

ISSN: 2230-9926

ORIGINAL RESEARCH ARTICLE

Available online at http://www.journalijdr.com

International Journal of Development Research Vol. 08, Issue, 06, pp.21002-21007, June, 2018

ISOLATION AND IDENTIFICATION OF BACTERIAL POPULATION FROM VARIOUS **SOIL SAMPLES**

¹Avadhesh Pratap Singh Mandloi and ²Dr. Archana Pancholi

¹Faculty of Science, Pacific Academy of Higher Education and Research University, Udaipur (Raj.), India ²Department of Botany, Swami Vivekanand Government P.G. College, Neemuch (M.P.), India

ARTICLE INFO

Article History: Received 28th March. 2018 Received in revised form 16th April, 2018 Accepted 04th May, 2018 Published online 30th June, 2018

Key Words:

Soil, S. haemolyticus, S. lentu, S.arlettae, S. aureus, S. sciuri, Kocuria kristinae, Kocuria rosea. Bacillus altitudinis. Micrococcus luteus, Neemuch.

ABSTRACT

The soil is one of the main reservoirs of microbial life. Typical garden soil has millions of bacteria in each gram. The most numerous microbes in soil are bacteria. Soil bacteria include aerobes and anaerobes with a wide range of nutritional requirements, from photoautotrophs to chemoheterotrophs. As usable nutrients and suitable environmental conditions (such as light, aeration, temperature) become available, the microbial populations and their metabolic activity rapidly increase until the nutrients are depleted or physical conditions change, and then they return to lower levels.

Copyright © 2018, Avadhesh Pratap Singh Mandloi, and Dr. Archana Pancholi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Avadhesh Pratap Singh Mandloi and Dr. Archana Pancholikar, 2018. "Isolation and identification of bacterial population from various soil samples", International Journal of Development Research, 8, (06), 21002-21007.

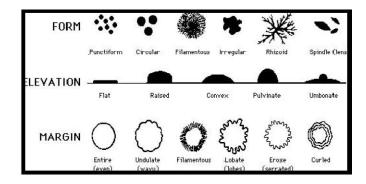
INTRODUCTION

The soils is one of the main reservoirs of microbial life. Typical garden soil has millions of bacteria in each gram. The most numerous microbes in soil are bacteria. Soil bacteria include aerobes and anaerobes with a wide range of nutritional requirements, from photoautotrophs to chemoheterotrophs. As usable nutrients and suitable environmental conditions (such as light, aeration, temperature) become available, the microbial populations and their metabolic activity rapidly increase until the nutrients are depleted or physical conditions change, and then they return to lower levels. Human pathogens, with the exception of endospor e-formed bacteria, are uncommon in the soil. Soil microorganisms are responsible for recycling elements so they can be used over and over again. The numbers of bacteria and fungi in soil are usually estimated by the plate count method.

*Corresponding author: Avadhesh Pratap Singh Mandloi Faculty of Science, Pacific Academy of Higher Education and Research University, Udaipur (Raj.), India

The actual number of organisms is probably much higher than the estimate, however, because a plate count only detects microbes that will grow under the conditions provided (such as nutrients and temperature),

Study Area


Neemuch being a developing Industrial town. . It has a longitude 23.40-24.80 East and Latitude 74.20-75.50 North is situated in North Western part of Madhya Pradesh popularly known as malva region. The approximate urban area of Neemuch is 1075 km² and its population is 1.25 lakh. From the geographical and government point of view Neemuch acquires an important position. Neemuch the whole city is spreaded over three regions namely Baghana, Chhawni and City. The Alkaloid and Opium Factory, factory was founded in 1993. In 1996, it began extracting alkaloids in addition to processing opium. It is one of the largest producers of opium in the world. It is also very large producer of oil seeds. The study where it carried out is four different regions of Neemuch. These four regions mainly known as Bhaghana, Bholiyawas, Rawatkheda

and Gwaltoli Talab. Baghana place comes under neemuch district. Its geographical situation for latitude is 24° 27' 27" North and for longitude is 74°50' 59" East. Baghana is near of Railway station of neemuch municipal treching ground of solid waste. Bholiawas are collateral with neemuch. It is near of M.P.E.B. substation. Bholiawas is a place where solid waste of Neemuch city comes for dumping by Municipal Corporation without any proper land filling and treatment. Rawatkheda and Gwaltoli are two another region of Neemuch where different types of waste by the Muncipal Corporation thrown out without any proper and prior treatment.

