

ORIGINAL RESEARCH ARTICLE

UNCOVERING USER’S SEARCH PATTERNS TO PERSONALISE WEB SEARCH

Smita Sankhe and *Nirmala Shinde

Department of Computer Engineering, K. J. Somaiya College of Engineering, Mumbai, India

ARTICLE INFO ABSTRACT

In today’s world, search engines have become a very convenient method of searching and
retrieving information. But this increasing use of search engines goes hand in hand with the ever-
increasing data available on the internet. With such large number of websites available, it is
essential to have these websites sorted in decreasing order of their relevance to the user’s query
for effective operation and retrieval of data. This paper explores various domains related to
Computer Science and proposes a framework that seems the best fix to this problem. We have
proposed a new system to provide personalized web search according to the user’s internet surfing
patterns. The system extracts the user’s history and scrapes the web pages’ content (title,
keywords, headings, sub-headings, meta tags). These documents are then clustered using
Word2Vec model and Latent Semantic Indexing to give better results. User’s search query is
mapped to the profile and an appropriate cluster is selected. The SERP returned by the search
engine is mapped to the selected cluster to find the similarity index. A linear regression model is
used to assign the final score which takes the regency, frequency, popularity and user’s feedback
along with the similarity measure to re-rank the SERP.

Copyright © 2018, Smita Sankhe and Nirmala Shinde. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The user profile is created using the user’s browser history file
and other typical behaviors on the internet, such as the
bookmarked web pages, accounts created on various portals,
subscriptions, etc. All these attributes can be used to construct
certain patterns for this profile, which will be employed for
effective re-ranking of SERPs for future queries. We also
make an effort to date this user profile, that is, the more recent
entries and activities hold a higher significant value and vice
versa. This is because human interests and behaviors tend to
change over periods of time. This period of time can be neither
quantified nor generalized. Hence, the method of dating entries
ensures that recent activities hold more relevance than the
previous activities, which led us to achieve better results when
tested again other results. Some users can be new to the
browser, others can have a full-fledged browser history,
sufficient to analyse its history files to identify patterns and
trends.

*Corresponding author: Nirmala Shinde,
Department of Computer Engineering, K. J. Somaiya College of
Engineering, Mumbai, India.

User profiling was found to be effective only for the
experienced/regular users. For new users, using information
from browser history files is not feasible. Hence, we made
provisions for new users by taking inputs about user’s interests
in a separate form that consists of keywords (interest topics)
and accordingly tailoring the SERP to provide effective
personalization. Gradually, as the user uses the browser, the
history file will record his activities and once this history file
possesses information exceeding a certain threshold, the
program will switch to providing dynamic personalization of
web search. The model also uses more than one algorithm for
many tasks, to ensure that features and details of all attributes
are correctly captured and addressed by the model and are used
effectively to improve its accuracy and performance. Apart
from the model, certain novel modules and functionalities have
also been incorporated into our project which increases the
personalization factor and successfully reduce the user’s time
for information retrieval. This problem can certainly appear to
be small and negligible at the microeconomic level, but this is
not the case. For most organizations, the employees tend to
make use of Search Engines on a daily basis for a wide range
of tasks.

ISSN: 2230-9926

International Journal of Development Research
Vol. 08, Issue, 06, pp.21074-21080, June, 2018

Article History:

Received 09th March, 2018
Received in revised form
20th April, 2018
Accepted 18th May, 2018
Published online 30th June, 2018

Available online at http://www.journalijdr.com

Key Words:

Data mining, Hierarchical clustering,
Machine learning, Natural language
processing, Search methods,
User Modeling, Web mining.

Citation: Smita Sankhe and Nirmala Shinde. 2018. “Uncovering user’s search patterns to personalise web search”, International Journal of Development
Research, 8, (06), 21074-21080.

