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ARTICLE INFO  ABSTRACT 
 
 

In today’s world, search engines have become a very convenient method of searching and 
retrieving information. But this increasing use of search engines goes hand in hand with the ever-
increasing data available on the internet. With such large number of websites available, it is 
essential to have these websites sorted in decreasing order of their relevance to the user’s query 
for effective operation and retrieval of data. This paper explores various domains related to 
Computer Science and proposes a framework that seems the best fix to this problem. We have 
proposed a new system to provide personalized web search according to the user’s internet surfing 
patterns. The system extracts the user’s history and scrapes the web pages’ content (title, 
keywords, headings, sub-headings, meta tags). These documents are then clustered using 
Word2Vec model and Latent Semantic Indexing to give better results. User’s search query is 
mapped to the profile and an appropriate cluster is selected. The SERP returned by the search 
engine is mapped to the selected cluster to find the similarity index. A linear regression model is 
used to assign the final score which takes the regency, frequency, popularity and user’s feedback 
along with the similarity measure to re-rank the SERP. 
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INTRODUCTION 
 
The user profile is created using the user’s browser history file 
and other typical behaviors on the internet, such as the 
bookmarked web pages, accounts created on various portals, 
subscriptions, etc. All these attributes can be used to construct 
certain patterns for this profile, which will be employed for 
effective re-ranking of SERPs for future queries. We also 
make an effort to date this user profile, that is, the more recent 
entries and activities hold a higher significant value and vice 
versa. This is because human interests and behaviors tend to 
change over periods of time. This period of time can be neither 
quantified nor generalized. Hence, the method of dating entries 
ensures that recent activities hold more relevance than the 
previous activities, which led us to achieve better results when 
tested again other results. Some users can be new to the 
browser, others can have a full-fledged browser history, 
sufficient to analyse its history files to identify patterns and 
trends.  
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User profiling was found to be effective only for the 
experienced/regular users. For new users, using information 
from browser history files is not feasible. Hence, we made 
provisions for new users by taking inputs about user’s interests 
in a separate form that consists of keywords (interest topics) 
and accordingly tailoring the SERP to provide effective 
personalization. Gradually, as the user uses the browser, the 
history file will record his activities and once this history file 
possesses information exceeding a certain threshold, the 
program will switch to providing dynamic personalization of 
web search. The model also uses more than one algorithm for 
many tasks, to ensure that features and details of all attributes 
are correctly captured and addressed by the model and are used 
effectively to improve its accuracy and performance. Apart 
from the model, certain novel modules and functionalities have 
also been incorporated into our project which increases the 
personalization factor and successfully reduce the user’s time 
for information retrieval. This problem can certainly appear to 
be small and negligible at the microeconomic level, but this is 
not the case. For most organizations, the employees tend to 
make use of Search Engines on a daily basis for a wide range 
of tasks.  
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On such a large scale, surfing through several results from the 
SERPs to find the right match consumes the precious time of 
their employees. This shoots up the overall expenses of that 
organization. The more the dependency on Search Engines of 
an organization, the higher will be the associated expenses. 
This is just one of the numerous problems we come across in 
our day-to-day life. Finding the right information on the 
internet nowadays is like finding a needle in a haystack. After 
researching extensively on all existing solutions and their 
drawbacks, we designed our own model that improves upon 
them, while simultaneously minimizing the drawbacks. The 
user profile is created using the user’s browser history file and 
other typical behaviors on the internet, such as the bookmarked 
web pages, accounts created on various portals, subscriptions, 
etc. All these attributes can be used to construct certain 
patterns for this profile, which will be employed for effective 
re-ranking of SERPs for future queries. We also make an effort 
to date this user profile, that is, the more recent entries and 
activities hold a higher significant value and vice versa. This is 
because, in our surveys, we noticed that human interests and 
behaviors tend to change over periods of time. This period of 
time can be neither quantified nor generalized. Hence, the 
method of dating entries ensures that recent activities hold 
more relevance than the previous activities, which led us to 
achieve better results when tested again other results. 
 
