ISSN: 2230-9926

ON GENERALIZED RELATIONS

*Milev, J.L.
Department of Semiconductor and Microelectronic Technologies, Technical University of Sofia

ARTICLE INFO

Article History:

Received $14^{\text {th }}$ August, 2019
Received in revised form
$17^{\text {th }}$ September, 2019
Accepted $06^{\text {th }}$ October, 2019
Published online $30^{\text {th }}$ November, 2019

Key Words:

Relation, Set, Function,
Fuzzy set, Lattice.
*Corresponding author: Milev, J.L.

Abstract

The article summarizes the relationships introduced by Purdea [1] and Goghen [2]. Goghen gives a summary of L - the relationships examined by Salius and the fuzzy relations of Zade and Purdea - of all known other types of relations. The terminology of Wagner [5] and Bourbaki [6] is used.

Copyright © 2019, Milev, J.L. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Milev, J.L. 2019. "On generalized relations", International Journal of Development Research, 09, (11), 31833-31836.

INTRODUCTION

Let F be a function with a definition domain, the set T , and the functional values are the $\operatorname{set} \mathrm{F}(\mathrm{t}) \subset \mathrm{x}$ for $\forall \mathrm{t} \in \mathrm{T}$.
We denote by $\prod_{t \in T}(t)$ the cartesian product of the family the sets $\mathrm{F}(\mathrm{t})$ indexed by the elements of the set T , B - a set of sets, $\mathrm{K}-\mathrm{a}$ set with or without relationships and operations. Let R be a function with a definition domain $T \in B t \in T(t)$ and functional values of K.
Definition 1. Generalized relations R of type (B, K) between sets of elements $F(t), t \in T, T \in B$ is the triad $\quad \cup \Pi \neq B t \in T \quad F(t), K, R$
If $\mathrm{F}(\mathrm{t})=\varnothing$ for any $\mathrm{t} \in \mathrm{T}, \mathrm{T} \in \mathrm{B}$, or $\mathrm{K}=\varnothing$, then $\mathrm{R}=\varnothing$.
Private cases of such a generalized relation are:

1) If K is a non-empty set and $T \in B$ rearranged sets, then the generalized relation coincides with the generalized relation of Purdea [1].
2) If K is the single interval $[0,1]$ with the known addition, subtraction, multiplication, ordinance, and if $B=T, T=\left\{t_{1}, t_{2}\right\}$ the generalized relation coincides with the fuzzy relation defined by Zade in [2].
3) If instead of the single interval $K=[0,1]$ set $K=L$ - a partially ordered set, we obtain the relations examined by Gogens in [2].
4) L - the relations defined by Salij in [3], are obtained at $\mathrm{K}=\mathrm{L}$, L - lattice.

If $F(t)=F$ for $\forall t \in T, T \in B$ the generalized relation is called homogeneous.
Let B 1 be a family of sets $T_{1} \subset T, T \in B$ and R 1 is a restriction of R .
Thetriad $p r_{T_{1} \in B}(B, K)=\begin{gathered}\cup \Pi F \\ T \in B t_{1} \in T_{1} \subset T_{1}\end{gathered}{ }^{\left(t_{1}\right), K, R}$ is called projection.

If $\mathrm{T} 1=\mathrm{T}$ for $\forall T \in B$ ，the projection is called non－proprietary，but if $T_{1} T_{1} \neq T$ and $T \in B$ for some－own．
Let $\mathrm{B}=\{\mathrm{T}\}$ and $T_{1}=\{\mathrm{t}\} \subset \mathrm{T}$ ，then $\operatorname{Pr}_{T_{1}}(B, K)$ coincide with the restriction of the function R on the base set $\mathrm{F}(\mathrm{t})$ ．
Let＇s $\sigma=\left\{\sigma_{t} / T \in B\right\}$ be a family of bigections $\sigma_{t}: T \rightarrow T$ ，for at least one $\mathrm{T} \in \mathrm{B}$ is σ_{T} not the same．
The generalized relation R^{σ} we have：$\left(\left(x_{t \in T, T \in B, K)} \in R \Leftrightarrow\left(\left(x_{\sigma t \in T, T \in B, K)} \in R^{\sigma} \forall t \in T\right.\right.\right.\right.$
σ is called σ－inverse relation of R ．If K is a non－empty set and P reordered sets，this definition coincides with the same definition of Purdea［1］from which is obtained as a private case（ i, j ），the transposition of Penzow［8］．