 ORIGINAL RESEARCH ARTICLE OPEN ACCESS

On such a large scale, surfing through several results from the
SERPs to find the right match consumes the precious time of
their employees. This shoots up the overall expenses of that
organization. The more the dependency on Search Engines of
an organization, the higher will be the associated expenses.
This is just one of the numerous problems we come across in
our day-to-day life. Finding the right information on the
internet nowadays is like finding a needle in a haystack. After
researching extensively on all existing solutions and their
drawbacks, we designed our own model that improves upon
them, while simultaneously minimizing the drawbacks. The
user profile is created using the user’s browser history file and
other typical behaviors on the internet, such as the bookmarked
web pages, accounts created on various portals, subscriptions,
etc. All these attributes can be used to construct certain
patterns for this profile, which will be employed for effective
re-ranking of SERPs for future queries. We also make an effort
to date this user profile, that is, the more recent entries and
activities hold a higher significant value and vice versa. This is
because, in our surveys, we noticed that human interests and
behaviors tend to change over periods of time. This period of
time can be neither quantified nor generalized. Hence, the
method of dating entries ensures that recent activities hold
more relevance than the previous activities, which led us to
achieve better results when tested again other results.

Some users can be new to the browser, others can have a full-
fledged browser history, sufficient to analyze its history files to
identify patterns and trends. User profiling was found to be
effective only for the experienced/regular users. For new users,
using information from browser history files is not feasible.
Hence, we made provisions for new users by taking inputs
about user’s interests in a separate form that consists of
keywords (interest topics) and accordingly tailoring the SERP
to provide effective personalization. Gradually, as the user
uses the browser, the history file will record his activities and
once this history file possesses information exceeding a certain
threshold, the program will switch to providing dynamic
personalization of web search. To begin with, we have only
designed the program to support Google since it is the most
widely used and preferred search engine around the world, and
is easy to use and access. A browser history will keep
changing overuse. Due to this constantly changing property of
the history file, the model is designed to be dynamic in order
to handle this dynamicity of browser’s history files. The model
aims to resolve inherent ambiguities in search queries by
analyzing user’s browser history and using this information to
provide context to the queries. The proposed model has been
hybridized in many aspects to extract advantages of both
features, static and dynamic.

Analysing browser’s history and clustering on the browser’s
history pages repeatedly can become computationally heavy
and time-consuming. Hence, the model is designed to be semi-
dynamic, that is, it will not perform hierarchical clustering for
every task; It will only do it once in a day or as specified by
the user or when there is little to no load on the server, to
improve its real-time performance and decrease computations
required to arrive at a result. The model also uses more than
one algorithm for many tasks, to ensure that features and
details of all attributes are correctly captured and addressed by
the model and are used effectively to improve its accuracy and
performance. This will be explored in-depth in the later part of
this paper. Apart from the model, certain novel modules and
functionalities have also been incorporated into our project

which increases the personalization factor and successfully
reduce the user’s time for information retrieval. In this paper,
we explore incorporate a number of algorithms and techniques
coming from various domains which seem suitable for our
ideas and help us in achieving our objectives. We also
substantiate these decisions with concrete reasoning and
germane evidence.

The remainder of the paper is organized as follows:

 Literature Survey
 Architecture of Proposed System

 User Profile Generation / Updating
 SERP scoring and ranking

 Experimental and Result Analysis
 Conclusion
 Future Scope

Literature Survey: Our research led us to discover interesting
implemented systems and identify their drawbacks, which are
as follows: Reference [Makvana et al., 2014] carries out
Personalization of web search results by processing user’s
query and re-ranking the results depending upon the interest of
the user. A 3-Level weblog user profile is created from the
weblog data, where the 1st level contains the keyword of the
query, 2nd level contains the sub-queries and the 3rd level
contains the records of the URLs visited by the user. The
algorithm re-ranks the results using Vector Space Model
depending upon the user’s activities. Then, cosine similarity is
used to find the correlation between the search query and the
data stored in the log file. So when a user searches for a query,
it retrieves the results in a hierarchical manner. Reference
[Kumar, 2014] proposes to construct an Enhanced User Profile
by considering the browsing history of the user and enhancing
it by using domain knowledge. Domain knowledge (DMOZ) is
the background knowledge that is used to enhance the user
profile. Some web pages are crawled from the DMOZ
directory for specific categories. For classification of web
pages, Alchemy API is used which shows the probability of a
web page belonging to a particular category, and are mapped
to the respective DMOZ categories. Cosine similarity is
calculated between the URL and the URLs present in the
knowledge base to prepare Enhanced User Profile. [Renjini,
2016] personalizes the search results depending on Query
expansion and Clustering. The user profile is created using the
search history. It uses k-means clustering to group similar
documents into clusters, and the search is performed only on
the centroids of each cluster instead of all documents. Query
expansion is done with identical words by using Word Net.
The history is refreshed every 60 days to include the most
recent interests only. [Kacem, 2017] aims to improve the
sessions’ results by considering the user’s current interactions
are more relevant to the user than the earlier ones. The vector
of keywords is used to represent the user profile. TF-IDF
scheme is used to assign the weights along with its temporal
characteristics. Session search aims to deliver the most
meaningful results to the present need of the user [Altszyler,
2016] aims to compare the performance of LSA and
Word2Vec embedding’s in medium and small-sized corpora. It
was shown that on training the database with medium to large
size corpora, Word2Vec outperforms LSA but in small
corpora, LSA gives accurate semantic relation[Anikó Hannák,
2017]. Presents a way to measure the extent of personalization
of web search. Jaccard Index views the result lists as sets and
is defined as the size of the intersection over the size of the