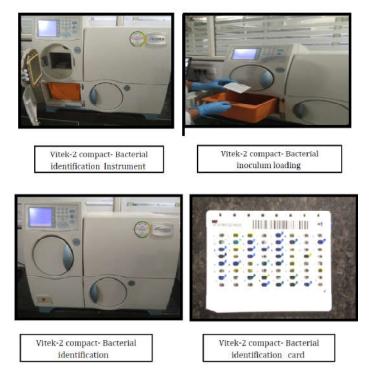
MATERIALS AND METHODS

The method for isolation and identification of bacteria were based on morphological, microscopic and biochemical characteristics. And these characteristics carried out by different standard methods according different standard protocols. The methods which used for the study purpose are given below

Morphology Characterization: Bacteria grow on solid media as colonies. A colony is defined as a visible mass of microorganisms all originating from a single mother cell; therefore a colony constitutes a clone of bacteria all genetically alike. In the identification of bacteria and fungi much weight is placed on how the organism grows in or on media. This help to identify the cultural characteristics of a bacterium on agar platecalled colony morphology. Although one might not necessarily see the importance of colonial morphology at first, it really can be important when identifying the bacterium. Features of the colonies may help to pinpoint the identity of the bacterium. Different species of bacteria can produce very different colonies.

Microscopic identification by gram's staining

Microorganisms were characterized on the basis of microscopic characteristics.


Gram Staining: The gram stain, a differential stain was developed by Dr. Hans Christian Gram in 1884 that is why named Gram staining. Gram staining (or Gram's Method) is an empirical method of staining differentiating bacterial species into two large group (Grampositive and Gram negative) based on the chemicals, primarily the presence of high levels of peptidoglycan, and physical properties of their cell walls.

Reagent used

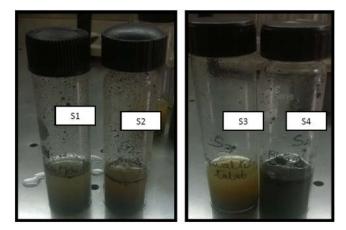
- Crystal violet (primary stain)
- Gram's Iodine (mordant that fixed the crystal violet to the cell wall)

- Decolorizer (e.g.ethanol)
- Saffranin (counter stain)

Biochemical Identification of the bacterial isolates: This was done with VITEK 2 compact technology. The VITEK 2 is an automated microbial identification system that provides highly accurate and reproducible results as shown in multiple independent studies. With its colorimetric reagent cards, and associated hardware and software advances, the VITEK 2 offers a stateoftheart technology platform for phenotypic identification methods.

RESULT AND DISCUSSION

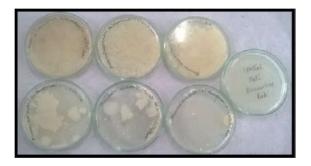
for microbiological Eleven isolates were obtained characterization from various soil samples and this was notified that all the eleven isolates are rarest in the environment with specific characteristics. The six isolates were from same genera of Staphylococcus (S. haemolyticus, (S. lentus - obtained two times from two different study area), S.arlettae, S. aureus, S. sciuri) and other was like kocuria kristinae, kocuria rosea and (bacillus altitudinis - this also obtained two times from two different study area). Staphylococci have the ability to tolerate high salt concentration (Kloos and Lambe, 1991). Members of the genus Staphylococcus are catalase positive and oxidase negative. The catalase test differentiates Staphylococci from Streptococci. These genera also differ in the composition of their cell walls. Pathogenic Staphylococci such as S. aureus can generally be identified by their ability to produce coagulase enzyme. The coagulase negative strains of Staphylococcus genus (CoNS) are commensals or saprophytic but some of them can cause opportunistic infections (Murray et al., 2002). M. luteus has been shown to survive in oligotrophic environments for extended periods of time. Recent work by Greenblatt et al. demonstrate that Micrococcus luteus has survived for at least 34,000 to 170,000 years on the basis of 16S rRNA analysis, and possibly much longer.

