) 
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Hence, the Darboux vector of the developed trihedron may be written as 
 

1 3kU r                                                                                                                     ………………………………………(5.9) 

 
Which shows that the binormal vector plays the role of the opposite direction of rotation for developed trihedron. 
Differentiating Eqn. (5.2) and substituting Eqns.(4.8) and (5.8) into the result, we obtain 
 

1 1 1

'
1 3r r rr r  

                                                                                                     
………………………………………(5.10) 

 
where       
   

'

1 1

1

1

'

r r

k

r



 



  


 

                                                                                                           ……………………………………….(5.11) 

 
 The first-order angular variation of natural trihedron may be expressed in the matrix form as 
 

1 1

2 2

3 3

0 0

0

0 0

r r
d

r r
ds

r r



 



     
          
          

                                                                                      ……..………………………………..(5.12) 

 

where  and 
'

2 3,r r   are the curvature and torsion of thespacelike ruled surface  , respectively. 

 
To find simpler expressions forthe curvature and torsion, we substituting Eqn. (5.6) into Eqn. (5.7) which  gives 
 

' cosech  
    

                                                                                                            …..………………………………….(5.13) 

 
Differentiating eqn.(5.4) and by using eqns (4.4) and (5.8) we have 
 

'                                                                                                                            …...……………………………………(5.14)  

 
As in the case of the natural trihedron, eqn. (5.16) may also be written as  
 

2 3 1rU r r                                                                                                               …… …………………………………….(5.15) 

 
which is the Darboux vector of the natural trihedron. 
 
Hence, observe that both the Darboux vector of the natural trihedron and the Darboux vector of the developed trihedron describe 
the angular motion of thespacelike ruled surface and thespacelike central normal surface. 
 
6. Relationship Between the Frames 
 
Path of a robot may be represented by a tool center point and tool frame of end-effector.For tool frame, there are two cases. The 

tool frame is represented by three mutually perpendicular unit vector  , ,O A N ,  

 

i) where O  is the spacelike orientation vector, A  is the timelike approach vector and N  is the spacelike normal 
vector, shown in figure 1. 

ii) where O  is the spacelike orientation vector, A  is the spacelike approach vector and N  is the timelike normal 
vector, shown in figure 1.  

Each vector of tool frame in end-effector defines its own ruled surface while the robot moves. Let 1O k  and the vector O are 

called directix and ruling, respectively. Then, the surface frame,  , ,n bO S S , of spacelikeruled surface   may be determined as 

follows; 
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0
s v

n v

s v

S
 

  





                                                                                                               ……………………………………(6.1) 

 
which is the unit timelike normal of spacelikeruled surface   in TCP. 

Substituting Eqns. (4.4), (4.8) and Eqn.(4.6) into Eqn.(6.1) we obtain 
 

 
1

1

'
1 1

2
2 '

k

n

k

t r
S

  

  


 


                                                                                                      …………………………………….(6.2)  

 

Where 
1 1 1
, ,k k r   and   are as defined by Eqs.(4.9), (4.7), (5.3) and (3.3), respectively. 

 

b nS S O                                                                                                                               …………………………………..(6.3) 

 
Is unit time like binormal vector of the space like ruled surface. 
Substituting Eqn. (6.2) into Eqn.(6.3) gives  
 

 
1

1

'
1 1

2
2 '

k

b

k

r t
S

  

  





                                                                                                        …………………………………….(6.4) 

 
The orientation of the surface frame relative to the tool frame and the developed trihedron is shown in figure 1. Let  be the 

angle between time like vector nS and the space like approach vector A . Then, we have 

 

, sinh ,nS A A O N                                                                                             …………………………………..(6.5)                                     

 
We may express the results in matrix form as 
 

1 0 0

0 sinh cosh

0 cosh sinh
n

b

O O

A S

N S

 

 

     
          
          

                                                                …………………………………….(6.6) 

 

Let the angle between the vectors bS  and 1t  be  . Then, we have  

 

1 1

1 1

sinh cosh

cosh sinh

n

b

S r t

S r t

 

 

 

 
                                                                                   …………………………………..(6.7) 

 
From Eqns. (6.6) and (6.7) we can write 
 

1

1

1

1 0 0

0 cosh sinh

0 sinh cosh

O k

A r

N t

     
            
                                                                                         

……………………………………..(6.8) 

 
where      describes the orientation of the end-effector. 