21075 Smita Sankhe and Nirmala Shinde, Uncovering user’s search patterns to personalise web search

union. Second, the value of Kendall’s Tau coefficient for two
ranked lists is obtained by measuring the difference in results
among two ranked sets.

Architecture of Proposed System: The entire architecture is
designed to be dynamic, robust and requires minimal
computations. Since the program will be generating the output
in real-time applications, speed and efficiency are absolutely
imperative.

Fig. 3.1. System Architecture

Fig. 3.2. System Work Flow

There proposed system consists of two broad groups of
steps:

 User Profile Generation / Updation
 SERP Scoring and Ranking

We selected two models for calculating the distances between
every pair of documents in the corpus:

Latent Semantic Indexing and Word2Vec. LSI overcomes the
problems of synonymy and polysemy. LSI model training can
also be resumed from any point, thus resulting in reducing
training times for the LSI model and faster computations. The
second selected model is the Continuous skip-gram
architecture of the Word2Vec model since it is known for
outperforming all its counterparts in medium-sized datasets.
According to our surveys, the window size of 10, 7 negative
samples and number of dimensions restricted to 350 seemed to
be the most optimal trade-off between accuracy and
computational time. The combination of text processing
models is chosen such that they perform optimally irrespective
of the size of the corpora since LSI is marked to perform well
even with a small training corpus whereas Word2vec skip-
gram model is marked to perform exceptionally when trained
on the large-sized corpus.

User Profile Generation / Updation

Fetching contents of the history file: The program begins

with accessing the history file of Google Chrome browser. If

the history file is opened successfully, then the program

initiates reading from the history file and copies this content

into a CSV file. This CSV file is the primary file of the

program, where all the processing and storing of data occurs.

Web Scraping: Each result entry extracted from the SERP is a

web page and has the characteristics of an HTML file. After

completing the extraction of SERPs, we scrape through top 27

resultant web pages returned by the program, and extract the

key attributes from each of these pages’ tags, such as the

metadata tags, title tags, keyword tags and heading tags to

mention a few, and are stored in their respective fields.

Text Processing

Tokening and Removal of stop words: All this scraped
information is collectively referred to as the corpus of
documents. For text processing, the entire corpus was parsed
and converted into tokens. After tokenizing the corpus, the
program filters out the stopwords present among the tokens.
This step ensures that only keywords are preserved and the
unnecessary words are eliminated since the stop words are of
no real value and are found to impact the results negatively
when preserved in the document.

Stemming: Now, stemming is performed on each token of the
corpus using the Porter stemmer. This is done to generalize
words with similar origins but different tenses, to combine
singular and plural words and remove affixes from words;
ultimately, the canonical form of each word is obtained.
Resolving all these conflicts enables the tracing back words
that belong to the same word or same stem, in essence. It also
reduces the number of words in the dictionary, thereby
resulting in faster processing. Unlike lemmatizers, stemmers
don’t need any extra knowledge about the context of the word
and can only map to some word present in the dictionary. Our
dictionary not being exhaustive is another reason to prefer
stemmer over lemmatizer.