Let the binary operations V （defined on subsets）and＊be defined on the set K ，such that：
1．The summary of the Birkhoff law［7］is in force for $\mathrm{V}:{ }_{i j}^{V}{ }_{i}^{V} \Phi_{i} a_{j}={ }_{j \in \Phi}^{V} a_{j}$
$\Phi={ }_{i} \Phi_{i}, \Phi_{i}$, －a plurality of indices
From this law follows Idempotent，Commutative and Associate for V－Birkhof［7］
2．$*$ is associative and has 0 and 1 ；
3．the two complete distributive laws link V and＊
$a * V_{i} b_{i}=V_{i}\left(a * b_{i}\right), V a_{i} * b=V_{i}\left(a_{i} * b\right)$
equivalent to equality［2］，${ }_{i} \in \Phi^{V} a_{i} *{ }_{j \in \Psi}^{V b_{j}}=\underset{(i, j) \in(\Phi, \Psi)}{V\left(a_{j} * b_{j}\right)}$ p．152，proposal 2）；
4． $0 \mathrm{Vk}=\mathrm{k}$ and $1 \mathrm{Vk}=1$
These conditions are satisfied，for example，for K －a complete structured semigroup（Goghen，［2］）．
Let me
$R_{i}=\left(\begin{array}{l}\cup \\ T_{i} \in B_{i} t_{i} \in T\end{array} \prod_{T} F\left(t_{i}\right), K, R_{i}\right)$ and $R_{j}=\left(\begin{array}{c}\cup \\ T_{j} \in B_{j} t_{j} \in T\end{array} \prod_{j} F\left(t_{j}\right), K, R_{j}\right) T_{i} \cap T_{j}=\phi$
are two generalized relationships．We denote：$W_{R_{i}{ }^{\circ} R_{j}}^{T_{k}}, V_{R_{i}{ }^{\circ} R_{j}}^{T_{k}}, X_{R_{i}{ }^{\circ} R_{j}}^{T_{k}}, k=i, j$

G －a family of surections

$$
\begin{aligned}
& g_{R i_{0} R j}: T \rightarrow T_{R i_{0} R j} \subset T=T_{i} \cup T_{j} \in B_{R_{i_{0} R_{j}}}=B_{R_{i}} \cup B_{R_{j}}, \\
& g\left(W_{R_{i} R_{j}}^{T_{k}}\right) \cap g\left(X_{R_{i} R_{j}}^{T_{k}}\right)=\phi, g\left(V_{R_{i_{0} R_{j}}}^{T_{k}}\right) \cap . g\left(W_{R_{i_{0} R_{j}}}^{T_{k}}\right)=\phi, g\left(W_{R_{i_{0} R_{j}}}^{T_{k}}\right) \cap g\left(X_{R_{i_{。} R_{j}}}^{T_{k}}\right)=\phi, k \\
& =i, j, g\left(W_{R_{i_{0} R_{j}}}^{T_{i}}\right) \cap g\left(W_{R_{i_{0} R_{j}}}^{T_{j}}\right)=\phi, g\left(V_{R_{i_{。} R_{j}}}^{T_{i}}\right)=g\left(V_{R_{i_{0} R_{j}}}^{T_{j}}\right), g\left(X_{R_{i_{0} R_{j}}}^{T_{i}}\right)=g\left(X_{R_{i_{0} R_{j}}}^{T_{k}}\right) ;
\end{aligned}
$$

H －the subfamily of G formed by the restrictions $h_{R_{i_{\mathrm{o}} R_{j}}}$ of g on；

It is supposed $q \in q_{R_{i_{0} R_{j}}}^{-1}(g)$ ，to not reduce the community．
Definition 2．The product $R_{i_{0}} R_{j}$ of the type（G，H，B）of the relations R 1 and Rj is determined by the equation：

$$
\left.R_{j 。} R_{j}=\left\{\left[\left(c_{p}\right)_{p \in P_{R_{i}{ }^{\circ} R_{j}}} \quad k, R_{i} \circ R_{j}\right] / k=v_{t}^{V}\left(k_{R_{i}} * k_{R_{i}}\right),\left(x_{t}\right)_{t \in g^{-1}\left(T_{R_{i} R_{j}} / P_{R_{i} \circ R_{j}}\right)} / A\left(R_{i} \circ R_{j}\right)\right)\right\},
$$