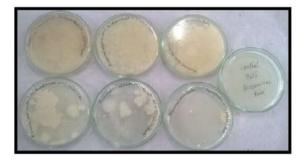

Kocuria kristinae is found widespread in nature, frequently as normal skin flora on humans and other mammals. It is usually non-pathogenic. There are very few documented cases with infections caused by *Kocuria kristinae*. It was previously classified into the genus Micrococcus, but was dissected from Micrococcus based on phylogenetic and chemotaxonomic analysis. It has been reclassified in the new genus *Kocuria* along with *K.rosea, K. varians, K. palustris and K. rhizophila. Kocuria kristinae* is a facultative anaerobic, nonmotile, gram positive coccus occurring in irregular clusters and tetrads.

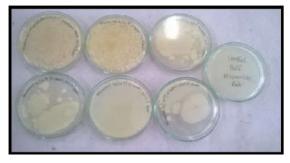
STEP 1 : Processing of the Soil samples

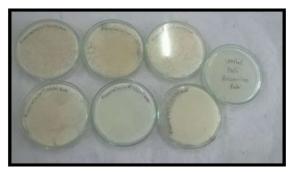
Four different sites of soil samples details are following

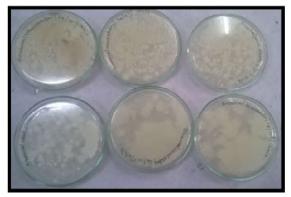
- Sample 1: RawatKheda Soil Sample
- Sample 2: Bholiyawas Soil Sample
- Sample 3: Gwal Toli talab Soil sample
- Sample 4: Bhaghana




STEP 2 : Preparation of Soil Samples in Saline


STEP 3 : Preparation of Soil dilution (Serial Dilution of soil sample)


Rawatkheda Serial Dilution Plate 101-106


Bholiyawas Dilution Plate 10⁻¹ - 10⁻⁶

Toli Serial Dilution Plate 10¹-10⁶

Bhaghana Serial Dilution Plate 10¹-10⁶

Mix Sample Serial Dilution Plate 10¹-10⁶

Colony Calculation

Table 1. Sample S1Rawat Kheda Soil Sample

S. no	Microorganism	Dilution	Colony no/ per plate.
1.		10 ⁻¹	TNTC
2		10-2	TNTC
3	Bacteria	10-3	TNTC
4	Dacteria	104	84
5		10-5	22
6		10-8	13

Table 2. Sample 2Bholiyawas Soil Sample

S. no	Microorganism	Dilution	Colony no/ per plate.
1.		10-1	TNTC
2		10-2	TNTC
3	Bacteria	10-3	TNTC
4		10-4	06
5		10-5	05
6		10-6	11

Table 3. Sample 3 Gwal Toli Soil Sample

S. no	Microorganism	Dilution	Colony no/ per plate.
1.		10 ¹	TNTC
2		10-2	TNTC
3	Bacteria	10-3	TNTC
4		10-4	19
3		10-3	No growth Observed
6		10-	03

Table 4. Sample 4Bhaghana

S. no	Microorganism	Dilution	Colony no/ per plate.			
1.		10-1	TNTC			
2		10-2	TNTC			
3	Bacteria	10-3	TNTC			
4		104	TNTC			
5		10-5	12			
6		10-6	10			

Table 5. Sample 5 Compost (Mix Culture)

S. no	Microorganism	Dilution	Colony no/ per plate.			
1.		10 ⁻¹	TNTC			
2		10-2	TNTC			
3	Bactería	10-3	TNTC			
4		104	TNTC			
5		103	10			
6		10.0	11			

TNTC - Too numerous to count

Table 6. Sample 1: Morphological Characterization

S. no	Reference no.	Isolate no.	Media	Shape	Elevation	Color	Margin	Surface
1.	Sample S1	IS-S1-A	Nutrient Agar	Circular	Flat	Creamish yellow	Entire	Smooth glistening
2	Sample S1	IS-S1-B	Nutrient Agar	Punctiform	Flat	Creamish	Entire	Smooth glistening
3	Sample S1	IS-S1-C	Nutrient Agar	Punctiform	Flat	White	Entire	Smooth

