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ARTICLE INFO  ABSTRACT 
 
 

This research proposes to design a kernel within a Gaussian process for finding and learning 
patterns from data attributes that fit the structure of time series data. No external variables needed. 
In Gaussian processes, researchers do not need to modify the algorithm's layout at all when the 
function of the problem converts. So what to do just to modify the function or kernel function to 
suit the problem. The kernel functions in each of the Gaussian process types affect the different 
models of time-varying functions. The accuracy of the Gaussian process algorithm depends on the 
choice of function. Choosing a function of the quadratic function, we will select the 
corresponding function of the function. Which depends on the pattern of the problem. Selecting 
and using a single type of Kernel function might not cover and suitable for the problem of 
respective forecast. Therefore, the different types of Kernel function are combined and new type 
of Kernel function is generated, thereby, this provides Superposition properties of the Kernel 
function. This property enables to separately control each type of characteristics of function. This 
new Kernel function can be used to different problems and patterns under Gaussian process. The 
Gaussian process doesn’t need to base on the selection of Kernel function and it results in the 
forecast is more preciously and higher effectively. 
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INTRODUCTION 
 
There are many organizations applying mathematical models 
for decision-assisted forecasting and they take advantage of 
these models. The mathematical model is to apply 
mathematical principles to conduct actual simulation. The 
actual simulation can be generated without computer-assisted 
but with current advancement of computer program, it causes 
computer-assisted calculation of the mathematical model is 
valuable and widely used. Presently, the forecasting techniques 
are improved to be more precisely and able to support more 
complex relation such as artificial intelligence which is a 
system that is programmed to mimic human action and rational 
thought and can be applied in various fields. (Sun, Wang and 
Xu, 2014; Hachino, Okubo, Takata, Fukushima and Igarashi, 
2015; Lei, Guo, Cai, Hu and Zhao, 2015;Senanayake, 
Callaghan and Ramos, 2016; Ludkovski, Risk and Zail, 2016). 
Nowadays, forecasting technique is accepted as an effective  
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tool for solving Regression, Classification, and Decision –
typed problems. In machine learning, it can be used and 
performed efficiently and well-done, although, it has scare 
training data and provides better Convergence rate than 
SARIMA, ANN and support vector machine for regression 
(Williams and Rasmussen, 2006). In machine learning, 
Gaussian process has advantage over other techniques because 
its full-range capability of distributing probability forecast as 
well as estimating uncertainty of forecasting. As mentioned 
properties, Gaussian process is considered as a tool that suits 
for forecasting purpose (Claveria, Monte and Torra, 2016). 
The properties of Gaussian process are similar to Normal 
Distribution including is that it is a probability distribution of 
continuous random variables and can be apply to various and 
diverse data, situations, and phenomenon as well as having 
less-adjusted parameters (Duvenaud, 2014) - used only Kernel 
function and some parameters without adjusting pattern of 
algorithm and if the interested issue has changed, the Kernel 
function would be changed and optimized for such issue only – 
it is easy to apply practically. Therefore, the heart of Gaussian 
process is Kernel function (or Covariance function). The 
precision of forecasting conducted by algorithm of Gaussian 
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process depends on the choosing of Kernel function to fits the 
interested problem. The Kernel function is stationary (its value 
do not change by time) (Williams and Rasmussen, 
2006;Duvenaud, 2014), high effective and practically applied 
to various type of data such as string, vector, text, etc. as well 
as can be used to determine different relationship such as 
Rank, Classification, and Cluster (Williams and Rasmussen, 
2006; Duvenaud, 2014). Kernel function transforms either 
non-linear pattern which sending data from originally-
structural sets to the higher dimensionally - structural one or 
transformstraditional dimension of data in to higher one 
allowing rearrange data (called higher dimensional space) in 
order to conducting data clustering by Linear model 
(Duvenaud, 2014;Chea & Wang, 2014). There are many types 
of Kernel function such as Squared Exponential Kernel or 
Radial basis function (RBF) or Exponential quadratic Kernel, 
Rational Quadratic Kernel, and Matérn Kernel (Duvenaud, 
2014). SinceKernel function is the heart of Gaussian process, 
as above mentioned, the precision of forecasting depends on 
the selecting of Kernel functions and optimizing parameters 
appropriately (Simionovici, 2016; Duvenaud, 2014;Williams 
and Rasmussen, 2006). 
 
