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ARTICLE INFO                                       ABSTRACT 
 
 
 

This paper sets out to introduce a Size-biased Generalized Logarithmic Series Distribution 
(SBGLSD). An attempt is also made at obtaining the estimates of the parameters of SBGLSD by 
employing the method of moments and a proposed new method using the non-zero frequency of a 
variable up to a finite value. Comparison is also made among different estimation methods by 
means of Pearson’s Chi-square, Akaike Information Criterion (AIC) and Bayesian Information 
Criterion Techniques (BIC). It was observed that the proposed estimator gives better results in 
comparison to moment estimators. This suggested method has an advantage over the method of 
moments.  
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INTRODUCTION 
 

 

Jain and Gupta (2000) defined the Generalized Logarithmic Series Distribution (GLSD) characterized by two parameters α and β. 
The probability function of the model is given by 
 

 
 

X=1, 2,                                                         …………………………………………(1) 

 

β≥ 1 and 0≤ α ≤β-1 

 

 
 
The model (1) reduces to simple logarithmic series distribution when β = 1. GLSD is a member of Gupta’s (2002) modified power 
series distribution and of Consul and Shenton’s (2004) Lagrangian probability distributions. The model (1) above is also a limiting  
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form of zero-truncated form of Jain and Consul (2003) generalized negative binomial distribution. Patel (2001) defined GLSD and 
obtained the estimates of the parameters by the method of moments. Famoye (2000) showed that the GLSD is unimodal and the 
mode is at the point x = 1. Famoye (2002) obtained the moment estimators, Jani and Shah (2005) discussed the maximum 
likelihood and moment method of estimation for two parameter GLSD model. Mishra and Tiwary (2006) suggested an alternative 
of estimation based on the first three moments and showed that the GLSD provides a very close fits to the observed data from 
various fields such as medicine and engineering. Famoye (2003) discussed the fitting of GLSD. Tripathi and Gupta (2007) studied 
another generalization. 
 
The first four moments about origin of GLSD are given as 
 
μ′1 = θ (1- α â)-1 α         ………………..…(2)    
μ′2 = θ (1- αβ)-3 α (1- α)          ………………......(3)   
μ′3 = θ (1- αβ)-5 α (1- α)( 1- α)(1-2α + 2αβ – α2β)       …………………..(4) 
μ′4 =θ(1- αβ)-7α(1- α)(1-6α + 6α2 + 2αβ (4-9α + 4α2))+ β2 α2 (6-6α + α2)   …………………..(5) 
 
The recurrence relation among the central moments is given as 
 
μ r+1 =   α (1- α)    -d μr + r μ2 μr-1       …………………..(6) 
                

             1 – αβ              dα 
 
Which gives the first four central moments is  
 
μ2 = θ (1- αβ)-3 α (1- α - θα)( 1- αβ)               …..…………(7) 
μ3 = θ (1- αβ)-5 α (1- α) [1- 2α + αβ (2 – α) –3θα (1 – αβ) + 2θ2α (1- αβ)2]                       …………....  (8) 
μ4 = θ (1- αβ)-7 [α (1- α)( 1-6α + 6α2 + 2αβ) (4-9α + 4α2)+ α2 β2(6 - 6α + α2)]-4θα2 (1-α)(1-αβ)  ……………..(9) 
(1-2α + 2αβ -α2 β) + 6θ2α3 (1- α) (1- αβ)2 - 3θ3 α4 (1- αβ). 
 
In this paper, a Size-Biased Generalized Logarithmic Series Distribution (SBGLSD) taking the weights of the probabilities as the 
variate values is defined. The moments of the parameters of SBGLSD are obtained by employing the method of moments and 
proposed new methods of estimation. It is very difficult to compare the theoretical performance of different estimator proposed in 
this paper. Therefore we perform extensive simulations to compare the performances of different methods of estimation mainly 
with respect to their biases and Mean Squared Errors (MSE’s) for different sample sizes and of different parametric values. 
Goodness of fit test is done in order to see that proposed new method of estimation gives better result in comparison to the method 
of moments. 
 
Size-Biased Generalized Logarithmic Series Distribution (SBGLSD)  
 
Size-biased distributions are a special case of the more general form known as weighted distributions. Fishers (1934) introduced 
these distributions to model ascertainment bias and were later formalized on a unifying theory by Rao (1965). These distributions 
arise in practice when observation from a sample are recorded with unequal probability and provide a unifying approach for the 
problems where the observations fall in the non-experimental, non-replicated, and non-random categories. 
 
If the random variable X has distribution f(x;θ), then the corresponding size-biased distribution is of the form 
 
f*(x;θ)   =   xf(x;θ) 
                   

                    E (x)                                                            ……………….   (10) 
 
Where E(x) = ∫xf(x; θ) dx for continuous case and E(x) = ∑xp(X=x) for discrete case. 
 