Converting tokens into vectors: A large portion of the
constructed dataset shall consist of text. Machine learning or
data mining models cannot directly process raw text to make

21076 International Journal of Development Research, Vol. 08, Issue, 06, pp. 21074-21080, June, 2018

predictions. Texts need to be converted to some numerical
value in order to be of use for the machine learning model.
After obtaining a corpus with normalized documents, the
corpus is then processed and transformed into a Dictionary. A
dictionary is a data structure that saves each word as its key
and maps it to the corresponding key ID as its value. For
example, let’s assume ‘motor’ is the first word of the
dictionary and occurs twice in a document. Then, ‘motor’ will
be represented as {‘motor’:2}. This dictionary is later used as a
reference to convert each document into Bag of Words (BoW)
model. For each document, the BoW model represents each
word by its key ID paired with its number of occurrences in
that document. This conversion greatly contributes to
dimensionality reduction and makes this the raw text fit for use
by the machine learning models. As noted above, models
perform differently under different circumstances. On the basis
of this observation, we designed an equation that would
capture the advantages of both models and be used to increase
the combined efficiency of the models. This equation is
dependent on the number of dimensions. The contribution
made by these 2 models is dictated by the following equation:

S = A * x + B * y (1)

Where,

S = Combined Similarity Score
X= similarity value returned by Word2Vec model.
Y= similarity value returned by LSI model
A and B are coefficients, which are calculated as follows:
A = (n - 0.05) / (10 million) for n < 8 million
A = 0.75 + (n - 8) / (40 million) for 8 <= n < 10 million
A = 0.8 + (n - 10 million) / (100 million) otherwise
And 0 <= A <= 0.87
B = 1 - A
n = size of the corpora

We use 10 million as a metric because it was reported by
[Altszyler, 2016] that at a corpus size of 100 million,
Word2Vec with negative sampling Continuous skip-gram
model outperforms LSA, and hence the contribution made by
Word2Vec at this level is made significantly higher than LSI’s
contribution to accommodate these advantages into our
combined models. As noted by the paper [Altszyler, 2016], the
performance of Word2Vec continuous skip-gram model
severely decreased when trained on a small-scale dataset,
whereas it outperformed LSI model when trained on medium
to large-scale datasets. Additionally, LSI was marked to
accurately identify polysemy and synonymy. Using these
vectors, we use ensemble model, comprising of Word2Vec and
Latent Semantic Indexing similarity to find the distance
between different pairs of documents. Using this distance as a
metric, we use hierarchical clustering to cluster documents
based on their similarity. Using hierarchical clustering offers
3-fold benefits. First, the shape of clusters need not be
spherical. Since we are considering the total population, their
usage behavior and statistics cannot be generalized. Hence,
this program required a more generalized and dynamic
technique that could handle clusters of all shapes without
compromising its accuracy and performance. Additionally, the
number of clusters need not be predefined, which is a huge
plus, because every user would have a different number of
entries in his history file, the difference can vary up to 7
figures. Hence, hierarchical clustering would assist in deciding
upon the correct number of clusters depending on the number

of entries and fully automating the task of clustering. Lastly, it
provides hierarchical relations between clusters and can
capture concentric clusters. It becomes easier to divide clusters
and helps in selecting the more appropriate hierarchical level
that would give the highest accuracy. We use the similarity
metric dictated by the word2vec and LSI models as input to
the hierarchical clustering model, which is trained on the
average linkage method. Then, a dendrogram for this model is
constructed which gives valuable insights regarding the
structure of the corpus. This model is then saved as the User
Profile.

SERP Scoring and Ranking

SERP Fetching and Scraping: The user’s search query is
entered in the Search Engine. The SERP returned is then
fetched and the contents of these web pages are extracted in
the similar format as for the History Pages. The query to be
run through Google is taken as input from the user. The query
is of prime importance since the whole model is designed to
optimize the results for it. After running the query through
Google, top 27 results from Search Engine Result Pages
(SERPs) are extracted. The program provides the flexibility to
change this variable number (27) as preferred by the user, but
through our research, we have come to the conclusion that 27
is the ideal number of results to be taken into consideration
since it maintains a perfect trade-off between computational
costs and accuracy. Hence, the number 27 is set as the default
value for this entry.

Text Processing: The web page contents are again vectorized
and converted to Bag-of-Words (BoW) format. The query
terms are also tokenized and vectorized.

Selection of the cluster: We then use the vector form of input
query and compute its distance to all the leaf clusters of the
dendrogram (User Profile). Based on these distances, we select
the top k most similar clusters and trace them back to their
least common ancestor. All the leaf nodes (children) of this
ancestor are combined by performing union operation on them.
This combined cluster should have a count of documents
exceeding 5% of the total number of documents which makes
it significant when compared to the 5% rule of neglecting. For
any value of k, if the cluster fails the 5% rule, the value of k
should be incremented until it becomes true.