Some users can be new to the browser, others can have a full-
fledged browser history, sufficient to analyze its history files to 
identify patterns and trends. User profiling was found to be 
effective only for the experienced/regular users. For new users, 
using information from browser history files is not feasible. 
Hence, we made provisions for new users by taking inputs 
about user’s interests in a separate form that consists of 
keywords (interest topics) and accordingly tailoring the SERP 
to provide effective personalization. Gradually, as the user 
uses the browser, the history file will record his activities and 
once this history file possesses information exceeding a certain 
threshold, the program will switch to providing dynamic 
personalization of web search. To begin with, we have only 
designed the program to support Google since it is the most 
widely used and preferred search engine around the world, and 
is easy to use and access. A browser history will keep 
changing overuse. Due to this constantly changing property of 
the history file, the model is designed to be dynamic in order 
to handle this dynamicity of browser’s history files. The model 
aims to resolve inherent ambiguities in search queries by 
analyzing user’s browser history and using this information to 
provide context to the queries. The proposed model has been 
hybridized in many aspects to extract advantages of both 
features, static and dynamic.  
 
Analysing browser’s history and clustering on the browser’s 
history pages repeatedly can become computationally heavy 
and time-consuming. Hence, the model is designed to be semi-
dynamic, that is, it will not perform hierarchical clustering for 
every task; It will only do it once in a day or as specified by 
the user or when there is little to no load on the server, to 
improve its real-time performance and decrease computations 
required to arrive at a result. The model also uses more than 
one algorithm for many tasks, to ensure that features and 
details of all attributes are correctly captured and addressed by 
the model and are used effectively to improve its accuracy and 
performance. This will be explored in-depth in the later part of 
this paper. Apart from the model, certain novel modules and 
functionalities have also been incorporated into our project 

which increases the personalization factor and successfully 
reduce the user’s time for information retrieval. In this paper, 
we explore incorporate a number of algorithms and techniques 
coming from various domains which seem suitable for our 
ideas and help us in achieving our objectives. We also 
substantiate these decisions with concrete reasoning and 
germane evidence. 
 
The remainder of the paper is organized as follows: 
 

 Literature Survey 
 Architecture of Proposed System 

 User Profile Generation / Updating 
 SERP scoring and ranking 

 Experimental and Result Analysis 
 Conclusion 
 Future Scope 

 
Literature Survey: Our research led us to discover interesting 
implemented systems and identify their drawbacks, which are 
as follows: Reference [Makvana et al., 2014] carries out 
Personalization of web search results by processing user’s 
query and re-ranking the results depending upon the interest of 
the user. A 3-Level weblog user profile is created from the 
weblog data, where the 1st level contains the keyword of the 
query, 2nd level contains the sub-queries and the 3rd level 
contains the records of the URLs visited by the user. The 
algorithm re-ranks the results using Vector Space Model 
depending upon the user’s activities. Then, cosine similarity is 
used to find the correlation between the search query and the 
data stored in the log file. So when a user searches for a query, 
it retrieves the results in a hierarchical manner. Reference 
[Kumar, 2014] proposes to construct an Enhanced User Profile 
by considering the browsing history of the user and enhancing 
it by using domain knowledge. Domain knowledge (DMOZ) is 
the background knowledge that is used to enhance the user 
profile. Some web pages are crawled from the DMOZ 
directory for specific categories. For classification of web 
pages, Alchemy API is used which shows the probability of a 
web page belonging to a particular category, and are mapped 
to the respective DMOZ categories. Cosine similarity is 
calculated between the URL and the URLs present in the 
knowledge base to prepare Enhanced User Profile. [Renjini, 
2016] personalizes the search results depending on Query 
expansion and Clustering. The user profile is created using the 
search history. It uses k-means clustering to group similar 
documents into clusters, and the search is performed only on 
the centroids of each cluster instead of all documents. Query 
expansion is done with identical words by using Word Net. 
The history is refreshed every 60 days to include the most 
recent interests only. [Kacem, 2017] aims to improve the 
sessions’ results by considering the user’s current interactions 
are more relevant to the user than the earlier ones. The vector 
of keywords is used to represent the user profile. TF-IDF 
scheme is used to assign the weights along with its temporal 
characteristics. Session search aims to deliver the most 
meaningful results to the present need of the user [Altszyler, 
2016] aims to compare the performance of LSA and 
Word2Vec embedding’s in medium and small-sized corpora. It 
was shown that on training the database with medium to large 
size corpora, Word2Vec outperforms LSA but in small 
corpora, LSA gives accurate semantic relation[Anikó Hannák, 
2017]. Presents a way to measure the extent of personalization 
of web search. Jaccard Index views the result lists as sets and 
is defined as the size of the intersection over the size of the 
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union. Second, the value of Kendall’s Tau coefficient for two 
ranked lists is obtained by measuring the difference in results 
among two ranked sets. 