Table 7. Sample 2

S. no	Reference no.	Isolate no,	Media	Shape	Elevation	Color	Margin	Surface
4.	Sample S2	IS-S2-A	Nutrient Agar	Filamentous	Flat	Yellow	Lobate	Smooth
5	Sample S2	15 S2 B	Nutrient Agar	Circular	1-lat	Light cream	Latire	Smooth
6	Sample S2	IS-S2-C	Nutrient Agar	Circular	Flat	Cream	Entire	Smooth

Table 8. Sample 3

S. no	Reference no.	Isolate no.	Media	Shape	Elevation	Color	Margin	Surface
7	Sample S3	IS-S3-A	Nutrient Agar	Circular	Flat	Yellow	Lobate	Smooth
8	Sample S3	IS-S3-B	Nutrient Agar	Irregular	Flat	Light cream	Entire	Smooth

Table 9. Sample 4

s.	Reference	Isolate	Media	Shape	Elevation	Color	Margin	Surface
no	no.	no.						
9	Sample S4	IS-S4-A	Nutrient Agar	Irregular	Flat	Yellow	Undulate	Smooth

Table 10. Sample 5

S. no	Reference no.	Isolate no.	Media	Shape	Elevation	Color	Margin	Surface
10	Sample S5	IS-S5-A	Nutrient Agar	Circular	Flat	Yellow	Lobate	Smooth
11	Sample S5	IS-S5-B	Nutrient	Circular	Flat	Orange	Lobate	Smooth

Table 11. Microscopic identification by Grams Staining

Isolate	Gram Stain	Shape
S1A	Gram Positive	Cooci in cluster
S1B	Gram Positive	Bacilli
S1C	Gram Positive	Cocci in pair
S2A	Gram Positive	Bacilli
S2B	Gram Positive	Bacilli
S2C	Gram Positive	Bacilli
S3A	Gram Positive	Bacilli
S3B	Gram Positive	Bacilli
S4A	Gram Positive	Bacilli
S5A	Gram Positive	Cocci in pairs
S5B	Gram Positive	Cocci in cluster

			10000														
Sele	Icted Organ	nism -	Star	hylococcue	sciu	1											
Sou	reo:															Coll	ected
Col	mmonte:										-			-			
Ide	ntification	Infor	matii	n		1	Analysis			6.0	0 hoi	urs	_	Statu	a.	Final	
Selected Organism						89% Probability Staphylococcus sciul Bionumber: 010001403362631											
ID /	Inalysis M	come	lea		_							10.000	2031		-	-	
Bic	chemica	I De	tail	S	-	-	_	_	-		-			_	_		
-	AMY		4	PIPLC		5	dXYL.	-	8	ADH1	+	9	BGAL	È	11	AGLU	-
2	APPA	+	14	CDEX		15	AspA		16	BCAR	-	17	AMAN	-	19	PHUS	-
	PALERAY.		100	ProA		24	BGURr		25	AGAL	+	26	PvrA	-	27	BGUR	1.
13 20	LeuA	+	23	11 TUM	- 11						-	-	POLYB		20	-	-
13 20 28	LeuA AliaA		23	TyrA	+	30	dSOR	+	31	URE		132			37	(GGB)	
13 20 28 38	LeuA AlaA dRIB	+ + +	29 39		+	30 42	dSOR LAC	+	31	URE	+	32	dMAL	•	37	dGAL BACI	•
2 13 20 28 38 47 57	LeuA AliaA		29	TyrA	+ +			+ + +	-	and the second se	-	-		+ +	37 46	dGAL BACI PUL	•