Gaussian processes and Kernel function 
 
Gaussian Processes 
 

Gaussian process is a stochastic process, a collection of 
random variables indexed by time or space (Ghoshal and 
Roberts, 2016; Barkan, Weill and Averbuch, 2016). Gaussian 
Distribution is defined by probability density function (PDF) 
according to the equation (1) (Simionovici, 2016): 
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where	� ∼ �(�, �)has a random  vector as�	�	ℝ�with the 
mean  (Mean: � = �[�]	�	ℝ�) and covariance (Covariance: 
� = �[(� − �)(� − �)�]	�	ℝ�×�) whereas�refers to Number 
of dimensions (Simionovici, 2016) 
 
Gaussian process distribution over two variables following the 
equation (1) between variable ��	and �� 

when��	�	��and��	�	��have average as� = �
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covariance is equal to� = �
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�. The conditional 

probability of	�(��|�� = ��)having average according to the 
equation (2) and covariance according to the equation (3) 
respectively. 
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Gaussian process was a stochastic process or random process 
(Barkan, Weill and Averbuch, 2016; Wilson and Adams, 
2013). Gaussian process defines a probability distribution over 
time function�(�)	with the mean (Mean:	�(�)) covariance or 
Kernel function  �(�, � ′) or �(�)	where	� = � − � ′	which can 
be generated from the time function �(�), evaluating the 
match of the knowledge from observation set (Observation 
Set: � = [��, ��, ��, … , ��]�) � = [��, ��, ��,… , ��]�), as a 
vector size � × 1with Observation Set Input: � =
[��, ��, ��, … , ��]�) with the same size of	� × 1 (Simionovici, 

2016). This was defined as a Gaussian process (Kowal, 
Matteson and Ruppert, 2016). 
 
�� = �(��) + ��                                                         (4) 
 

�(��)~�� ��(��), ����, ����                                        (5) 

 
Which i was the index of measure, and  �~�(0, ��

�) was a 
Gaussian Distributed Error Model with Zero Mean and a 
variance of ��

� . 
 
The design model of observation was�� = �(��) + ��according 
to the equation (4), which covariance was equal 

to������, ��� = ����, ��� + ��
����or���represented Kronecker 

delta and��� = 1,� = �, and others were equal to 0.The 

correlation between observation data and test target (Target: f�) 

was based on the equation (6). 
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The equation (6), it was found that the conditional probability 

of  �������, �� was distributed on the function����� with the 

mean of�����and covariance of  �������  (Ghoshal and 

Roberts, 2016). 
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The definition of		�(�, �), ���, ���	and	����, ���denote 

covariance of two vectors betweenn training data and the test 
values, respectively. 
 
Kernel Function 
 
In general, the value of Kernel Function is mapping of one pair 
of inputs �� ∈ �and �� ∈ � into domain ℝ and covariance of 

function of �(��) 	 ∈ ℝ and its average value is zero. The 
Kernel Function is defined as (Duvenaud, 2014): 
 

������� = ����, ��� = ��� ��(��), ������ = ���(��)�
∗�����										(9) 

 
Eq. (9) is used as a Kernel Function of Gaussian process 
according to Eq. (8) and 
 

�����~����� = ���, ���
�
(�(�, �) + ����)���.  

 

Any matrix of �(�, �) = �(�)and components of	��� =

����, ��� = �������, thus, must be positive semi-definite 

matrix (Simionovici, 2016) with condition of ���� ≥ 0  for 
every � ∈ ℝ�. 
 

z�Kz ≥ 0 
 

∑ ∑ �	(x�, x�)	z�z� ≥ 0�
���

�
���                                       (10) 

 

The positive semi-definite matrix of Kernel Function is also 
comparable to covariance function with Inner product between 
basis of input each other as Eq. (11) (Simionovici, 2016) 
 

����, ��� = 〈�(��), �����〉                                       (11) 
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Kernel Function for Linear function simulation 
 
Linear model is defined as 
 
�(��) = �� + ����                                                        (12) 
 
Eq. (12) represents Gaussian process on function �(��)	with 
any input �� ∈ ℝ where	��~�	(0,1), thus, a pair of functions 
�(��)and	�(��) can estimate covariance value 

�����(��), �(��)� with pair-input of �� and �� as: 
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= 1 + ���� + 0                                                       (16) 
 