 
7. Differential Motion of The Tool Frame 
 
The spacelike curve generated by TCP from eqn. (3.2) is 
 

     s s R s                                                                                                        ………………………………….(7.1) 
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Differentiating eqn. (7.1) with respect to the arc length, using eqns.(3.6) and (3.4), the first-order positional variation of the TCP, 
expressed in the generator trihedron is 
 

   ' 's R r t k            

                                                                                                                                            ……………………………………..(7.2)  
Substituting eqn. (4.1) into eqn. (7.2), gives 
 

     ' ' '
1 1 1sin cos cos sinR k R r t                                   …………………………………..(7.3) 

 
Also, substituting eqn.(6.11) into eqn. (7.3), gives 
 

     
    

' ' '

'

sin cos cosh cos sin sinh

sinh cos sin cosh

R O R A

R N

       

   

         
 

       
 

…………………………...(7.4) 

 

Differentiating eqn. (6.9) and substituting eqn.(4.4) into the result the first order angular variation of the tool frame gives 
 

   
   

'

1

' ' '
1

' ' ' 1

0 0

cosh sinh cosh

sinh cosh sinh

O k
d

A r
ds

N t



  

  

 
    
               
                                                 

……………………………..(7.5) 

 

The first-order angular variation of tool frame  , ,O A N  may be expressed in the matrix form as 

 

' '

' '

' '

0 cosh sinh

cosh 0 (7.6)

sinh 0

O O
d

A A
ds

N N

 

 

 

      
            
           

 

 

As in the case of the tool frame, may also be written as  
 

 ' ' 'sinh coshAU O A N                                                                            …………………………………..(7.7) 

 

Which is the Darboux vector of the tool frame. Here, we obtain by using eqn. (6.8)   
 

 ' '
1 1AU k t   

                                                                                                  …………………………………….(7.8) 
 

Also, substituting eqn. (4.10) into eqn. (7.8), gives 
 

1

'
1 (7.9)A kU U k    

Hence, angular variation of tool frame that according to developed frame is the rotation around the 1r  vector. 

 
 

1k O


1t t

r

k

1r1r

1k

1t

1t

1k

1r

2r

3r

1k

1r


1k

1r


A

nSN

bS









1k O


1t t

r

k

1r1r

1k

1t

1t

1k

1r

2r

3r

1k

1r


1k

1r


A

nSN

bS








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Figure 1. The relationship between frames 
8. Examples  
 
Example 1. 
 
Consider the spacelike ruled surface 
 

   , sinh ( 2 ), 2 , cosh ( 2 )X s v s v s v s v   
 

 

where  ( ) 2 sinh , 2 , 2 coshs s s s   (spacelike) is the base curve  ( ) sinh ,1, coshR s s s  (spacelike) is the  

 

genarator. 0 1 1s and v      , (Figure 8.1), the generator trihedron is  
 

 

 

 

1
sinh ,1, cosh ,

2

cosh ,0, sinh ,

1
sinh ,1,cosh .

2

r s s

t s s

k s s

 

 

 
 

 

A straight forward computation shows that 
 

  2s ,    
2

2
s s     and 

'' '
, 1R R R     . 

 

Also, the Darboux vector of generator trihedron  0,1,0rU  . 
 

 
 

Fig. 8.1. Spacelike ruled surface with generator vector R  
 

The developed trihedron is defined by, 
 

           

           

 

1

1

1

1 1 1
( sinh (cos sin ), (sin cos ), cosh (cos sin ))

2 2 2

1 1 1
( sinh (cos sin ), (cos sin ), cosh (cos sin )),

2 2 2

cosh ,0, sinh .

k s s s s s s s s

r s s s s s s s s

t s s

     

     


   




    

  

  

 

Therefore, spacelike trajectory ruled surface family with a common trajectory curve is defined by 
 

 
sinh ( 2 (sin ( ) cos ( ))), 2 (sin ( ) cos ( )),

2 2
,

cosh ( 2 (cos ( ) sin ( )))
2

v v
s s s s s s

s v
v

s s s

   



 

 
     

 
 

  
 

    ……………………… (8.1) 
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If we take ( ) coshs s   ,   0.5 0.5
3 3

s and v
 

     then we obtain  1 1 , s v   a member of the spacelike 

trajectory ruled surface family with a common trajectory curve in the developed trihedron as shown in Fig.8.2. 
 

 
       

   
1

sinh ( 2 (sin cosh cos cosh )),2 (sin cosh cos cosh ),
2 2

,

cosh ( 2 (cos cosh sin cosh ))
2

v v
s s s s s s

s v
v

s s s



 
     

 
 

  
 

 ……...(8.2)

 

 

If we take ( ) sin ss s e      ,   0.5 0.5
3 3

s and v
 

     then we obtain  2 2 , s v    

another member of the spacelike trajectory ruled surface family with a common trajectory curve in the developed  
trihedron as shown in Fig.8.2.  
 

 
       

   
2

sinh ( 2 (sin sin cos sin )), 2 (sin sin cos sin ),
2 2

,

cosh ( 2 (cos sin sin sin ))
2

s s s s

s s

v v
s s e s e s s e s e

s v
v

s s e s e



 
         

 
 

    
 

 ...(8.3)
 

 
 

 
 

Fig. 8.2. Trajectory spacelike ruled surface 
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