Isolate Number: S3B

tour	ce:		_													Collect	ted:
Con	nmonts:				-	-		_			-	-			-		
Ider	ntification I	ntom	natio	n			Analysis 1		-	5.00	houn	6	S	tatus:	_	Final	
Sele	ected Orga	main					97% Proba Bionumbe				hyle 0340		a lentus 631				
ID A	unalysia Me		00		-		0		_	_				_		-	
Bic	chemica	al De	tails	1	-			-	-	1	-	-	1		-		_
2	AMY	+	4	PIPLG	4	5	dXYL	-	8	ADH1	+	9	BGAL	+	11	AGLU	+
13	APPA		14	CDEX		15	AspA	-	16	BGAR		17	AMAN		19	PHOS	
20	LeuA		23	ProA	-	24	BGURr	-	25	AGAL	+	26	PyrA	+	27	BGUR	-
28	AlaA	-	29	TyrA	-	30	dSOR		31	URE		32	POLYB	-	37	dGAL	-
38	dRiB		39	ILATE	+	42	LAG-	-	44	NAG		45	dMAL	+	46	BAGI	t
47	NOVO		50	NC6.5	+	52	dMAN	+	53	dMNE	+	54	MBdG	+	56	PUL	
57	dRAF		58	0129R	*	59	SAL		60	SAC	+	62	UTRE		63	ADH2s	
1.1																	

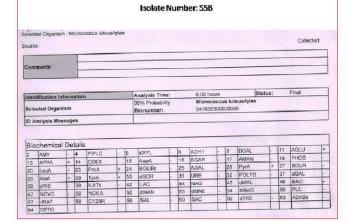
							Isolate	e Nu	imt	er: S10	:						
elec	ted Organis	im : 8	aph	lococcus a	riettar	8											
ourc	e.															Collect	ect
Com	mento:		F						_			-			-		-
den	tification h	nform	nation	1	5405	1000	Analysis Ti		-	5 25 1	ours		Sta	itus:		Final	
Sele	cted Organ	nism					99% Pmhan Bionumber			Stap1 00000			arlettae 31				
ID A	nalysis Mo	ssag	e5					-			-	-		-	-		-
Bic	chemica	De	talls		-				1								
2	ANY	1	4	PIPLC		5	CXYL	-	8	ADH1	-	9	BGAL	-	11	AGLU	
13	APPA	1	14	CDEX		15	AspA		16	BGAR	-	17	AMAN	-	19	PHOS	
20	LEIA		23	ProA		24	BGURr		25	AGAL		26	PyrA		27	BGUR	
28	AlaA	+	20	TyrA	-	30	dSOR		31	UR-		32	POLYB	-	37	UGAL	
38	dRIB	+	39	ILATE		42	LAC	+	44	NAG	-	45	dMAL	+	46	BACI	
47	NOVO	+	6C	NC6.5	+	52	dMAN	+	53	dMNE		54	MBdG		56	PUL	
57	dRAF	-	58	0129R	+	50	SAL	-	60	SAC	+	62	dTRE	+	63	ADH2s	
	OPTO	-	-		_	-			1	1 1 1 1 1 1 1 1 1		1				1	

							Isolate	Nu	mb	er: S2A							
Sele	cled Organ	nism : I	Unider	tified Organ	nism												
Sour	oe:															Collec	ted:
Cor	aments.		-					_	_								_
					-	-	-	_	-	-	-	_					-
Idea	tification	Inform	iation	C. La C.		-	Analysis T		-	6.00	hours		-	Status		Final	_
Sele	ected Org	anism					Bionumber		۰.	Unid 0203			rganism 431				
ID A	Analysis M	lessag	95													1	
	1															111 S.	
Bio	chemica	al De	tails				1.50-41							-			11
2	ANY	-	4	PIPLC		5	dXYL		8	ADH1	-	3	BGAL	+	111	AGLU	-
13	APPA	-	14	CDEX	-	15	AspA		16	BGAR	+	17	AMAN	+	19	PHOS	-
20	LeuA	+	23	ProA	-	24	BGURr		25	AGAL	+	28	PyrA	+	27	BOUR	
28	AizA	-	29	TyrA	+	30	dSOP.	1	22.5	L ICHC	_	20	DOLM		1077	10.41	-