We use the following algorithm to find the value of k:

n = len(corpus)
 for i := 0 to n

If count(intersection(top i clusters)) >= 5/100*n :
then k := i

 else k++

For example: Let us assume that for k=2, cluster number 2 and
11 are the top 2 results.

After performing the algorithm on the above dendrogram, we
get:

At the intersection point, we consider all of the children nodes
and take its union to get the resultant cluster.

21077 Smita Sankhe and Nirmala Shinde, Uncovering user’s search patterns to personalise web search

Here, it would include cluster numbers (2, 14, 11, 0, 3).
algorithm fully utilizes the hierarchical order and gives
exceptional results as compared to other cluster counterparts.
Also, this combined cluster is used for computing the score of
the each of the scraped Search Engine results.
operations are performed on the user query taken as input from
the user. The distances between the vector form of this query
and all other clusters are calculated, and the one with a
minimum distance of all is selected. From this selected cluster,
we extract all the key attributes. This set of attributes is now
used to evaluate the top ‘n’ results fetched from the SERPs.
The similarity of each result belonging the SERPs is
calculated, and these values are saved in the respective fields.
The user is provided with a like button and a dislike button
next to each of the results provided to him. The like button
would indicate that the user is happy with
would increment the count in the positive feedback column,
whereas the dislike button expresses the undesirability of that
result entry, and increments the count for that domain in the
negative feedbacks column.

Time Dimension Sensitivity: It was observed that more recent
searches and browser activities held more significance and
offered more value than their less recent counterparts. Hence,
we have attempted to sensitize the time dimension of browser
activities. nWe rounded off the time vector of each activity to a
number of days. The equation that was used to compute the
score is as follows:

Time Score Equivalent = pi / (x + pi)
Where pi= 3.14159265...

x = number of days obtained after rounding off, ranging from 0
to infinity.

It was observed in [Kacem, 2017] that activities, not more than
2 months old have been noted to contribute most significantly.
The equation is formulated such that it allows for only the last
60 days activities to be deemed significant according to the 5%
rule to deem a value negligible. The 5% rule states that any
value less than 5% of the maximum value with which it is

21078 International Journal of Development Research, Vol. 08, Issue, 06, pp.

Here, it would include cluster numbers (2, 14, 11, 0, 3). This
algorithm fully utilizes the hierarchical order and gives
exceptional results as compared to other cluster counterparts.

this combined cluster is used for computing the score of
the each of the scraped Search Engine results. Similar
operations are performed on the user query taken as input from
the user. The distances between the vector form of this query

ers are calculated, and the one with a
minimum distance of all is selected. From this selected cluster,
we extract all the key attributes. This set of attributes is now
used to evaluate the top ‘n’ results fetched from the SERPs.

ult belonging the SERPs is
calculated, and these values are saved in the respective fields.
The user is provided with a like button and a dislike button
next to each of the results provided to him. The like button
would indicate that the user is happy with that result, and
would increment the count in the positive feedback column,
whereas the dislike button expresses the undesirability of that
result entry, and increments the count for that domain in the

It was observed that more recent
searches and browser activities held more significance and
offered more value than their less recent counterparts. Hence,
we have attempted to sensitize the time dimension of browser

vector of each activity to a
number of days. The equation that was used to compute the

x = number of days obtained after rounding off, ranging from 0

] that activities, not more than
2 months old have been noted to contribute most significantly.
The equation is formulated such that it allows for only the last
60 days activities to be deemed significant according to the 5%

o deem a value negligible. The 5% rule states that any
value less than 5% of the maximum value with which it is

compared, can be neglected. Using this equation, we not only
take into account activities older than 60 days but also ensure
that their contribution, while taking into account, is not very
significant.