 
Architecture of Proposed System: The entire architecture is 
designed to be dynamic, robust and requires minimal 
computations. Since the program will be generating the output 
in real-time applications, speed and efficiency are absolutely 
imperative. 
 

 
 

Fig. 3.1. System Architecture 
 

 
 

Fig. 3.2. System Work Flow 
 

There proposed system consists of two broad groups of 
steps: 
 

 User Profile Generation / Updation 
 SERP Scoring and Ranking 

 
We selected two models for calculating the distances between 
every pair of documents in the corpus:  

Latent Semantic Indexing and Word2Vec. LSI overcomes the 
problems of synonymy and polysemy. LSI model training can 
also be resumed from any point, thus resulting in reducing 
training times for the LSI model and faster computations. The 
second selected model is the Continuous skip-gram 
architecture of the Word2Vec model since it is known for 
outperforming all its counterparts in medium-sized datasets. 
According to our surveys, the window size of 10, 7 negative 
samples and number of dimensions restricted to 350 seemed to 
be the most optimal trade-off between accuracy and 
computational time. The combination of text processing 
models is chosen such that they perform optimally irrespective 
of the size of the corpora since LSI is marked to perform well 
even with a small training corpus whereas Word2vec skip-
gram model is marked to perform exceptionally when trained 
on the large-sized corpus. 
 

User Profile Generation / Updation 

 
Fetching contents of the history file: The program begins 

with accessing the history file of Google Chrome browser. If 

the history file is opened successfully, then the program 

initiates reading from the history file and copies this content 

into a CSV file. This CSV file is the primary file of the 

program, where all the processing and storing of data occurs. 

 
Web Scraping: Each result entry extracted from the SERP is a 

web page and has the characteristics of an HTML file. After 

completing the extraction of SERPs, we scrape through top 27 

resultant web pages returned by the program, and extract the 

key attributes from each of these pages’ tags, such as the 

metadata tags, title tags, keyword tags and heading tags to 

mention a few, and are stored in their respective fields. 

 

Text Processing 

 
Tokening and Removal of stop words: All this scraped 
information is collectively referred to as the corpus of 
documents. For text processing, the entire corpus was parsed 
and converted into tokens. After tokenizing the corpus, the 
program filters out the stopwords present among the tokens. 
This step ensures that only keywords are preserved and the 
unnecessary words are eliminated since the stop words are of 
no real value and are found to impact the results negatively 
when preserved in the document. 
 
Stemming: Now, stemming is performed on each token of the 
corpus using the Porter stemmer. This is done to generalize 
words with similar origins but different tenses, to combine 
singular and plural words and remove affixes from words; 
ultimately, the canonical form of each word is obtained. 
Resolving all these conflicts enables the tracing back words 
that belong to the same word or same stem, in essence. It also 
reduces the number of words in the dictionary, thereby 
resulting in faster processing. Unlike lemmatizers, stemmers 
don’t need any extra knowledge about the context of the word 
and can only map to some word present in the dictionary. Our 
dictionary not being exhaustive is another reason to prefer 
stemmer over lemmatizer. 
 
Converting tokens into vectors: A large portion of the 
constructed dataset shall consist of text. Machine learning or 
data mining models cannot directly process raw text to make 
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predictions. Texts need to be converted to some numerical 
value in order to be of use for the machine learning model. 
After obtaining a corpus with normalized documents, the 
corpus is then processed and transformed into a Dictionary. A 
dictionary is a data structure that saves each word as its key 
and maps it to the corresponding key ID as its value. For 
example, let’s assume ‘motor’ is the first word of the 
dictionary and occurs twice in a document. Then, ‘motor’ will 
be represented as {‘motor’:2}. This dictionary is later used as a 
reference to convert each document into Bag of Words (BoW) 
model. For each document, the BoW model represents each 
word by its key ID paired with its number of occurrences in 
that document. This conversion greatly contributes to 
dimensionality reduction and makes this the raw text fit for use 
by the machine learning models. As noted above, models 
perform differently under different circumstances. On the basis 
of this observation, we designed an equation that would 
capture the advantages of both models and be used to increase 
the combined efficiency of the models. This equation is 
dependent on the number of dimensions. The contribution 
made by these 2 models is dictated by the following equation: 
 