2	ANY	-	4	PIPLC		5	dXYL		8	ADH1	-	3	BGAL	+	111	AGLU	-
13	APPA	-	14	CDEX	-	15	AspA		18	BGAR	+	17	AMAN	+	19	PHOS	-
20	LeuA		23	ProA	-	24	BGURr	-	25	AGAL	+	28	PyrA	+	27	BGUR	-
28	AicA.	-	29	TyrA	+	30	dSOR	-	31	URE	-	32	POLYB	1	37	dGAL	+
38	dRIB	(+)	39	ILATK	1	42	LAC	-	44	NAG	-	45	dMAL	+	48	BACI	+
47	NOVO	-	50	NC6.5	+	52	dMAN	+	53	dMNE	+	54	MBdG	+	56	PUL	-
57	SRAF		58	0129R		59	SAL	+	60	SAC	+	62	dTRE	+	63	ADH2s	-
64	OFTO	+									-	-		-	1	1 IST ILLO	-

							Isolate	Nu	mb	er: S2B							
elec	led Organis	m : S	taphy	lococcus at	ireus												
QUEC	e:															Collecte	ed:
	(AND A DE N					105											
Com	menta:		F		-	_		_	-		-	1103			-		-
	1			-	-	-		-	-		-	-		-	-	10-17	
_		-	-		-	-	Analysis Tir		-	5.00 1	ours	-	Sta	atus:	-	Final	-
	tification in	-	ation		-	-	93% Probab		-		-	occur	saureus				
Sele	cted Organ	nism					Bionumber	-		05040	2023	7026	131		_		-
ID A	nalysis Me	ssag	es		1			_	_		_	-			_		-
Bir	chemica	I De	tails														_
2	AMY	-	4	PIPLC	-	5	JX/VL	-	8	ADH1	+	9	BGAI	-	11	AGLU	*
13	APPA		14	CDEX		15	AspA	•	16	BGAR	-	17	AMAN	-	19	PHCS	-
20	LeuA	-	23	ProA	-	24	BGURr	-	25	AGAL	-	26	PyrA	+	27	BGUR	-
28	AlaA		29	TyrA	-	30	dSOR		31	URE		32	POLYB	+	37	eGAL	-
38	dRIB	+	39	ILATE	+	42	LAC		44	NAG	+	45	dMAL.	+	46	BACI	-
	NOVO		50	NC6.5		52	dMAN		53	dNNE	-	54	MBdG	+	56	PUL	+
47					_	1.00	0.01	1.	60	SAC	- Int	62	INTRE	+	63	ADH2s	
-	dRAF	-	58	0129R	+	59	SAL		QU	Onc	1	140	OTTEL	-	-		-

Isolate Number: S2C


			Kocur	ria kristinae												Collect	ted:
Con	nments:	- 10	-			_								_	-		_
Ider	tification I	nfor	natio	n			Analysis				5.00 H	ours		Statu	5:	Final	
Sele	ected Orga	nism					98% Pro Bionum		ty				istinae 1001021				
ID A	nalysis Me	5589	jes	-							-	-	-				
Bic	chemica	De	etails	6			-				-	A.	-	-		_	
2	AMY	-	4	PIPLC	-	5	dXYL	-	8	ADH1	-	9	BGAL	-	11	AGLU	+
13	APPA		14	CDEX	-	15	AspA	-	16	BGAR	-	17	AMAN	-	19	PHOS	
20	LeuA	-	23	ProA	1	24	BGURr	-	25	AGAL	-	26	РутА	+	27	BGJR	
28	AlaA		29	TyrA	+	30	dSCR	-	31	URE	-	32	POLYB	-	37	dGAL	ŀ
38	dRIB	-	39	ILATK	-	42	LAC	-	44	NAG	-	45	dMAL	-	46	BACI	-
47	NOVO	-	50	NC6.5		52	dMAN		53	dMNE	+	54	MBdG	-	56	PUL	
57	dRAF	-	58	0129R	-	59	SAL	-	60	SAC	-	62	dTRE	+	63	ADH2s	-
197.5		-	-		-	-		_	-						-		