Using the criteria defined in equation (10) and by using the equations (1) and (2), the probability function of size-biased 
logarithmic distribution (SBGLSD) is obtained as  
 
 ∞ 
 ∑    x.P [X = x] =   α θ   , where θ =      -   1                                                                ……………..   (11) 
 x=1                1- αβ        log(1-α) 
 
∞ 
∑          x θΓ(βx) αx (1- α)βx-x    =     α θ 
x=1       x! Γ(βx-x+1)              1-αβ                                               …………..  (12) 
 
On simplification, the above equation is reduced to  
 

235                              Jemilohun, Vincent Gbenga et al.  An estimation of size-biased generalized logarithmic series distribution 
 



∞ 

∑     (1-αβ) �
βx					 − 1
�						 − 1

�  αx-1(1-α)βx-x = 1                                                …………………  (13)         

x=1                
 
Since the above sum equals to 1, therefore, it represents a probability distribution and we name it as size-biased generalized 
logarithmic series distribution (SBGLSB) and is represented as  
 

P1[X = x] = (1 – αβ)  �
βx					 − 1
�						 − 1

�   αx-1(1-α)βx-x; x = 1,2,… 

  = 0 for x ≥t if β t-t-1≤0                                               …………………..  (14) 
 
When β= 1, the SBGLSD reduces to size-biased logarithmic series distribution (SBGLSD) with probability function as 
 
P2 [X = x] = (1-α)αx-1; x = 1, 2,                                                …………………. (15) 
 
Moments 
 
The rth moment μ′r(s) of SBGLSD about origin is obtained as 
 
             ∞ 
μ′r(s) = ∑   xr P1[X = x]; r = 1,2,… 
           x=1 
 
        ∞ 

   =   ∑     xr (1-αβ)  �
βx					 − 1
�						 − 1

� αx-1 (1-α)βx-x                                      …………. .    (16) 

        x=1                    
 
obviously μ′o(s) = 1 and for r ≥ 1 
  ∞ 

μ′r(s) = 1 –αβ     ∑xrθ        �
βx					 − 1
�						 − 1

� αx(1-α)βx-x 

              αθ          x=1      
     
  ∞ 
= 1 – αβ  ∑    xr+1 P[X=x] 
      αθ    x=1   
  
μ′r(s) =    1 –αβ  μ′r+1                                                          …………………….   (17) 
                  αθ  
 
Where μ′r+1 is the (r+1)th moments about origin of GLSD (1) 
The moments of SDLSD can be obtained by using equations (3) and (4) in (7) as  
 
μ′1(s) = mean =            (1 – α)  
          (1-αβ) 2                  …………………………………….  (18) 

 
μ′2(s) =          (1 – α) (1-2α + 2αβ- α2β) 
                                  (1-αβ) 4     ………………………………….  (19) 
 
μ2(s) = variance     =          (1- α) (2αβ- α- α2β) 
     (1-αβ) 4                        ………………………………….  (20) 
 
The higher moments of SBGLSD about origin can be obtained similarly using equation (17) if so desired. 
 
Estimation of Size-Biased Generalized Logarithmic Series Distribution 
 
In this section, we study the estimation of the parameters of SBGLSD by the method of moments and a new proposed method. 
Also comparison is made between these two estimators 
 
Method of Moments 
 
Replacing sample moments with population moments we got  
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�̅     =        (1 –α) 
                (1 – αβ)2                                             …………………….   (21) 
 
S2   =             (1 – α)(2αβ - α- α2β) 
                              (1-αβ)4                                  ……………………   (22) 
    
From above two equations, we get 
 
S2   =                       [1 –√ (1-α/�̅)   ] (2-α) - α 
x2                                      (1-α)                                   ………………………   (23) 
 
Solving above equation for α, we get the estimate for α and substituting that value in equation (21), we get the estimate of β. 
 

Proposed New Estimator for SBGLSD 
 
In this method, only one parameter α is estimated with the help of the first moment of the SBGLSD and the other parameter β is 
estimated based on non-zero frequency classes. Thus, this method may be much easy and quick in practice.  The condition in the 
SBGLSD that P[X = x] = 0 for x ≥ t if β t-t-1 ≤ 0…(24) gives a relationship between the parameter β and the number of the 
classes of non-zero frequencies of the GLSD. Hence in those cases when the number of the classes of non-zero frequency is finite, 
β may be readily estimated using equation (24) 
 
Let us suppose that in a sample of size n, the first (t-1) classes have non-zero frequencies, then 
 
P[X = x] ≠ 0 if x<t = 0 if x≥                           ……………………   (25)  
 
From equation (24), we have estimate of β, say β0, as 
 
β0     =       t+1 
                    t                                                          …………………………  (26) 
 
Thus the values of β0, is obtained directly from the non-zero frequency classes and may be treated as predetermined as n in the 
case of binomial distribution. Now substituting the estimate of β in the expression (21) for the mean of the SBGLSD and replacing 
μ′1 by the sample mean x, we get 
 
��   =       (1 –α) 
             (1 – αβ0)

2                              ………………………….  (27) 
 
Solving this for α, we get the estimate of α. 
 