= 1 + ����                                            (17) 
 
A pair of functions	�(��)  and �(��) also has common 
Gaussian relationship because sum of linearity is a same as of 
��, ��. It can be said that function {�(��)}���

�  is inferred as 
common Gaussian; therefore, accumulative function 
{�(��)}���

�  of Eq. (12) is also common Gaussian distribution 
with average vector � = 0 and covariance matrix �(�, �) with 
vector size of � × �. Thus, [�(��), … , �(��)] can be 
calculated from random process on distribution of 

���,�(�, �)� 
 
[�(��),… , �(��)]~���,�(�, �)�                                      (18) 
 
Where ��� = 1 + ���� and ��� are members of covariance 

matrix. Therefore, for Eq. (12) it can be defined function of 
Gaussian process by using any pattern of linear basis function: 
 
�(��) = ��∅	(�)	                                                        (19) 
 
with Gaussian based distribution on weight � and has basic 

function ∅(�) = �∅�(�), … , ∅�(�)�
�
 as Gaussian process: 
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Average value and covariance function are defined as 
 
�(��) 	= �[�(��)]                                         (21) 
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In input space � ∈ �, inputs �� ∈ �and �� ∈ �	are separately 

existed, this refers to value of any function is operated by 
value of such input which is defined as common Gaussian 
distribution: 
 
[�(��),… , �(��)]~�(�,�)                                      (23) 
 
And average value and covariance function are defined as: 
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Gaussian distribution to ��0,∑��Thus, the following 

equations were obtained. 
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Direct proofing � ∼ ��0, ∑��makes the function complex. If 

average μ was removed, then �
�
∅���	will be Gaussian 

Methods and Covariance function ���, �′� known as 
Covariance kernel or aka kernel with the ability to control 
likelihood function within the function of Gaussian or basic 
function of Gaussian pattern. For example, Smooth Function, 
Periodic Function, Brownian motion, and so on as calculated 
from Kernel. Gaussian process modeling in function space 
with average function and covariate function. It can be 
predicted with a form that has an infinite number of parameters 
(weight value) to a limited extent of time to calculate. So can 
be explained by the Gaussian inference. For example, define 

� ��
�
�as a linear function with a weight value of: 

 

���� 	= �
�
∅��� ∼ ��0, ∑��                                      (28) 

 
Which is in line with Gaussian process with Covariance 
Kernel of: 
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, �
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Design and development of New Kernel Function 
 
Time series data and kernel functions 
 
The time series of a variable is composed of four parts: the 
cycle trend, the seasonal variation (David, 2016). These four 
characteristics are consistent with each Kernel function which 
consists with the pattern of long-term trends and constant 
variability. It’s a feature of the Linux Kernel and linear Kernel. 
The cycle feature corresponds to a function pattern for learning 
repeatedly but irregular data. It is a feature of the Kernel type 
that consistent with patterns that repeat over time corresponds 
to the time function of Kernel, which is a function for constant 
learning, despite the change and fluctuation of non-regular 
events. It corresponds to the Kernel of the quadratic algorithm, 
which is a function of complex changes, but is slowly 
changing due to the time series data. One variable may consist 
of only one, two, three, or four types. The choice of one Kernel 
function may not cover the problem. So all 4 may combine and 
then classified into 4 functions. Functions for learning the 
long-term trends creates from Kernel Squared Exponential 
which is a time-varying and slow-change function which is a 
function of 
 

�
��

(�, �
′
) = �

�
exp	 �−

����
′
�

�

�ℓ
� �                        (30) 

Functions for learning repetitive but irregular data from 
Periodic Data. The time series data is formatted repeatedly in 
each period.  

22653                                    International Journal of Development Research, Vol. 08, Issue, 09, pp.22651-22656, September, 2018 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Forecast results of electricity consumption in Thailand by Kernel Function Integration Techniques in Gaussian Proce

The experimental results were compared using four Kernel Function shown in Figure 4
 

Figure 2. Forecast results of electricity consumption in Thailand by Rational Quadrat

Figure 3. Forecast results of electricity consumption  in Thailand by Squared Exponenti

 

Figure 4. Forecast results of electricity cons
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Figure 1. Forecast results of electricity consumption in Thailand by Kernel Function Integration Techniques in Gaussian Proce
 