							Isolat	eN	um	ber: S3.	A						
Sele	cted Organ	ism	Stap	hylococcus	ecius	61											
Sou	rem:																ected
-	-	-	-	_	-	-		-	-		_		_	_	_	Lak	scted
Cor	nmenta:								-	-	_	-		-	-		-
-		-			-	-	-	-	-	-	-	_	-	_	_		_
Ide	dification	Infor	matic	on	-		Analysis	Time	K.	8.0	0 hos	0		State		Final	_
Sel	ected Orga	misn	1				89% Prot		Y			0000	cus sciuri			1.000	_
ID A	Inalysis M		005				a containe			.01	100 34	10330	2031	-	-	-	_
Ric	chemice	in.	to it.		_	_	_	_	_	_	_						
2	AMY	T	4	PIPLC	F	6	dXVL	T	la	TADHT	1.	10	BGAL	-	111	lacros	-
<u>†3</u>	APPA	-	14	CDEX	+	15	AsoA	-	16	BGAR	-	17	AMAN	-	10	AGLU	÷
20	LeuA.		23	ProA	-	24	BGUR	-	25	AGAL		26	PyrA	-	27	BGUR	¢.
28	AlaA	1	29	TyrA	-	30	dSOR.		31	URE	1	32	POLYB	-	37	dGAL	-
38	dRIB	+	39	ILATK	+	42	LAC	-	44	NAG	-	45	dMAL.	-	46	BACI	-
47	NOVO	1	80	NC6.5	+	52	dMAN.	+	53	dMNE		54	MBdG	-	56	PUL	+
	BRAT	1	58	01295	+	59	SAL		60	SAC		62	TRE	-	63	ADH2s	
57.	OPTO													14			

							Isolate	Nu	mb	er: S3E	5						
iele iour		6m : 1	Staph	ylococcus i	entus											Collec	led.
Cor	nments:							_	_					_			
Ide	ntification I	infor	natio	n		-	Analysis T	ime.		5.00	hour	\$	_	Status	6	Final	-
Sel	ected Orga	nism					97% Probe Bionumbe					0000	us lentus 631				
10/	Analysis Me	essag	985		_	_		-									_
Bid	chemica	al De	tails			-			-	_	-	-	_				
2	AMY	+	4	PIPLO	F	5	BXYE	-	8	ADH1	+	9	BGAL	+	11	AGLU	+
13	APPA	ŀ	14	CDEX	-	15	AspA	-	16	BOAR	-	17	AMAN	-	19	PHOS	-
20	LeuA	-	23	ProA		24	BGURT	-	25	AGAL	+	26	РутА	+	27	BGUR	-
28	AlaA	-	28	TyrA	-	30	dSOR	+	31	URE	-	32	POLYB	-	37	dGAL	-
38	dRIB	+	39	LATK	+	42	LAC	-	44	NAG	+	45	dMAL.	+	46	BACI	+
47	NOVO	-	60	NC6.6	+	62	dMAN	+	63	dMNE	+	54	MBdC	+	56	PUL	-
57	dRAF	-	58	0129R	+	59	SAL	+	60	SAC	+	62	OTRE	+	63	ADH2s	-
64	OFTO	+							1			1					

ioun	CH:	_			_	_	_	_	_				_	_	_	Collect	ted:
Con	nments:		-			-	_			_	-				-	_	
Ider	tification	Inform	natio	n		-	Analysis	lime		6.0	0 hours	_	Sta	tus:	_	Final	
Sek	ected Orga	nism					Bionumb	12			dentifi 20100		ganism				
10.4	unalysis M	-	up ti		-	-	-	-	-	0.4				-	-		-
2 13 20 28 38	AMY APPA LeuA AlaA dRI8	+	4 14 23 29 39 50	PIPLC CDEX PrbA TyrA ILATk NC8.5	1 1 1	6 15 24 30 42	dXYL AspA BGURY dSOR LAC dMAN		8 16 25 31 44	ADH1 BGAR AGAL URE NAG	4 (+) -	0 17 28 32 45	BCAL AMAN PyrA POLYB dMAL	+	11 19 27 37 48 56	AGLU PHOS BGUR dGAL BACI PUL	
47	MOVO	-	58	0129R	-	52	SAL		53 60	dMNE SAC	+	54 62	MBdG	+	63	ADH2s	-
64	OPTO	,															
Selec	cted Organ	ism :	Каси	ria rosea			Isolat	e Ni	umi	ber: 55/	A						