Re-ranking Algorithm: After forming clusters and scraping
data from key tags of web pages belonging to the web pages,
we use the LSI and Word2Vec models to find the similarities
between all the documents belonging to the selected cluster
with each of the web pages of the SERP.
is used in conjugation with various other fields to compute the
final score of each entry of the SERP.
This score is used to sort and rank the web pages in descending
order and this final list is presented to the user.
phase of this processing, we use a dataset with the following
tuple to train our Linear Regression model:
equation to solve and fine-tune the parameters of the Linear
Regression model, since the combination is very cheap
computationally for a dataset with small features and linearity,
such as ours. It fits the data exceptionally well and also
eliminates the need to manually set the learning rate parameter
like in gradient descent. After training the model, the scaled
equation of the model’s prediction value (score) is described as
follows:

Score = 0.61*Similarity + 0.08*Frequency + 0.13*Positive
Feedback - 0.36*Negative Feedback + 0.11*Bookmarked +
0.25*Time Dimension + Search Engine Rank*0.15 + 0.17
After applying this algorithm, we extra
of the set of 27 results and present it to the user. The number
14 was chosen to be the optimal value since, during our
surveys, it was observed that 91% of the people did not scroll
through more than 14 top results.

User Feedback: The user is provided with a like button and a
dislike button next to each of the results provided to him. The
like button would indicate that the user is happy with that
result, and would increment the count in the positive feedback
column, whereas the dislike button expresses the undesirability
of that result entry, and increments the count for that domain in
the negative feedbacks column. This is again saved in the User
Profile tuple for calculation the rank of the domain.

Experimental and Result Anal
students of our class to test this program and recorded their
feedbacks on it. We also arranged for some random people to
start as new users to test the static profile building feature of
the program and recorded the results. For
we made provisions for them to compare the previous SERPs
with the modified, re-ranked SERPs and make comparisons on
the basis of their personal relevance and relatability. We used a
grading score to evaluate our software, ranging from
with 10 being the most relatable and highly relevant pages
being promoted up the ladder plus extreme convenience in
navigation and browsing through the SERPs and 0 being all
relevant and important pages being demoted down the ladder
plus extremely problematic to browse through the SERPs and
navigation.

The entire architecture is designed to be dynamic, robust and
requires minimal computations. Since the program will be
generating the output in real
efficiency are absolutely imperative.

International Journal of Development Research, Vol. 08, Issue, 06, pp. 21074-21080, June, 2018

compared, can be neglected. Using this equation, we not only
take into account activities older than 60 days but also ensure

tion, while taking into account, is not very

After forming clusters and scraping
data from key tags of web pages belonging to the web pages,
we use the LSI and Word2Vec models to find the similarities
between all the documents belonging to the selected cluster
with each of the web pages of the SERP. This similarity value
is used in conjugation with various other fields to compute the
final score of each entry of the SERP.
This score is used to sort and rank the web pages in descending
order and this final list is presented to the user. In the final

hase of this processing, we use a dataset with the following
tuple to train our Linear Regression model: We use the normal

tune the parameters of the Linear
Regression model, since the combination is very cheap

r a dataset with small features and linearity,
such as ours. It fits the data exceptionally well and also
eliminates the need to manually set the learning rate parameter
like in gradient descent. After training the model, the scaled

prediction value (score) is described as

Score = 0.61*Similarity + 0.08*Frequency + 0.13*Positive
0.36*Negative Feedback + 0.11*Bookmarked +

0.25*Time Dimension + Search Engine Rank*0.15 + 0.17.
After applying this algorithm, we extract the top 14 results out
of the set of 27 results and present it to the user. The number
14 was chosen to be the optimal value since, during our
surveys, it was observed that 91% of the people did not scroll
through more than 14 top results.

The user is provided with a like button and a
dislike button next to each of the results provided to him. The
like button would indicate that the user is happy with that
result, and would increment the count in the positive feedback

dislike button expresses the undesirability
of that result entry, and increments the count for that domain in
the negative feedbacks column. This is again saved in the User
Profile tuple for calculation the rank of the domain.

Experimental and Result Analysis: We arranged for all
students of our class to test this program and recorded their
feedbacks on it. We also arranged for some random people to
start as new users to test the static profile building feature of
the program and recorded the results. For both sets of people,
we made provisions for them to compare the previous SERPs

ranked SERPs and make comparisons on
the basis of their personal relevance and relatability. We used a
grading score to evaluate our software, ranging from 0 to 10,
with 10 being the most relatable and highly relevant pages
being promoted up the ladder plus extreme convenience in
navigation and browsing through the SERPs and 0 being all
relevant and important pages being demoted down the ladder

y problematic to browse through the SERPs and

The entire architecture is designed to be dynamic, robust and
requires minimal computations. Since the program will be
generating the output in real-time applications, speed and

absolutely imperative.

