

ISSN: 2230-9926

Available online at http://www.journalijdr.com

International Journal of Development Research Vol. 08, Issue, 09, pp.22618-22625, September, 2018

ORIGINAL RESEARCH ARTICLE

OPEN ACCESS

ANALYTICAL METHOD DEVELOPMENT OF ABAMECTIN + IMIDACLOPRIDBY R-HPLC

*Ayyavoo Kaliyan and Dr. Tamilselvan, C.

Bioscience Research Foundation, Sengadu Village & Post, Via Manavalanagar, Kandamangalam – 602002, Kanchipuram District, Tamilnadu, India

ARTICLE INFO

Article History: Received 15th June, 2018 Received in revised form 20th July, 2018 Accepted 17th August, 2018 Published online 29th September, 2018

Kev Words:

Abamectin + Imidacloprid. HPLC analysis, Validated Method, SANCO 3030/99 Rev.4, ICH Guideline.

ABSTRACT

Abamectin is a natural product being used as an insecticide, which has the power of killing the worms, it is also being used as a plant parasitic nematodes. Imidacloprid is a chemical which has the property of neurotoxin to insects. by affecting the Central Nerve System (CNS) of insect and this causes the growth of the insect. The concentrations of these two molecules as a pesticide consider as an important combination against insecticide in the pest management programs. A simple HPLC chromatographic method has been developed and subsequently validated for the combination pesticide (Abamectin + Imidacloprid) separation and quantification. TheseAbamectin + Imidaclopridmoleculeswere separatedthrough a mobile phase consisting of the mixture of acetonitrile and water (fortified with 0.1% of Ortho Phosphoric Acid) in the ratio of 80:20 v/v. The separation was achieved through the Qualisil BDS C18 (250 x 4, 5 μ) column with the flow rate as 1.0 ml/min with the detection at 230 nm. These method parameters were loaded in the Shimadzu HPLC (model: LC-2030). The LC solution Shimadzu software was used for all the calculations in this analytical method validation analysis. The results of the study showed that the proposed RP-HPLC method is simple, rapid, precise and accurate, which is useful for the identification and quantifications of these moleculesinterims of validation parameters viz., separation, system suitability, System Precision and linearity in a simple HPLC analysis.

Copyright © 2018, Ayyavoo Kaliyan and Dr. Tamilselvan, C. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Ayyavoo Kaliyan and Dr. Tamilselvan, C. 2018. "Analytical method development of abamectin + imidaclopridby r-hplc", International Journal of Development Research, 8, (09), 22618-22625.

INTRODUCTION

The natural product Abamectin is being used as an insecticide, which has the power of killing the (antiphrastic to worms) (helminthes), it is also used to the plant parasitic nematodes. This molecule also used to kill the ticks & mites all these processes had been identified without any significant side effect. Abamectin benzoate salt derivative also being used as an insecticide widely in the pest management programs. Abamectin molecular structure has four axial methyl groups in the closed cyclic system of this molecule. This molecule has much activity to will pest hence it is important to analysed to understand the concentration level. Imidacloprid is a chemical class compound has the property of neurotoxin property in the insect kingdom. This molecule interfere the Central Nerve System (CNS) of insect and this causes the growth of the insect. A part from this molecule prevents the transformation of signal from brain to other parts of body and vice versa.

*Corresponding author: Ayyavoo Kaliyan

Bioscience Research Foundation, Sengadu Village & Post, Via Kandamangalam - 602002, Kanchipuram District, Manavalanagar. Tamilnadu, India

The treatment against Insecticide were effective because of toxic nature of these combination product: whereas less toxic to the mammalians. The concentrations of these two molecules as a pesticide consider as an important combination against insecticide in the pest management programs. Therefore it is important to understand the active content of these molecules with a single analysis.

MATERIALS AND METHODS

Reagents and chemicals used: All the analytical grade solvents and water were used in this analytical method development. All the class A glass weare used in this resear analytical method development.