Where／ 1 ／
$A\left(R_{i}, R_{j}\right) \equiv\left[k_{R_{s}}=R_{s}\left(x_{t_{s}}\right) t_{s} \in T_{s}, s\right.$

$$
\left.=i, j ;\left(g_{R_{i_{0} R_{j}}}\left(t_{k}\right)=g_{R_{i_{0} R_{j}}}\left(t_{l}\right) \Rightarrow x_{t_{k}}=x_{t_{l}}\right) ;\left(g_{R_{i_{0} R_{j}}}(t)=p \in P_{R_{i_{0} R_{j}}} \Rightarrow x_{t}=c_{p} \in C_{p}^{T}, T \in B_{R_{i_{0} R_{j}}}\right)\right]
$$

（We accept：）$T_{R_{i R_{j}}}=P_{R_{i_{\cdot} R_{j}}} \Rightarrow k=k_{R_{i}} * k_{R_{j}}$
If for any p we have $C_{p}=\phi$ ，then $R_{i_{0}} R_{j}=\phi$
In the case of $\mathrm{B}=\{\mathrm{T}\}$ and $\mathrm{T}\left\{t_{1}, t_{2}\right\}$ ，the product $R_{i_{0}} R_{j}$ coincides with the work of Goghen［2］，p． 161.
Let $\mathrm{T} \in \mathrm{B}$ multitudes be rearranged，and K is a non－empty set：$k_{1} * k_{2}=\left\{\begin{array}{c}k, \text { if } k_{1}=k_{2}=k \\ y, \text { if } k_{1} \neq k_{2}\end{array}\right.$ ，
then definition 2 coincides with definition 1 given by Purdea in［1］．
The case $K=\{k, y\}, k=1, y=0, X_{R_{i_{*} R_{j}}}^{T_{i}}{ }^{\text {и }} \quad \underset{R}{ } \quad T j \circ R j$－isomorphic coincides with definition 8 given by Nemety［9］．
A particular case from the Purdea definition is the definition of（ r, s ）－a product of two inhomogeneous n －relationships introduced in［10］by Topencharov，and for the homogeneous n relations introduced in［8］by Penzov．

Let be given $\begin{gathered}R i=(\cup \Pi F(t i), K, R i), T i \cap T j \neq \varnothing \\ T i \in B i t i \in T i\end{gathered}$
$i, j=1,2,3, i \neq j$－three generalized relations．We continue $g_{R_{1} R_{2}}$ and $g_{R_{2} R_{3}}$ on

$$
\begin{aligned}
& T_{1} \cup T_{2} \cup T_{3}=T \in B=B_{1} \cup B_{2} \cup B_{3}: g_{R_{1, R_{2}}}: T \Rightarrow T_{R_{1, R_{2}}}, T_{R_{1, R_{2}}} \subset T, g_{R_{1, R_{2}}}\left(t_{3}\right)=t_{3}, t_{3} \in T_{3}, g_{R_{2} R_{3}}: T \Longrightarrow T_{R_{2} R_{3}}, T_{R_{2} R_{3}} \\
& \subset T, g_{R_{2} R_{3}}\left(t_{1}\right)=t_{1}, t_{1} \in T_{1}
\end{aligned}
$$

and apply to the products $\left(R_{1 。} R_{2}\right)_{\circ} R_{3}$ and $R_{1 。}\left(R_{2 。} R_{3}\right)$
$g_{R_{1,\left(R_{2}, R_{3}\right)}}=g_{R_{1, R_{2}}}$ and $g_{\left(R_{\left.1, R_{2}\right), R_{3}}\right.}=g_{R_{2, R_{3}}}$
We mean：
$g_{\left(R_{1}, R_{2}\right), R_{3}}\left(T_{R_{1}, R_{2}}\right)=T_{\left(R_{\left.1, R_{2}\right)}, R_{3}\right.}$,
$g_{R_{1}\left(R_{2}, R_{3}\right)}\left(T_{R_{2} R_{3}}\right)=T_{\left.R_{1,\left(R_{2}, R_{3}\right.}\right)}$
We assume the fulfillment of the important conditions：