lder	tification I	inform	natio	a			Analysis	Tim	e 1		8.001	ours		Statu	1981	Final	
Sele	nted Orga	nism					97% Pro Bionum		ty		Kocu 00003		10000000				
ID A	matysis Me	ineag	100		_	_			_						_	_	
Bio	chemica	I De	taile		_	-		_	_	_		-	_	_	-	-	-
2	AMY		4	PIPLO	-	5	dXYL.	-	8	ADH1	ŀ	19	BGAL	-	11	AGLU	1
13	APPA	-	14	CDEX	-	15	AspA	+	16	BGAR		17	AMAN		19	PHOS	1
20	LeuA	+	23	ProA	+	24	BGURr	1	25	AGAL	-	26	PyrA	-	27	BOUR	1
28	AlaA	+	29	TytA	+	30	d3OR	-	31	URE		32	POLYB	-	37	dGAL	-
38	dRIB	12	39	ILATE	1	42	LAG	-	44	NAG	-	45	dMAL.	-	46	BACI	-
47	NOVO	-	50	NC6.5	-	52	dMAN	-	53	dMNE		54	MBdG	-	56	PUL	1
	dRAF		58	0129R	-	59	SAL	-	60	SAC	-	62	DITRE		63	ADH2s	
57																	

Conclusion

There are several aspects of the isolation and identification of bacteria. The bacteria play both positive and negative role due to presence of their in which habitat they survive. Many species of bacteria are useful from the environment and their other beneficiary point of view but sometimes they are silent killer which cause serious diseases in human body as well as in animal. From the beginning evolutionary journey of bacteria rather now a day's scientists have much sophisticated and exact tools and techniques to emphasis more hidden peculiarities about the bacteria. It is now in the human hand how he deals with this scenario to take more advantages to go ahead with advance stage in favour of whole flora and fauna of the world.

Further Scope: *Staphylococcus* species are normal flora widespread over the body surface. They are also important pathogens. Many species of Staphylococcus have the ability to form biofilms which can then colonize structures such as medical catheters, stents, heart valves, prostheses, shunts, and valves. The clinically significant species are generally separated into coagulasepositive staphs (*S. aureus*) and coagulase-negative (CoNS) staphs (*S. epidermidis, S. haemolyticus*, and *S. saprophyticus*).

REFERENCE

- Bacterial Identification. Clinical Microbiology and Infection 3. 1997. pp. 53–56.
- Funke G., and P. Funke-Kissling. 2005. Performance of the new Vitek 2 GP card for identification of medically relevant gram positive cocci in a routine clinical laboratory. J. Clin. Microbiol.43:84-88.
- Harris L.G; Foster S.J; Richards S. G. 2002. "An introduction t o Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesions in relation to adhesion to biomaterials: review" (PDF). European cells and materials. 4: 39–60. PMID 14562246.
- Kloos, W.E. 1980. "Natural Populations of the Genus Staphylococcus". nnual evie of Microbiology. 34: 55 9– 592. doi:10.1146/annurev.mi.34.100180.003015. PMID 7002032.
- Lindsay J (editor). (2008). Staphylococcus: Molecular Genetic s. Caister Academic Press. ISBN 1-904455-29-8. [1] (http://www.horizonpress.com/staph).
- M, Madigan; Martinko, J 2005. Brock Biology of Microorgani sms. Prentice Hall.
- Madigan M; Martinko J, eds. 2005. Brock Biology of Microor ganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.
- Ryan KJ, Ray CG, eds. 2004. Sherris Medical Microbiology (4 th ed.). McGraw Hill. ISBN 0-8385-8529-9.
- See genus and species capitalization. (http://www.medical-tran scription1.com/Articles/eLearnMT/Grammar%20Guidel ines%20in%20Transcription/Genus%20&%20Species%20 Names.pdf)
- Takahashi T, Satoh I, Kikuchi N 1999. "Phylogenetic relations hips of 38 taxa of the genus Staphylococcus based on 6S rRNA gene sequence analysis "(PDF). *Int. J. Syst. Bacteriol.* 49 (2): 725–728. doi:10.1099/002077 13-49-2-725. PMID 10319495.