Instrument: A calibrated chromatography HPLC instrument was used to develop this analytical method development for Imidacloprid and Abamectin (B1b & B1a). The instrument parameters were given as:

Name of the instrument	t : High Performance Liquid Chromatography
	(HPLC)
Calibration Method	:External Standard Method
Make	: Shimadzu
Model	:LC 2030
Detector	: UV-Visible
Wavelength (λ)	: 230 nm
Column Temperature	:40°C
Column	: Qualisil BDS C18 (250 x 4.6 mm, 5µ)
Mobile Phase	: Acetonitrile: Water (0.1% OPA); ration of
	80:20 (v/v)
Flow rate	: 1.0 ml/min
Injection volume	: 20 µl
Retention time (Approx	 imately): Imidacloprid – 2.9 minutes : Abamectin B1b – 9.6 minutes : Abamectin B1a – 11.4 minutes

Preparation of Mobile phase

An volume of 80% Acetonitrile and 20% of 0.1% Ortho Phosphoric acid were mixed well, sonicated and used for analysis.

A typical Chromatogram for Specificity

Analytical method validation

Specificity

Preparation of standard stock solutions: An amount of 10.11 mg of Imidacloprid reference standard with purity 99.0% and 10.38 mg of Abamectin reference standard with purity 96.4% was weighed accurately in to a clean and dry 10 mL volumetric flask separately and dissolved in mobile phase and made up to the mark with the mobile phase. This was equivalent to 1000.89 mg/L and 1000.63 mg/L. From this each 2.5ml solution was added in 25 ml volumetric flak and diluted with mobile phase. This solution was equivalent to 100 mg/L and analyzed to determine specificity.

Preparation of Sample Solution

An amount of 10.0 mg of test substance was weighed accurately into a clean and dry 100 mL volumetric flask and dissolved in mobile phase and made up to the mark with the mobile phase.

BIOSCIENCE RESEARCH FOUNDATION

Sample Name	: Abamectin
Sample ID	: Std-1
Injection Volume	: 20 uL
Data Filename	: 002.led
Method Filename	: Abamectin + Imidacloprid.lcm
Date Acquired	: 15-Dec-17 11:13:14 AM

Preparation of 0.1% Ortho Phosphoric acid

An volume of 0.1% of Ortho Phosphoric acid and 99.9% Distilled water were mixed well, sonicated and used for analysis.

This was equivalent to 100 mg/L. This prepared solution was used for determination of Specificity. The specificity of HPLC method for Imidacloprid 16% and Abamectin 4% SC was determined by injecting the Standard andSample solutions along with blank (mobile phase) and observed that there was

BIOSCIENCE RESEARCH FOUNDATION

Sample Name: Abamectin + ImidaclopridSample ID: Std-2Injection Volume: 20 uLData Filename: 003.lcdMethod Filename: Abamectin + Imidacloprid.lcmDate Acquired: 15-Dec-17 11:34:57 AM

no interference found with the main peak of interest. Hence, this method was considered to be specific for the analysis of Imidacloprid and Abamectin.

Linearity

Preparation of Standard Stock Solution and working standard

An amount of 10.0 mg of standard was weighed in to a 100 ml standard flask and this concentration (100 mg/L) was used toprepared further dilutions to get the 0.15, 1, 5, 10, 15 and 20 mg/L separately. The dilution details are presented in table No.1

Table 1. Dilutions (abamectin + imidacloprid reference standard)

Standard Code	Stock Dose (mg/L)	Dilution Volume (ml)	Final Volume (ml)	Final Concentration (mg/L)
Stock	1000	2.5	25	100
1	100	0.015	10	0.15
2	100	0.1	10	1
3	100	0.5	10	5
4	100	1.0	10	10
5	100	1.5	10	15
6	100	2.0	10	20

The prepared standard solutions were injected by an auto sampler into HPLC system and a linear curve was plotted for the concentration of standard versus observed peak area and

the	correlation	coefficient	was	determined	respectively.	The
resi	ilts are prese	ented in tabl	e No.	. 2 and 3.		