$$
\begin{aligned}
& / 2 / g_{\left(R_{\left.1, R_{2}\right)}{ }_{0} R_{3} \circ\right.} g_{R_{1_{0} R_{2}}}=g_{R_{1_{o}\left(R_{2, R_{3}}\right)}{ }^{\circ} g_{R_{2, R_{3}}}} ; \\
& / 3 / X_{R_{1, R_{2}}}^{T_{2}} \cap X_{R_{2} R_{3}}^{T_{2}}=\phi
\end{aligned}
$$

Then the following applies
Theorem：$\left(R_{1} R_{2}\right)_{\text {。 }} R_{3}=R_{1 。}\left(R_{2} R_{3}\right)$
Proof：

$$
\begin{aligned}
& k_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}=\left(R_{1} \circ R_{2}\right) \circ R_{3}\left(\left(c_{p}\right)_{\left.\left.p \in P_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}\right)=V_{t}^{V}\left(k_{R_{1} \circ R_{2}} * k_{R_{3}}\right) /\left(x_{t}\right)_{t \in g_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}^{-1}}\left(T_{\left(R_{1} \circ R_{2}\right) \circ R_{3}} \backslash P_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}\right) / A\left(\left(R_{1} \circ R_{2}\right) \circ R_{3}\right)\right) .}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(x_{t_{1}}\right)_{\left.t_{1} \in g_{\left(R_{1} \circ R_{2}\right) \circ R_{3}\left(T_{\left.\left(R_{1} \circ R_{2}\right) \circ R_{3} \backslash P\left(R_{1} \circ R_{2}\right) \circ R_{3}\right)}\right.} / A\left(R_{1} \circ R_{2}\right)\right)}\right. \\
& ={ }_{t}^{V}\left[k_{R_{1}} *\left(k_{R_{2}} * k_{R_{3}}\right)\right] \\
& /\left(\left(x_{t}\right)_{t \in g_{\left(R_{2} \circ R_{3}\right)}^{-1}} \circ g_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}^{-1}\left(T_{R_{1} \circ\left(R_{2} \circ R_{3}\right)} \backslash P_{R_{1}\left(R_{2} \circ R_{3}\right)}\right) / A\left(R_{1} \circ R_{2}\right)\right),\left(k_{R_{3}}=R_{3}\left(x_{t_{R_{3}}}\right)_{t_{R_{3}} \in T_{3}}, g_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}\left(t_{k}\right)\right. \\
& \left.=g_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}\left(t_{l}\right)\right) \Rightarrow x_{t_{k}}=x_{t_{l}},\left(g_{\left(R_{1} \circ R_{2}\right) \circ R_{3}}(t)=p \in P_{\left(R_{1} \circ R_{2}\right) \circ R_{3}} \Rightarrow x_{t}=c_{p} \in C_{P}^{T}\right) \\
& ={ }_{t}^{V}\left[k_{R_{1}} *\left(k_{R_{2}} * k_{R_{3}}\right)\right] /\left(\left(x_{t}\right)_{t \in g_{\left(R_{2} \circ R_{3}\right)}^{-1}} \circ g_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}^{-1}\left(T_{R_{1} \circ\left(R_{2} \circ R_{3}\right)} \backslash P_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}\right) / A\left(R_{2} \circ R_{3}\right)\right), \\
& k_{R_{1}}=R_{1}\left(x_{t_{R_{1}}}\right)_{t_{R_{1}}} \in T_{1},\left[g_{R_{1} \circ R_{2}}\left(t_{k}\right)=g_{R_{1} \circ R_{2}}\left(t_{l}\right) \Rightarrow x_{t_{k}}=x_{t_{l}}\right], g_{R_{1} \circ R_{2}}(t)=\in P_{R_{1} \circ R_{2}} \Rightarrow x_{t}=c_{p} \in C_{P}^{T} \\
& ={ }_{t}^{V}\left\{k_{R_{1}} *\left[\begin{array}{l}
V \\
t_{2}
\end{array}\left(\left(k_{R_{2}} * k_{R_{3}}\right) j\right)\right]\right\} /\left(\left(x_{t_{2}}\right)_{\left.t_{2} \in g_{\left(R_{2} \circ R_{3}\right) \circ R_{3}\left(T_{R_{2} \circ R_{3} \backslash P_{R_{2}} \circ R_{3}}\right)}\right)}\right) \\
& / A\left(R_{2} \circ R_{3}\right),\left(x_{t}\right)_{t \in g_{R_{1}\left(R_{2} \circ R_{3}\right)}^{-1}}\left(T_{R_{1}\left(R_{2} \circ R_{3}\right)} \backslash P_{R_{1}\left(R_{2} \circ R_{3}\right)}\right) / A\left(\left(R_{2} \circ R_{3}\right)\right), k_{R_{1}}=R_{1}\left(x_{t_{1}}\right)_{t_{1 \in T_{1}}}, g_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}\left(t_{k}\right) \\
& =, g_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}\left(t_{l}\right) \Rightarrow x_{t_{k}}=x_{t_{l}}, \mathrm{~g}_{\mathrm{R}_{1} \circ\left(\mathrm{R}_{2} \circ \mathrm{R}_{3}\right)}(\mathrm{t})=\mathrm{p} \in \mathrm{P}_{\mathrm{R}_{1} \circ\left(\mathrm{R}_{2} \circ \mathrm{R}_{3}\right)} \Rightarrow \mathrm{x}_{\mathrm{t}}=\mathrm{c}_{\mathrm{p}} \in \mathrm{C}_{\mathrm{P}}^{\mathrm{T}} \\
& =V_{t}\left(k_{R_{1}} * k_{R_{2} \circ R_{3}}\right) /\left(\left(x_{t}\right)_{t \in g_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}^{-1}}\left(T_{R_{1} \circ\left(R_{2} \circ R_{3}\right)} \backslash P_{R_{1} \circ\left(R_{2} \circ R_{3}\right)}\right) / A\left(R_{1}, R_{2} \circ R_{3}\right)\right)=k_{R_{1} \circ\left(R_{2} \circ R_{3}\right)},
\end{aligned}
$$