S = A * x + B * y     (1) 
 
Where, 
 
S = Combined Similarity Score 
X= similarity value returned by Word2Vec model. 
Y= similarity value returned by LSI model 
A and B are coefficients, which are calculated as follows: 
A = (n - 0.05) / (10 million)   for n < 8 million 
A = 0.75 + (n - 8) / (40 million)   for 8 <= n < 10 million 
A = 0.8 + (n - 10 million) / (100 million) otherwise 
And 0 <= A <= 0.87 
B = 1 - A 
n = size of the corpora 
 

We use 10 million as a metric because it was reported by 
[Altszyler, 2016] that at a corpus size of 100 million, 
Word2Vec with negative sampling Continuous skip-gram 
model outperforms LSA, and hence the contribution made by 
Word2Vec at this level is made significantly higher than LSI’s 
contribution to accommodate these advantages into our 
combined models. As noted by the paper [Altszyler, 2016], the 
performance of Word2Vec continuous skip-gram model 
severely decreased when trained on a small-scale dataset, 
whereas it outperformed LSI model when trained on medium 
to large-scale datasets. Additionally, LSI was marked to 
accurately identify polysemy and synonymy.  Using these 
vectors, we use ensemble model, comprising of Word2Vec and 
Latent Semantic Indexing similarity to find the distance 
between different pairs of documents. Using this distance as a 
metric, we use hierarchical clustering to cluster documents 
based on their similarity. Using hierarchical clustering offers 
3-fold benefits. First, the shape of clusters need not be 
spherical. Since we are considering the total population, their 
usage behavior and statistics cannot be generalized. Hence, 
this program required a more generalized and dynamic 
technique that could handle clusters of all shapes without 
compromising its accuracy and performance. Additionally, the 
number of clusters need not be predefined, which is a huge 
plus, because every user would have a different number of 
entries in his history file, the difference can vary up to 7 
figures. Hence, hierarchical clustering would assist in deciding 
upon the correct number of clusters depending on the number 

of entries and fully automating the task of clustering. Lastly, it 
provides hierarchical relations between clusters and can 
capture concentric clusters. It becomes easier to divide clusters 
and helps in selecting the more appropriate hierarchical level 
that would give the highest accuracy. We use the similarity 
metric dictated by the word2vec and LSI models as input to 
the hierarchical clustering model, which is trained on the 
average linkage method. Then, a dendrogram for this model is 
constructed which gives valuable insights regarding the 
structure of the corpus. This model is then saved as the User 
Profile. 

 
SERP Scoring and Ranking 

 
SERP Fetching and Scraping: The user’s search query is 
entered in the Search Engine. The SERP returned is then 
fetched and the contents of these web pages are extracted in 
the similar format as for the History Pages. The query to be 
run through Google is taken as input from the user. The query 
is of prime importance since the whole model is designed to 
optimize the results for it. After running the query through 
Google, top 27 results from Search Engine Result Pages 
(SERPs) are extracted. The program provides the flexibility to 
change this variable number (27) as preferred by the user, but 
through our research, we have come to the conclusion that 27 
is the ideal number of results to be taken into consideration 
since it maintains a perfect trade-off between computational 
costs and accuracy. Hence, the number 27 is set as the default 
value for this entry. 
 

Text Processing: The web page contents are again vectorized 
and converted to Bag-of-Words (BoW) format. The query 
terms are also tokenized and vectorized. 
 
Selection of the cluster: We then use the vector form of input 
query and compute its distance to all the leaf clusters of the 
dendrogram (User Profile). Based on these distances, we select 
the top k most similar clusters and trace them back to their 
least common ancestor. All the leaf nodes (children) of this 
ancestor are combined by performing union operation on them. 
This combined cluster should have a count of documents 
exceeding 5% of the total number of documents which makes 
it significant when compared to the 5% rule of neglecting. For 
any value of k, if the cluster fails the 5% rule, the value of k 
should be incremented until it becomes true. 
 