Table 2. Linearity of abamectin reference standard

Std. Code	Concentration (mg/L)	Replication	Ref. Std. Area	Mean Std. Area
1	0.15	Replication 1	1877	2185
		Replication 2	2493	
2	1	Replication 1	19114	19094
		Replication 2	19074	
3	5	Replication 1	80263	80341
		Replication 2	80418	
4	10	Replication 1	157200	156688
		Replication 2	156175	
5	15	Replication 1	240955	242684
		Replication 2	244412	
6	20	Replication 1	310734	310049
		Replication 2	309363	
		1	Intercept	2139.8127
			Slope	15605.0855
			Correlation	1.000
			Coefficient	

Precision

Preparation of Standard Solution: The Linearity standard solution 5 mg/L was prepared and used for the precision determination.

Preparation of Sample Solution: An amount of 5.95, 5.80, 5.81, 5.90 and 6.0mg of Abamectin + Imidacloprid Technical were weighed in clean and dry 1000 ml volumetric flask separately, dissolved the contents with mobile phase and made upto the mark with the mobile phase.

Table 2. Linearity of imidacloprid reference standard

Figure 1. Linearity curve for abamectin

Figure 2. Linearity Curve For Imidacloprid

Table 4. Precision (al	(amectin)
------------------------	----------	---

Sample ID	Std. Conc. (mg/L)	Std. / Sample Area	Average Std. Area	Sample Conc. (mg/L)	Purity (P) %	A.I. Content (%)
Std -R1	5	83716	83657.5		96.4	-
P1		47827		59.5		4.63
P2		46276		58.0		4.60
P3		45937		58.1		4.56
P4		45112		59.0		4.41
P5		47845		60.0		4.59
Std - R2		83599				-
					MEAN	4.56
					SD	0.089
					% RSD	1.948

Table 5. Precision (Imidacloprid)

Sample ID	Std. Conc. (mg/L)	Std. / Sample Area	Average Std. Area	Sample Conc. (mg/L)	Purity (P) %	A.I. Content (%)
Std -R1	5	51988	51873.0		99	-
P1		102168		59.5		16.39
P2		103191		58.0		16.98
P3		102435		58.1		16.82
P4		102277		59.0		16.54
P5		104318		60.0		16.59
Std - R2		51758				-
					MEAN	16.66
					SD	0.235
					% RSD	1.413

Table 5. Accuracy (level-1 & 2 recovery%) of abamectin

Fortification Level	Std. Conc.	Std. /	Mean Std.	Recovery	Fortified	Recovery	Avg. Recovery	SD	RSD
	(mg/L)	Sample area	Area	Conc. (mg/L)	Conc (mg/L)	(%)	(%)		(%)
Std-R1	5.0	84107	84053.5	-	0.15	-	-	0.95	0.94
L1R1		2545		0.151		100.93	100.84		
L1R2		2560		0.152		101.52			
L1R3		2502		0.149		99.22			
L1R4		2560		0.152		101.52			
L1R5		2547		0.152		101.01			
L2R1		25365		1.51	1.50	100.59	100.41	0.29	0.29
L2R2		25222		1.50		100.02			
L2R3		25260		1.50		100.17			
L2R4		25369		1.51		100.61			
L2R5		25382		1.51		100.66			
Std - R2		84000		-		-			

Table 6. Accuracy (level-1 & 2 recovery %) of imidacloprid

Fortification Level	Std. Conc. (mg/L)	Std. / Sample area	Mean Std. Area	Recovery Conc. (mg/L)	Fortified Conc (mg/L)	Recovery (%)	Avg. Recovery (%)	SD	RSD (%)
Std-R1	5.0	51947	51983.0	-	0.15	-	-	0.49	0.494
L1R1		1538		0.148		98.62	98.72		
L1R2		1535		0.148		98.43			
L1R3		1553		0.149		99.58			
L1R4		1535		0.148		98.43			
L1R5		1537		0.148		98.56			
L2R1		15533		1.494	1.50	99.60	99.70	0.15	0.145
L2R2		15576		1.498		99.88			
L2R3		15571		1.498		99.85			
L2R4		15532		1.494		99.60			
L2R5		15532		1.494		99.60			
Std - R2		52019		-		-	-		

This solutions are equivalent to 59.5, 58.0, 58.1, 59.0 and 60.0mg/L. The prepared solutions were injected into HPLC and % RSD was calculated and the results are presented in TABLE 4.