which we had to prove．
In $[6,7,8]$ we use equations $1,2,3$ ，the associativity of K regarding＊and the summary distribution laws concerning V ．

The theorem we examined is also true for intersecting T_{1}, T_{2}, T_{3}. Instead of T_{1}, T_{2} and T_{3}, the sets $T_{1}=\left(T_{1}, 1\right), T_{2}=\left(T_{2}, 2\right), T_{3}=$ $\left(T_{3}, 3\right)$ which do not intersect and are equal to respectively T_{1}, T_{2} and T_{3}.

For the generalized relations $R_{1 。} R_{2}$ and R_{2}, R_{3}, the functions $g_{R_{1} R_{2}}$ and $g_{R_{2} R_{3}}$ are for $\forall T$ are bijections and

$$
=W_{R_{2} R_{3}}^{T_{2}}, g_{R_{1, R_{2}}}\left(X_{R_{1, R_{2}}}^{T_{1}}\right)=W_{R_{2} R_{3}}^{T_{2}}, g_{R_{1,{ }_{2}}}\left(W_{R_{1,{ }_{2}}}^{T_{2}}\right) \sim W_{R_{2} R_{3}}^{T_{2}}
$$

$k_{R_{2}}=R_{2}\left(x_{t}\right) t \in T_{2}=\{1$,
If $x_{l}=x_{m}=x_{n}=x_{p}, g_{R_{1, R_{2}}}(l)=g_{R_{1, R_{2}}}(m), g_{R_{2} R_{3}}(n)=g_{R_{2} R_{3}}(p), x_{s_{1}}=x_{s_{2}}=x_{s_{3}}, g_{R_{1_{0} R_{2}}}\left(s_{1}\right)=g_{R_{1, R_{2}}}\left(s_{2}\right)=g_{R_{2} R_{3}}\left(s_{2}\right)=$ $g_{R_{2} R_{3}}\left(s_{3}\right)$,
and 0 otherwise.
Under these conditions
$k_{R_{1} \circ R_{2}}=k_{R_{1}} * k_{R_{2}} /\left(\left(x_{t}\right)_{t \in g_{R_{1} \circ R_{2}}^{-1}}\left(T_{R_{1} \circ R_{2}} \backslash P_{\left(R_{1} \circ R_{2}\right)}\right) / A\left(R_{1}, R_{2}\right)\right)=k_{R_{1}} /\left(\left(x_{t}\right) t \in T_{1}\right), k_{R_{1} \circ R_{2}}=k_{R_{1}}$
Similarly displayed $k_{R_{2^{\circ} R_{3}}}=k_{R_{3}}$. It follows:
Theorem R2. The relations satisfying the above conditions is a right unit for R1 and a left unit for R3.
From theorem 1 and theorem 2 follows:
Theorem 3. The aggregate of the generalized relations, for which $g_{R_{1, R_{2}}}$ and $g_{R_{2_{。} R_{3}}}$ are biections, is a category.
The aggregate of the generalized relations, for which $\boldsymbol{g}_{\boldsymbol{R}_{\mathbf{1}_{\mathrm{o}} \boldsymbol{R}_{2}}}$ and $\boldsymbol{g}_{\boldsymbol{R}_{\mathbf{R}_{\mathrm{o}} \mathbf{R}_{3}}}$ are biections, is a category.
Data stored on the computer is called a database [11-12]. Typically, the data in the computer is represented in tables. Each table represents n-ary relationship.