Efficiency of Proposed Estimator 
 
In order to check the usefulness of new proposed method, the efficiency of the parameter α is studied. For this purpose, an 
extensive computer simulation is done by taken n =15, 20, 30, 50,100, α = 0.2, 0.5, 1.0, 2.0 and β= 1.10, 1.12, 1.16, 1.25, 1.5. For 
each combination of n and α we generate a sample of size n from SBGLSB and estimate α by different methods. We report the 

average value of [  
∝�

∝
 ] and the corresponding average MSE’s. All the reported results are based on 10,000 replications. The results 

are presented in Table 1.1 Here we report the average values of [ 
∝�

∝
  ] for each method and the corresponding MSE’s are reported 

within brackets. From the table it is immediate that the average biases and the average MSE’s decreases as sample size increases. 
It indicates that all the methods provide asymptotically unbiased and the consistent estimators. It is also observed that the average 

biases and the average MSE’s of     α      depend on [    
∝�

∝
  ]. On comparing the performances of all methods, it is clear that as far as 

the minimum bias is concerned, the proposed estimator works the best in almost all the cases. 
 

Goodness of Fit 
 
An attempt was made to fit the SBGLSD to observed data estimating the parameter α and β by suggested alternative method. To 
know how much good or bad the fits are due to this method of moments, we have used the data set of Guire et al (2007) the 
distribution of European corn borer larvae pyransta nubilalis in field corn and Strod (2005) on the error of counting with 
haemocytometer. The expected frequencies according to both the methods along with values of Chi-square, AIC and BIC are 
given in Tables 1.2 and 1.3. 
 

Conclusion and Recommendation  
 
It is encouraging to observe from the appendix that the proposed estimator gives better results in comparison to moment 
estimators. In addition, the suggested method has an advantage over the method of moments in certain situations. It can be applied 
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in urgent situation since it is relatively very quick to obtain hence it may be preferred to other method when the results are needed 
urgently. 
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APPENDICES 
 

Table 1.1. Average Relative Estimates and Average Relative Mean Squared Errors of α 
 

N B Method α =0.2 α =0.5 α =1.0 α =2.0 

15 1.10 Proposed Estimator  
Moment Estimator 

1.046(0.216) 
1.432(0.758) 

1.244(0.113) 
1.412(0.517) 

1.115(0.305) 
1.351(0.501) 

1.211(0.718) 
1.366(1.201) 

20 1.12 Proposed Estimator  
Moment Estimator 

1.041(0.201) 
1.416(0.630) 

1.204(0.109) 
1.401(0.499) 

1.104(0.218) 
1.301(0.411) 

1.201(0.554) 
1.297(0.254) 

30 1.16 Proposed Estimator  
Moment Estimator 

1.011(0.145) 
1.368(0.514) 

1.125(0.102) 
1.356(0.325) 

1.109(0.251) 
1.201(0.226) 

1.187(0.441) 
1.202(0.154) 

50 1.25 Proposed Estimator  
Moment Estimator 

1.024(0.036) 
1.221(0.299) 

1.101(0.023) 
1.255(0.217) 

1.015(0.125) 
1.154(0.119) 

1.101(0.0254) 
1.165(0.125) 

100 1.5 Proposed Estimator  
Moment Estimator 

1.07(0.017) 
1.135(0.054) 

1.021((0.020) 
1.132(0.012) 

1.001(0.012) 
1.012(0.031) 

1.021(0.021) 
1.125(0.031) 

 
Table 1.2. Zero-Truncated Data on P. nubilalis (European Corn Borer) of Guire et al. 

 

 

No. of Bores Per Plant 
 

Observed Frequency 
Expected Frequency 

Method of Moments Proposed Method 
1 
2 
3 
4 
5 

83 
36 
14 
2 
1 

81.56 
34.54 
15.01 
2.04 
2.85 

82.4 
34.96 
14.34 
2.01 
2.29 

Total 136 136 136 
χ2  1.362 0.77 

AIC  201 185 
BIC  225 203 

Estimates 
                 a 
 

                  β 

  
0.567 

 

2.451 

 
0.754 

 

1.2 
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Table 1.3. Zero-Truncated Data of Haemocytometer Yeast cell Counts Per Square Observed by Student 
 

 

No. of Bores Per Plant 
 

Observed Frequency 
Expected Frequency 

Method of Moments Proposed Method 
1 
2 
3 
4 
5 

128 
37 
18 
3 
1 

126.43 
34.45 
20.56 
4.34 
1.22 

127.41 
34.4 
19.41 
3.56 
1.22 

Total 136 187 187 
χ2  0.99 0.21 

AIC  198 176 
BIC  223 211 

Estimates 
 α 
 β 

  
0.451 
2.367 

 
0.652 
1.2 

 
 
 

 

******* 
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