Formula:

The % RSD is within limit according to the modified Horwitz equation (Acceptable Limit <1.413 RSD for 100% active analyte as per SANCO/3030/99 Rev.4)

Accuracy (% Recovery): The recovery processes and the recovery determination was validated with two fortification level of processes.

Preparation of Standard Solution: The standard solution prepared for linearity (5 mg/L) was used as standard in percent recovery determination.

Preparation of Fortification Level 1 (0.15mg/L): An amount of 2.82 mg of Abamectin + Imidacloprid reference standard with purity 99.23 % was weighed accurately into a clean and dry 100 mL volumetric flask and dissolved in mobile phase and made up to the mark with the mobile phase. This solution was equivalent to 0.15 mg/L.

Preparation of Fortification Level 2 (1.5 mg/L): An amount of 5.64 mg of Abamectin + Imidacloprid reference standard with purity 99.23 % was weighed accurately into a clean and dry 100 mL volumetric flask and dissolved in mobile phase and made up to the mark with the mobile phase. This solution was equivalent to 1.5 mg/L. The above preparations were analyzed under HPLC and checked for recovery (%). The results are presented in following table No. 5& 6

Example Calculation: RECOVERY (IMIDACLOPRID) T2R5

Std. Conc. $(mg/L) \times$ Sample area 5×15532 Recovery Conc. (mg/L)= ------= = 1.494 Mean Std. Area 51983 Table 7. Dilutions (lod & loq)

Stock concentration (mg/L)	Dilution Volume (ml)	Final Volume (ml)	Final Concentration (mg/L)
1.0	0.2	10	0.02
1.0	1.0	10	0.1

Table 8. Limit of detection (lod) and limit of quantification (loq) of abamectin

Sample ID	Std. Conc. (mg/L)	Std./ Sample Area	Average Std. Area	A. I. Content (mg/L)	Sample ID	Std. Conc. (mg/L)	Std./ Sample Area	Average Std. Area	A. I. Content (mg/L)
STD-1	5	80233	82009.5	-	STD-1	5	80233	82009.5	-
R1		127		0.008	R1		1867		0.114
R2		118		0.007	R2		1900		0.116
R3		117		0.007	R3		1967		0.120
STD-2		83786		-	STD-2		83786		-
			MEAN	0.0074				MEAN	0.117
			SD	0.00034				SD	0.00311
			LOD	0.01				LOQ	0.15

Table 9. Limit of Detection (Lod) And Limit of Quantification (Loq) Of Imidacloprid

Sample ID	Std. Conc. (mg/L)	Std./ Sample Area	Average Std. Area	A. I. Content (mg/L)	Sample ID	Std. Conc. (mg/L)	Std/ Sample Area	Average Std. Area	A. I. Content (mg/L)
STD-1 R1 R2 R3 STD-2	5	51714 108 111 113 51656	51685.0 MEAN SD LOD	0.0104 0.0107 0.0109 0.0107 0.00024 0.01	STD-1 R1 R2 R3 STD-2	5	51714 1406 1375 1364 51656	51685.0 MEAN SD	0.136 0.133 0.132 - 0.134 0.00211 0.15

	Recovery Conc. (mg/L)	1.494
Recovery (%) =	× 100 =	$ \times 100 = 99.60\%$
	Fortified Conc (mg/L)	1.50

Limit of Detection (LOD) & Limit of Quantification (LOQ)

From the Linearity Standard Solution concentration of 10 mg/Lwas used in these LOD & LOQ determinations. From this solution 1 mg/L solution was prepared and further diluted to get the 0.02 & 0.1 mg/L concentration solutions were prepared. The dilution details were given in the Table No. 7, and the results are presented in following Table 87 & 9.