, June, 2018

There proposed system consists of two broad groups of
steps:

 User Profile Generation / Updating
 SERP Scoring and Ranking

We selected two models for calculating the distances between
every pair of documents in the corpus: Latent Se
Indexing and Word2Vec. LSI overcomes the problems of
synonymy and polysemy. LSI model training can also be
resumed from any point, thus resulting in reducing training
times for the LSI model and faster computations.

 Dataset for Evaluation: The dataset is created dynamically
by extracting the browsing history of the Google Chrome
Browser of the user. The browsing history of the users is
stored at ~/AppData/Local/Google/Chrome/User
Data/Default/History location. This file is in SQLite format.
We first extract the history of the user from this location and
then analyse the file to extract relevant details such as the URL
and the number of times the user has visited that link.

A sample of the extract history is as follows:

docs.google.com 36319
mail.google.com 4114
drive.google.com 3414
google.co.in 20095
app.applyyourself.com 788
localhost 701
youtube.com 750
localhost:5984 504
linkedin.com 383
classroom.google.com 240
google.com 234
github.com 220
apps.grad.uw.edu 217
netflix.com 214
toefl-registration.ets.org 178
gmail.com 176
choose.illinois.edu 164
1337x.to 156
heinz.cmu.edu 154
applyweb.com 142
facebook.com 141
accounts.google.com 137

The second selected model is the Continuous skip
architecture of the Word2Vec model since it
outperforming all its counterparts in medium
According to our surveys, the window size of 10, 7 negative
samples and number of dimensions restricted to 350 seemed to
be the most optimal trade-off between accuracy and
computational time. The combination of text processing
models is chosen such that they perform optimally irrespective
of the size of the corpora since LSI is marked to perform well
even with a small training corpus whereas Word2vec skip
gram model is marked to perform exceptionally when trained
on the large-sized corpus. For comparison, we consider the top
14 results returned for a generic guest profile and for a specific
user’s profile. To gain more concrete results on the
measurement of personalization of results,
suggested by [Anikó Hannák, 2017] and compare these two
sets of results with each other, Jaccard Index and Kendall’s
Tau coefficient. Jaccard Index is an indicator of the number of

21079 Smita Sankhe and Nirmala Shinde

There proposed system consists of two broad groups of

We selected two models for calculating the distances between
every pair of documents in the corpus: Latent Semantic
Indexing and Word2Vec. LSI overcomes the problems of
synonymy and polysemy. LSI model training can also be
resumed from any point, thus resulting in reducing training
times for the LSI model and faster computations.

dataset is created dynamically
by extracting the browsing history of the Google Chrome

The browsing history of the users is
stored at ~/AppData/Local/Google/Chrome/User
Data/Default/History location. This file is in SQLite format.

irst extract the history of the user from this location and
then analyse the file to extract relevant details such as the URL
and the number of times the user has visited that link.

The second selected model is the Continuous skip-gram
architecture of the Word2Vec model since it is known for
outperforming all its counterparts in medium-sized datasets.
According to our surveys, the window size of 10, 7 negative
samples and number of dimensions restricted to 350 seemed to

off between accuracy and
The combination of text processing

models is chosen such that they perform optimally irrespective
of the size of the corpora since LSI is marked to perform well
even with a small training corpus whereas Word2vec skip-

orm exceptionally when trained
For comparison, we consider the top

14 results returned for a generic guest profile and for a specific
user’s profile. To gain more concrete results on the

 we use the ones
] and compare these two

sets of results with each other, Jaccard Index and Kendall’s
Tau coefficient. Jaccard Index is an indicator of the number of

overlapping entries present in both sets that range from 0
Here, 0 would indicate that there are is no such resultant entry
that is present in both the sets and 1 would imply that both
result sets contain the exact same entries. On the other hand,
Kendall’s Tau coefficient ranges from 0 to 1 and measures
ordinal relation between these two sets, which would indicate
the correctness of the ranking assigned to the calculated
fraction of the resultant sets. We get the following graph on
comparing personalized results returned by our program for 10
user queries with the SERPs returned by Google.

Fig 4.1. Comparison of personalized results
with Google’s SERPs

Fig 4.2. Statics of Average Feedback Rating

Similarity Measure Real

Bookmarked Boolean (true / false)
Domain Frequency Normalized Fraction
Positive Feedback Integer
Negative Feedback Integer
Search Engine Rank Positive Integer
Time score Real

 From Jaccard Coefficient, we observe high correlation
among the result sets returned by both methods

 From the graph of Kendall’s Tau coefficient, we
learned that although there is a high correlation between
the two sets, there is low to medium ordinal association
between them.