We use the following algorithm to find the value of k: 
 
n = len(corpus) 
   for i :=  0 to n 
 
If count(intersection(top i clusters)) >=  5/100*n : 
then k := i 
 
     else k++ 
 
For example: Let us assume that for k=2, cluster number 2 and 
11 are the top 2 results. 

 
After performing the algorithm on the above dendrogram, we 
get: 
 
At the intersection point, we consider all of the children nodes 
and take its union to get the resultant cluster.  
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Here, it would include cluster numbers (2, 14, 11, 0, 3).
algorithm fully utilizes the hierarchical order and gives 
exceptional results as compared to other cluster counterparts. 
Also, this combined cluster is used for computing the score of 
the each of the scraped Search Engine results.
operations are performed on the user query taken as input from 
the user. The distances between the vector form of this query 
and all other clusters are calculated, and the one with a 
minimum distance of all is selected. From this selected cluster, 
we extract all the key attributes. This set of attributes is now 
used to evaluate the top ‘n’ results fetched from the SERPs. 
The similarity of each result belonging the SERPs is 
calculated, and these values are saved in the respective fields. 
The user is provided with a like button and a dislike button 
next to each of the results provided to him. The like button 
would indicate that the user is happy with
would increment the count in the positive feedback column, 
whereas the dislike button expresses the undesirability of that 
result entry, and increments the count for that domain in the 
negative feedbacks column.  
 

Time Dimension Sensitivity: It was observed that more recent 
searches and browser activities held more significance and 
offered more value than their less recent counterparts. Hence, 
we have attempted to sensitize the time dimension of browser 
activities. nWe rounded off the time vector of each activity to a 
number of days. The equation that was used to compute the 
score is as follows: 
 
Time Score Equivalent = pi / (x + pi) 
Where pi= 3.14159265... 
 
x = number of days obtained after rounding off, ranging from 0 
to infinity. 
 
It was observed in [Kacem, 2017] that activities, not more than 
2 months old have been noted to contribute most significantly. 
The equation is formulated such that it allows for only the last 
60 days activities to be deemed significant according to the 5% 
rule to deem a value negligible. The 5% rule states that any 
value less than 5% of the maximum value with which it is 
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Here, it would include cluster numbers (2, 14, 11, 0, 3). This 
algorithm fully utilizes the hierarchical order and gives 
exceptional results as compared to other cluster counterparts. 

this combined cluster is used for computing the score of 
the each of the scraped Search Engine results. Similar 
operations are performed on the user query taken as input from 
the user. The distances between the vector form of this query 

ers are calculated, and the one with a 
minimum distance of all is selected. From this selected cluster, 
we extract all the key attributes. This set of attributes is now 
used to evaluate the top ‘n’ results fetched from the SERPs. 

ult belonging the SERPs is 
calculated, and these values are saved in the respective fields. 
The user is provided with a like button and a dislike button 
next to each of the results provided to him. The like button 
would indicate that the user is happy with that result, and 
would increment the count in the positive feedback column, 
whereas the dislike button expresses the undesirability of that 
result entry, and increments the count for that domain in the 

It was observed that more recent 
searches and browser activities held more significance and 
offered more value than their less recent counterparts. Hence, 
we have attempted to sensitize the time dimension of browser 

vector of each activity to a 
number of days. The equation that was used to compute the 

x = number of days obtained after rounding off, ranging from 0 

] that activities, not more than 
2 months old have been noted to contribute most significantly. 
The equation is formulated such that it allows for only the last 
60 days activities to be deemed significant according to the 5% 

o deem a value negligible. The 5% rule states that any 
value less than 5% of the maximum value with which it is 

compared, can be neglected. Using this equation, we not only 
take into account activities older than 60 days but also ensure 
that their contribution, while taking into account, is not very 
significant. 
 