The experimental results were compared using four Kernel Function shown in Figure 4-7. 
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Forecast results of electricity consumption  in Thailand by Squared Exponential Kernel in Gaussian Processes

 

Forecast results of electricity consumption in Thailand by Periodic Kernel in Gaussian Processes
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During the session consisted of information unevenness. Can 
be simulated to periodic data. The function form is 
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Functions for complex changes, but also slowly changing, 
created by Rational Quadratic Kernel. The function form is 
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The function for linear longitudinal covariance with constant 
variance is constructed from Linear Kernel. The function form 
is 
 

�
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′
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Optimization by Composing Kernels 
 
Bringing the four Kernel functions together into a new Kernel. 
The Kernel functions are super-functional. (Superposition) 
(Duvenaud, 2014) that makes each function independent of 
each type with Sum and Product Structures. 
 
��+��= (�,�′)+��(�,�′)                                      (34) 
 
��∗��= (�,�′)∗��(�,�′)                                    (35) 
 
Therefore, Kernel Squared Exponential (SE), Kernel Linear 
(LIN), and Time Kernel (PER), Rational Quadratic Kernel 
(RQ). All 4 Kernel functions come together as a new Kernel 
with the Sum and Product Structures. The new Kernel has the 
smallest tolerances in all 45 scenarios, namely the Kernel 
Function 
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APPLICATION: Forecasting Thailand electricity 
consumption with Kernel Function Integration Techniques 
in Gaussian Processes 
 
Data set 
 
Forecasting long term electricity consumption in Thailand with 
Kernel Function Integration Techniques in Gaussian Processes 
includes monthly electricity consumption data, gross domestic 
product (GDP) during January 2006 to December 2014. Data 
were from 108 months as training data and electricity 
consumption data of the next 24 months during January 2015 
to December 2016 as data set for testing ability of algorithms 
that required only time variables (GDP was not required). This 
data set was called a test dataset. The historical dataset 
regarding these factors was collected annually from 2006 to 
2016 
 
Results of Forecasting 
 
Forecasting results of electricity consumption in Thailand for 
the next 10 years by Gaussian Processes with combine Kernel 
Function Technique were shown in Figure2. The mean square 
error (MSE) and the mean absolute deviation (MAD) were 
equal to 7.4226E-11and6.2432E-06 and the mean absolute 
percentage error (MAPE) was equal to4.9192E-08. 
 
Conclusion 
 
The Kernel Functions of each type are governed by the 
Gaussian process effect of different time varying function 
models. For this research, a new Kernel function will be 
created based on time series data. The characteristics of the 
time series of a variable is composed of four parts: trends, 
cycles, variations from the session, and fluctuations from 
normal events. These 4 aspects consistent with each Kernel 
Function which is, the trend consist with the pattern of long-
term trends and constant variability. It’s a feature of Kernel 
Squared Exponential and Linear Kernel. Cyclicality is 

 
Figure 5. Forecast results of electricity consumption in Thailand by Linear Kernel in Gaussian Processes. 

 
The errors from the above five Kernel function are compared in Table 1. The results showed that the error minimization capability of 
combine Kernel Function Technique model outperformed the other approaches. 

 
Table 1. The comparison of errors from the five Kernel Function in Gaussian Processes 

 

Kernel Function MSE MAPE MAD 

Kernel Function Integration Techniques 7.9236E-11 5.9192E-08 7.2432E-06 
Rational Quadratic Kernel 5.8722E-05 5.2095 0.0005841 
Squared Exponential Kernel 2.651E-04 2.9692 0.0003668 
Periodic Kernel 2.3616E-05 2.9768 0.0003613 
Linear Kernel 18.3857 0.026335 3.2117 
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consistent with the function form for repeated but irregular 
data learning. It corresponds to the kernel of the quadratic 
algorithm, which is a function of complex change, but is 
slowly changing, and because of the fact that the time series 
data of one variable may consist of only two types. The 
selection of one Kernel Function may not cover the problem of 
forecasting.Taking the form of the four Kennel Functions 
together with the Sum and Product Structures, resulted in a 
new Kernel Function. The superposition make the variables 
that control the function of the independent functions of each 
category. The Kernel Function is at the center of the Gaussian 
process, because the predicted values are less error. The newly 
developed Kernel Functions can be applied to any problem or 
situation under all the time series data types, as viewed from 
the simulation results to compare the performance of the 
Kernel Function with the least deviation situation. 
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