 To calculate user satisfaction, the experience was rated
on a scale of 1 to 10

 And the average rating received from 10 users was an
astounding 8.3 out of 10.

 The distribution was as follows:

Conclusion

We have proposed a new system to provide
search according to the user’s internet surfing patterns.
Personalization plays an important role in finding out the
results which are according to the user’s context. Hence in this
project various factors like user feedback and search his
are used to obtain personalized result to the users.

Smita Sankhe and Nirmala Shinde, Uncovering user’s search patterns to personalise web search

overlapping entries present in both sets that range from 0 to 1.
Here, 0 would indicate that there are is no such resultant entry
that is present in both the sets and 1 would imply that both
result sets contain the exact same entries. On the other hand,
Kendall’s Tau coefficient ranges from 0 to 1 and measures

dinal relation between these two sets, which would indicate
the correctness of the ranking assigned to the calculated
fraction of the resultant sets. We get the following graph on
comparing personalized results returned by our program for 10

ith the SERPs returned by Google.

Comparison of personalized results
with Google’s SERPs

Statics of Average Feedback Rating

 number belonging to [0, 1]

Boolean (true / false)
Normalized Fraction
Integer
Integer
Positive Integer

 number belonging to [0, 1]

Coefficient, we observe high correlation
among the result sets returned by both methods
From the graph of Kendall’s Tau coefficient, we
learned that although there is a high correlation between
the two sets, there is low to medium ordinal association

To calculate user satisfaction, the experience was rated

And the average rating received from 10 users was an
astounding 8.3 out of 10.
The distribution was as follows:

We have proposed a new system to provide personalized web
search according to the user’s internet surfing patterns.
Personalization plays an important role in finding out the
results which are according to the user’s context. Hence in this
project various factors like user feedback and search history
are used to obtain personalized result to the users.

personalise web search

User search history is observed to find out which the links that
the user visits frequently and to understand what type of
content he surfs. Feedback from the user gives direct
information whether the result is useful or not while
collaborative search works on the basic principle that like
people have like interests. The semi-dynamic nature of the
proposed system, allows addition of newer entries and the
change of user’s interest can also be incorporated.
Personalization can be useful as it saves time and efforts both
of a user in finding the expected results. Thus, we conclude
that the proposed system achieved its objectives, thereby
significantly reducing the time related to extracting
information from search engines.

Future Work and Scope: The current ideas can be extended
to leveraging information from other sources similar to the
browser history, and for other purposes than the search engine.
For example, re-ranking posts on social media such as Twitter
and Facebook, modifying the program to run on mobile
devices, using the LinkedIn information to construct a more
effective user profile, etc. Also, our program was restricted by
the computational costs. In future, with the improvement in
GPUs and processors, computationally expensive methods can
also be implemented, such as a complex, multi-layered deep
learning model, or more SERPs can be scraped to allow for
even better results.

REFERENCES

Altszyler E, Sigman M, and Slezak DF. 2016. “Comparative

study of LSA vs Word2vec embeddings in small corpora: a
case study in dreams database”. arXiv preprint
arXiv:1610.01520.

Anikó Hannák, Piotr Sapieżyński, Arash Molavi Khaki, David
Lazer, Alan Mislove, Christo Wilson. 2017. “Measuring
Personalization of Web Search”. arXiv preprint
arXiv:1706.05011.

Kacem, A., Boughanem M. and Faiz, R. 2017. "Emphasizing
temporal-based user profile modeling in the context of
session search", Proceedings of the Symposium on Applied
Computing - SAC '17.

Kumar, R. and Sharan, A. 2014. Personalized web search
using browsing history and domain knowledge", 2014
International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT).

Makvana, K., Shah, P. and Shah, P. 2014. "A novel approach
to personalize web search through user profiling and query
reformulation", 2014 International Conference on Data
Mining and Intelligent Computing (ICDMIC).

Renjini, L. and Ratheesh, T. 2016. "PSQCR — An efficient
integrated approach for web search personalization", 2016
International Conference on Emerging Technological
Trends (ICETT), 2016.

21080 International Journal of Development Research, Vol. 08, Issue, 06, pp. 21074-21080, June, 2018