Re-ranking Algorithm: After forming clusters and scraping 
data from key tags of web pages belonging to the web pages, 
we use the LSI and Word2Vec models to find the similarities 
between all the documents belonging to the selected cluster 
with each of the web pages of the SERP. 
is used in conjugation with various other fields to compute the 
final score of each entry of the SERP. 
This score is used to sort and rank the web pages in descending 
order and this final list is presented to the user.
phase of this processing, we use a dataset with the following 
tuple to train our Linear Regression model:
equation to solve and fine-tune the parameters of the Linear 
Regression model, since the combination is very cheap 
computationally for a dataset with small features and linearity, 
such as ours. It fits the data exceptionally well and also 
eliminates the need to manually set the learning rate parameter 
like in gradient descent. After training the model, the scaled 
equation of the model’s prediction value (score) is described as 
follows: 
 
Score = 0.61*Similarity + 0.08*Frequency + 0.13*Positive 
Feedback - 0.36*Negative Feedback + 0.11*Bookmarked + 
0.25*Time Dimension + Search Engine Rank*0.15 + 0.17
After applying this algorithm, we extra
of the set of 27 results and present it to the user. The number 
14 was chosen to be the optimal value since, during our 
surveys, it was observed that 91% of the people did not scroll 
through more than 14 top results.
 
User Feedback: The user is provided with a like button and a 
dislike button next to each of the results provided to him. The 
like button would indicate that the user is happy with that 
result, and would increment the count in the positive feedback 
column, whereas the dislike button expresses the undesirability 
of that result entry, and increments the count for that domain in 
the negative feedbacks column. This is again saved in the User 
Profile tuple for calculation the rank of the domain.
 
Experimental and Result Anal
students of our class to test this program and recorded their 
feedbacks on it. We also arranged for some random people to 
start as new users to test the static profile building feature of 
the program and recorded the results. For 
we made provisions for them to compare the previous SERPs 
with the modified, re-ranked SERPs and make comparisons on 
the basis of their personal relevance and relatability. We used a 
grading score to evaluate our software, ranging from
with 10 being the most relatable and highly relevant pages 
being promoted up the ladder plus extreme convenience in 
navigation and browsing through the SERPs and 0 being all 
relevant and important pages being demoted down the ladder 
plus extremely problematic to browse through the SERPs and 
navigation. 
 
The entire architecture is designed to be dynamic, robust and 
requires minimal computations. Since the program will be 
generating the output in real
efficiency are absolutely imperative.
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There proposed system consists of two broad groups of 
steps: 
 

 User Profile Generation / Updating 
 SERP Scoring and Ranking 

 
We selected two models for calculating the distances between 
every pair of documents in the corpus: Latent Se
Indexing and Word2Vec. LSI overcomes the problems of 
synonymy and polysemy. LSI model training can also be 
resumed from any point, thus resulting in reducing training 
times for the LSI model and faster computations.
 
 Dataset for Evaluation: The dataset is created dynamically 
by extracting the browsing history of the Google Chrome 
Browser of the user. The browsing history of the users is 
stored at ~/AppData/Local/Google/Chrome/User 
Data/Default/History location. This file is in SQLite format. 
We first extract the history of the user from this location and 
then analyse the file to extract relevant details such as the URL 
and the number of times the user has visited that link.
 
A sample of the extract history is as follows: 
 
docs.google.com 36319 
mail.google.com 4114 
drive.google.com 3414 
google.co.in 20095 
app.applyyourself.com 788 
localhost 701 
youtube.com 750 
localhost:5984 504 
linkedin.com 383 
classroom.google.com 240 
google.com 234 
github.com 220 
apps.grad.uw.edu 217 
netflix.com 214 
toefl-registration.ets.org 178 
gmail.com 176 
choose.illinois.edu 164 
1337x.to 156 
heinz.cmu.edu 154 
applyweb.com 142 
facebook.com 141 
accounts.google.com 137 
 
The second selected model is the Continuous skip
architecture of the Word2Vec model since it
outperforming all its counterparts in medium
According to our surveys, the window size of 10, 7 negative 
samples and number of dimensions restricted to 350 seemed to 
be the most optimal trade-off between accuracy and 
computational time. The combination of text processing 
models is chosen such that they perform optimally irrespective 
of the size of the corpora since LSI is marked to perform well 
even with a small training corpus whereas Word2vec skip
gram model is marked to perform exceptionally when trained 
on the large-sized corpus. For comparison, we consider the top 
14 results returned for a generic guest profile and for a specific 
user’s profile. To gain more concrete results on the 
measurement of personalization of results, 
suggested by [Anikó Hannák, 2017] and compare these two 
sets of results with each other, Jaccard Index and Kendall’s 
Tau coefficient. Jaccard Index is an indicator of the number of 
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and the number of times the user has visited that link. 