Formula:

LOD	=	Average + (3 x Standard Deviation)
LOQ	=	Average + (10 x Standard Deviation)

Example Calculation: (LOD& LOQ)

Formula:

LOD	=	Average $+$ (3 x Standard Deviation).
LOQ	=	Average + (10 x Standard Deviation)

Example Calculation: (LOD& LOQ)

Limit Of Detection (ABAMECTIN) R1

	Std. Conc. (mg/L) \times	Sample Area
A. I Content (mg/L) =	Average Std. Ar	ea
=	5 × 127	= 0.008 mg/I
_	82009.5	– 0.008 mg/L

LOD = Mean Value +
$$(3 \times SD)$$

= 0.0074 + (3×0.00034) = 0.01

Limit of Quantification (ABAMECTIN) R1

A. I Content (mg/L) = (mg/L)		Std. Conc. (mg/L) \times Sample Area
		Average Std. Area
	=	5×1867 = 0.114 mg/L 82009.5
LOQ	=	Mean Value + $(10 \times SD)$
	=	$0.117 + (10 \times 0.00311) = 0.15$

~ 1 ~

(**T**)

A Typical Chromatogram for Sample analysis

BIOSCIENCE RESEARCH FOUNDATION

Preparation of Standard solution: An amount of 5 mg of the standard was dissolved in 100 ml of mobile phase and diluted to get 10 mg/L was used as standard in concentration analysis.

Preparation of Sample Solutions: The received test solutions (30 mg/mL) was prepared and dissolved by sonication and diluted appropriately and injected into HPLC.

				A x B x DF
Abamec	tin + Imi	dacloprid (mg/L)	=	
				С
Where,				
А	-	Concentration of	of stand	ard (ppm)
В	-	Area of sample	solutio	n

С	-	Area of standard solution
DF	-	Dilution Factor

Conclusion

Specificity: The blank, standard and the sample peaks were not interfered each other, hence the specificity were achieved as per the guideline SANCO 3030/99 Rev.4 requirement.

Linearity: The Linearity correlation co-efficient is achieved NLT 0.99 as per (SANCO 3030/99 Rev.4

System Precision: The system precision is achieved as the % RDS for 5 replicates observed as 0.1% for Abamectin + Imidacloprid, hence the minimum requirement of the (SANCO 3030/99 Rev.4 was NMT 15% RSD was achieved

System Recovery: The system recovery 92% to 101 % were achieved for Abamectin + Imidacloprid, hence the minimum requirement of the (SANCO 3030/99 Rev.4).

Details of the Laboratory work were carried out: Bioscience Research Foundation, Sengadu village & Post, Via Manavalanagar, Kandamangalam – 602002, Kanchipuram District, Tamilnadu, India Ph: +91 44 27601082, Email: brfchennai@gmail.com

REFERENCES

- Ali S. Al-Sarar, Yasser Abobakr, Alaa E. Bayoumi & HamdyI.Hussein; Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells; *Environmental Science and Pollution Research*; ISSN 0944-1344; DOI 10.1007/s11356-015-4927-3;
- Arturo Cocco and Marjorie a. Hoy; Toxicity Of Organosilicone Adjuvants And Selected Pesticides To The Asian Citrus Psyllid (Hemiptera: Psyllidae) And Its Parasitoid TamarixiaRadiata (Hymenoptera: Eulophidae); Cocco& Hoy: Toxicity of Organosilicone Adjuvants and Pesticides to D. citri; P 610-620
- Ayyavoo Kaliyan, C. Tamilselvan, International Journal of Advance Research, Ideas and Innovations in Technology, Analytical method development of the combination pesticide Azoxystrobin and Epoxiconazole by RHPLC, V4I3-1600.

Ayyavoo Kaliyan, C. Tamilselvan, International Journal of Advance Research, Ideas and Innovations in Technology, Analytical method development of the combination pesticide Azoxystrobin and Epoxiconazole by R- HPLC, V414-1550-1558.