To extract information and to modify the content of the tables, corresponding to a set of relationships, some of the basic operations on them are defined, namely: "Projection", "Compound", and "Select".
An operation "Compound" merges two tables into a larger table:
If, $R \subset\left(A_{1} X \ldots \ldots X A_{m} \times B_{1} X \ldots \ldots\right.$.
$S \subset\left(A_{1} X \ldots \ldots X A_{m} \times C_{1} X \ldots \ldots \ldots C_{p}\right)$
this compound \boldsymbol{R} and \boldsymbol{S} are:

$$
\subset\left(A_{1} X \ldots \ldots X A_{m} \times B_{1} X \ldots \ldots B_{n} \times C_{1} X \ldots \ldots \ldots X C_{p}\right)
$$

e.g. the compound consists of elements of the type:
$\left(a_{1}, \ldots \ldots, a_{m}, b_{1} \ldots \ldots ., b_{n}, c_{1}, \ldots \ldots, C_{p}\right)$,
where:
$\left(a_{1}, \ldots \ldots, a_{m}, b_{1} \ldots \ldots, b_{n}\right) \in R$
whereas
$\left(a_{1}, \ldots \ldots, a_{m}, b_{1} \ldots \ldots, b_{n}\right) \in S$
The operation "Projection" forms a new table ($\boldsymbol{k}-$ ratio) from certain columns of the old table ($\boldsymbol{n}-$ ratio) if $\boldsymbol{k}<n$.
The operation "Select" chooses rows of the table that satisfy appropriate criteria.

Literature

1. Purdea, I. Relations generalisees. Rev. Roum, Math. Pureset Appl. 1969, 14, 4, 533-556.
2. Goghen, J. L-Fuzzy sets. Jour, Math. Anal. and Applic. 1967, vol. 18, 145-174
3. Салий, В.Н.Бинарные \angle - отношения. Изв. ВУЗ, Математика, 1965, 1, 133-145.
4. Zadeh, L. A. Fuzzy sets, Information and Control, 1965, vol. 8, 338-353.
5. Вагнер, В.В. Теорияотношений и алгебрачастичныхотображений, Теорияполугрупп и ееприложения. Сборникстатей, выпуск 1, Изд. Саратовскогоуниверситета, Саратов, 1965.
Бурбаки, Н. Теориямножеств. М, Физматгиз, 1958.
Биркхоф, Г. Теорияструктур. М., ИЛ, 1952.
Пензов, Ю.Е. К арифметикеП - отношений. Изв. ВУЗ Математика, 1961, 23, 4, 78-92.
Nemethi, C. Despreprodusulrelatilor. St. cerc. mat. 1972, 24, 9, 1421-1434.
6. Топенчаров, В.В. ЕднабинернакомпозициянаП - арни отношения, Год. на ВТУЗ, Математика, 1973, т.IX, кн.4.Jordan Milev-TU Sofia
7.