 

The second selected model is the Continuous skip-gram 
architecture of the Word2Vec model since it is known for 
outperforming all its counterparts in medium-sized datasets. 
According to our surveys, the window size of 10, 7 negative 
samples and number of dimensions restricted to 350 seemed to 

off between accuracy and 
The combination of text processing 

models is chosen such that they perform optimally irrespective 
of the size of the corpora since LSI is marked to perform well 
even with a small training corpus whereas Word2vec skip-

orm exceptionally when trained 
For comparison, we consider the top 

14 results returned for a generic guest profile and for a specific 
user’s profile. To gain more concrete results on the 

 we use the ones 
] and compare these two 

sets of results with each other, Jaccard Index and Kendall’s 
Tau coefficient. Jaccard Index is an indicator of the number of 

overlapping entries present in both sets that range from 0
Here, 0 would indicate that there are is no such resultant entry 
that is present in both the sets and 1 would imply that both 
result sets contain the exact same entries. On the other hand, 
Kendall’s Tau coefficient ranges from 0 to 1 and measures 
ordinal relation between these two sets, which would indicate 
the correctness of the ranking assigned to the calculated 
fraction of the resultant sets. We get the following graph on 
comparing personalized results returned by our program for 10 
user queries with the SERPs returned by Google.
 

Fig 4.1. Comparison of personalized results 
with Google’s SERPs

 

Fig 4.2. Statics of Average Feedback Rating

Similarity Measure Real 

Bookmarked Boolean (true / false)
Domain Frequency Normalized Fraction
Positive Feedback Integer
Negative Feedback Integer
Search Engine Rank Positive Integer
Time score Real 

 From Jaccard Coefficient, we observe high correlation 
among the result sets returned by both methods

 From the graph of Kendall’s Tau coefficient, we 
learned that although there is a high correlation between 
the two sets, there is low to medium ordinal association 
between them. 

 To calculate user satisfaction, the experience was rated 
on a scale of 1 to 10 

 And the average rating received from 10 users was an 
astounding 8.3 out of 10. 

 The distribution was as follows:
 
Conclusion 
 
We have proposed a new system to provide 
search according to the user’s internet surfing patterns. 
Personalization plays an important role in finding out the 
results which are according to the user’s context. Hence in this 
project various factors like user feedback and search his
are used to obtain personalized result to the users.
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Coefficient, we observe high correlation 
among the result sets returned by both methods 
From the graph of Kendall’s Tau coefficient, we 
learned that although there is a high correlation between 
the two sets, there is low to medium ordinal association 

To calculate user satisfaction, the experience was rated 

And the average rating received from 10 users was an 
astounding 8.3 out of 10.  
The distribution was as follows: 

We have proposed a new system to provide personalized web 
search according to the user’s internet surfing patterns. 
Personalization plays an important role in finding out the 
results which are according to the user’s context. Hence in this 
project various factors like user feedback and search history 
are used to obtain personalized result to the users. 

personalise web search 



User search history is observed to find out which the links that 
the user visits frequently and to understand what type of 
content he surfs. Feedback from the user gives direct 
information whether the result is useful or not while 
collaborative search works on the basic principle that like 
people have like interests. The semi-dynamic nature of the 
proposed system, allows addition of newer entries and the 
change of user’s interest can also be incorporated. 
Personalization can be useful as it saves time and efforts both 
of a user in finding the expected results. Thus, we conclude 
that the proposed system achieved its objectives, thereby 
significantly reducing the time related to extracting 
information from search engines. 
 
Future Work and Scope: The current ideas can be extended 
to leveraging information from other sources similar to the 
browser history, and for other purposes than the search engine. 
For example, re-ranking posts on social media such as Twitter 
and Facebook, modifying the program to run on mobile 
devices, using the LinkedIn information to construct a more 
effective user profile, etc. Also, our program was restricted by 
the computational costs. In future, with the improvement in 
GPUs and processors, computationally expensive methods can 
also be implemented, such as a complex, multi-layered deep 
learning model, or more SERPs can be scraped to allow for 
even better results.  
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