- B. W, "Methods for determination of imidacloprid residues in plant materials using high pressure liquid chromatography (HPLC) and UV detection," *Journal of Analytical Chemistry*, vol. 171, no. 904, p. 329, 1990
- Daraghmeh, Shraim, S. Amjad; Abulhaj.;R.Sansour and J.C.Ng, "Imidacloprid residues in fruits, vegetables and water samples from Palestine. Department of Island Pesticide environmental Conservation; Long Active Prevention Strategy Pollution Ingredient Assessment; Bureau of Pest Management Pesticide Product Registration Section; Active Ingredient Data Package Imidacloprid; Version #4 (May 20, 2015)
- Fuad Al-Rimawi; A HPLC-Uv Method For Deteermination of Three Pesticides In Water; International Journal of Advances in Chemistry (IJAC) Vol.2, No.2, May 2014
- Fuad Al-Rimawi; A HPLC-Uv. Method For Determination Of Three Pesticides In Water; International Journal of Advances in Chemistry (IJAC) Vol.2, No.1 February 2016
- Grazielle Prado Alexandre, MaríaSegunda Aurora-Prado, Laura Victoria EspañolMariño, Anil Kumar Singh, Helen Dutra Leite, Erika Rosa Maria Kedor-Hackmann, Maria Inês Rocha Miritello Santoro; Simultaneous determination of abamectin homologs H2B1a and H2B1b in gel formulation by high performance liquid chromatography; *Brazilian Journal of Pharmaceutical Sciences* vol. 52, n. 3, jul./sep., 2016. P 509-516.
- ICHHarmonised Tripartite Guideline Validation Of Analytical Procedures: Methodology (Q2R1) International Conference on Harmonization, 1997. Retrieved October 20, 2013
- Mostafa A. Abbassy, Mamdouh A. Marzouk, HodaM.Nasr, Awatef S. Mansy; Analytical Determination of Imidacloprid and Tetraconazol Residues in Cucumber Plants after Whitefly and Powdery Mildew Control; SOP transactions on analytical chemistry; ISSN 2374-6300 DOI: 10.15764/ache.2014.02001 volume 1, number 2, september 2014
- R. Amadeo, V. Fernandez-Alba, A. Antonio, C. Ana, B. Khalf-Allah, and C. Mariano, "Determination of imidacloprid in vegetables by high-performance liquid chromatography with diode-array detection," *Journal of Chromatography A*, vol. 721, no. 1, pp. 97–105, 1996

- S. Jodeh, S. Al Masri, M. Haddad, O. Hamed, D. Jodeh, R. Salghi, S. Radi, J. Amarah, F. El-Hajjaji, I. Warad; Evaluation of potential Residue of Imidacloprid and Abamectin in Tomato, Cucumber and Pepper Plants after Sprayingusing High Performance Liquid Chromatography (HPLC); ISSN: 2028-2508; J. Mater. Environ. Sci. 7 (3) (2016) 1037-1047
- SANCO/3029/99 rev. 4 (11/07/00). European Commission, Directorate General Health and Consumer Protection Residues : Guidance for generating and reporting methods of analysis in support of pre-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414.
- Shehdeh Jodeh, OsamahKhalaf, Ahmad Abu Obaid, Belkheir Hammouti, Taibi B. Hadda, Wade Jodeh, Marwan Haddad & Ismail Warad; Adsorption and Kinetics Study of Abamectin and Imidacloprid in Greenhouse Soil in Palestine; ISSN: 2028-2508; J. Mater. Environ. Sci. (Y) (2014) 571-580.
- SRINIVASAN, R., M. A. HOY, R. SINGH, AND M. E. ROGERS. 2008. Laboratory and field evaluations of Silwet, L-77 and Kinetic alone and in combination with imidacloprid and abamectin for the management of the Asian citrus psyllid, Diaphorinacitri Kuwayama (Hemiptera: Psyllidae). Florida Entomol. 91: 87-100
- Valenzuela, A.I.; Redondo, M.J.; Pico, Y.; Font, G. Determination of abamectin in citrus fruits by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A, v.871, p.57-65, 2000
- Eiki, W., H. Baba, T. Eun, Y. Arao, S. Ishii, Endo, and M. Ueji, "Rapid and simple screening analysis for residual imidacloprid in agricultural products with commercially available ELISA. Ana," *Journal of Agricultural and Food Chemistry*, vol. 521, pp. 45–51, 2004
- Xie, X.; Gong, S.; Wang, X.; Wu, Y.; Zhao, Simplified RP-HPLC method for multi-residue analysis of abamectin, emamectin benzoate and ivermectin in rice. Food Addit. Contam., v.28, p.19-25, 2011.
- Ishii, Y., I. Kobori, Y. Araki, S. Kurogochi, K. Iwaya, and S. Kagabu, 1994. "HPLC Determination of the new insecticide imidacloprid and its behavior in rice and cucumber," *Journal of Agricultural and Food Chemistry*, vol. 42, no. 12, pp. 2917–2921.
