
ISSN: 2230-9926

ORIGINAL RESEARCH ARTICLE

Available online at http://www.journalijdr.com

International Journal of Development Research Vol. 08, Issue, 12, pp.24754-24758, December, 2018

OPEN ACCESS

ASSOCIATED FACTORS OF ABDOMINAL OBESITY IN ELDERLY RESIDENTS IN A COMMUNITY

^{1,} *Isnanda Tarciara da Silva, ²Andreia Souza de Jesus, ²Ariane Nepomuceno Andrade, ³José Ailton Oliveira Carneiro, ⁴Adriana Alves Nery and ⁵Cezar Augusto Casotti

¹Master in Health Sciences, Professor of the Physiotherapy Degree at Northeast Independent College, Vitória da Conquista, Bahia, Brazil

²Master in Health Sciences by Southwestern State University of Bahia, Jequié, Bahia, Brazil ³Doctor in Medical Sciences, Assistant Professor at Southwestern State University of Bahia, Jequié, Bahia, Brazil ⁴Doctor in Nursing, Titular Professor at Southwestern State University of Bahia, Jequié, Bahia, Brazil ⁵Doctor of Preventive and Social Dentistry, Titular Professor at Southwestern State University of Bahia, Jequié, Bahia, Brazil

ARTICLE INFO

ABSTRACT

Article History: Received 03rd September, 2018 Received in revised form 25th October, 2018 Accepted 19th November, 2018 Published online 31st December, 2018

Key Words:

Cardiovascular Diseases, Waist-Hip Ratio, Risk Factors, Elderly people. This study has as goal to identify the factors linked to abdominal obesity in the elderly people living in a community. This is an epidemiological cross-sectional population-based study, carried out with all subjects with age ≥ 60 years old residents in an interior city of Bahia. It was performed the Poisson regression with p-value<0.05 for inferential analysis. There were studied 179 elderly people, with age between 60 and 91 years old. The prevalence of inadequate Waist-Hip Ratio was 84.4% and it was associated with the female gender (RP 1.29), high triglycerides (RP 1.15) and overweight (RP 1.14). It is concluded that there is great prevalence of abdominal obesity in the elderly people living in the community, showing association with the female sex, increased triglycerides and overweight.

Copyright © 2018, Isnanda Tarciara da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Isnanda Tarciara da Silva, Andreia Souza de Jesus, Ariane Nepomuceno Andrade *et al.*, 2018. "Associated factors of abdominal obesity in elderly residents in a community", *International Journal of Development Research*, 8, (12), 24754-24758.

INTRODUCTION

Alongside to the population's ageing, it is noticed an even larger number of obese elderly (ESKINAZI *et al.*, 2011). However, it is known that overweight is considered a risk factor for cardiovascular diseases that can have a key impact in the elderly's quality of life (VENTURINI *et al.*, 2013). An important abdominal obesity index used to evaluate the risk of mortality in elderly people is the Waist-Hip Ratio (WHR). This index is got through the assessment of anthropometric measurements of waist and hip circumference and permits the estimation of the presence or absence of cardiovascular risk (CVR) (GRAVINA *et al.*, 2010, CORTEZ, SILVA and CASTRO, 2012). The anthropometric measures arise in the epidemiology scenario as an accessible way of examining two features of nutritional status in population studies.

Master in Health Sciences, Professor of the Physiotherapy Degree at Northeast Independent College, Vitória da Conquista, Bahia, Brazil.

Its simple use, the relative facility of interpretation and the low equipment cost turn this technique as the most applicable in this type of study (GUEDES, 2006). Taking into account the importance of CVD in the country's health field, it is noticed the need to investigate the factors which may predict the risk of its emergence, as an example abdominal obesity that can be easily measured by the WHR index, just as its associated factors. This way this study has as goal to identify the factors associated with abdominal obesity in the community resident elderly people.

MATERIALS AND METHODS

It is a cross-sectional study, performed between the months of January and July of 2015, with all the subjects' residents in the urban area of Aiquara/ba with age \geq 60 years. The elderly with affected cognitive function, assessed by the Mini-Mental State Examination (MMSE), using the 13 cutoff point (BERTOLUCCI *et al.*, 1994) were excluded of the study. Data collection was carried out in three stages: residence

^{*}Corresponding author: Isnanda Tarciara da Silva,

questioning with the application of MEEM and of the questionnaire, assessment of anthropometric measures and collection of blood samples. The first one was performed in the elderly's home and the following steps in the city's health department, with the elderly who presented problems of dislocation being assessed at home. The questionnaire used to gather information contained sociodemographic questions adjusted from the Brazil Old Age Schedule (BOAS) (VERAS; DUTRA, 2008), personal information and self-reported chronic diseases adapted from the SABE Project (Health, Welfare and Ageing) (LEBRÃO; DUARTE, 2003). To measure the level of physical activity it was used the International Physical Activity Questionnaire (IPAQ), adapted version for elderly people (MAZO; BENEDETTI, 2010). The anthropometric measures of body mass (kg), height (m), waist circumference (cm) and hip perimeter (cm) were measured according to the technique proposed by Petroski (1999). The blood sample was collected in vacuum, and the elderly people were orientated to overnight fasting for 12 hours. The following parameters were assessed: total cholesterol, LDL, HDL, glycemia and triglycerides. This study was approved by the Research Ethics Committee of the University of the Southeast of Bahia under opinion Number. 171,464.

Abdominal obesity (Dependent variable)

Abdominal obesity was detected through the Waist-to-Hip Ratio (WHR), which was assessed using the following anthropometric measures: Waist Circumference and Hip Circumference. For the WHR classification it was used the cutoff points suggested by Pereira, Sichieri and Marins (1999), which characterize the subjects in "adequate WHR" (≤ 0.95 for men and ≤ 0.80 for women) and "inadequate WHR "(> 0.95 for men and > 0.80 for women).

Independent variables

Sociodemographic explanatory variables incorporated gender (male and female), age group (60-69, 70-79, \geq 80), marital status (with partner, without a partner), skin color (white, not white), income (until 1 minimum wage, ≥ 1 minimum wage) and schooling (≤ 4 years of study,> 4 years of study). Life habits variables incorporate alcoholic consume alcohol consumption (yes, no), currently smoking (yes, no) and physical activity level (active ≥ 150 min / week, insufficiently active <150min / week) (WHO, 2010). Health status variables comprised number of self-reported chronic diseases (no disease, one disease, more than one disease), self-reported hypertension (ves, no), total cholesterol (normal <200mg / dl, altered \geq 200mg / dl) (XAVIER et al., 2013) and fractions (XAVIER et al., 2013) - HDL (normal> 60 mg / dl, altered \leq 60 mg / dl) and LDL (normal <130 mg / dl, altered \geq 130 mg / dl), Triglycerides (normal <150 mg / dl, altered \geq 150 mg / dl) (XAVIER et al., 2013), and glycemia (normal <100 mg / dl, altered \geq 100 mg / dl) BMI (low weight \leq 22 kg / m2, eutrophic> 22 and <27 kg / m2, overweight / obesity \geq 27 kg / m2) (AAFP, 2002)

Statistical procedure

Primarily it was performed the variables descriptive analysis. The relations between abdominal obesity and explanatory variables were tested through gross and adjusted analysis, assessing the prevalence ratio (PR) and the confidence intervals of 95% using the Poisson Regression. In the gross

analysis, it was calculated the predominance of abdominal obesity for each category of explanatory variables. The variables that showed statistical significance in the gross analysis ($p \le 0.20$) continuer in the model for the adjusted analysis. The significance level chosen for the study was 5% ($p \le 0.05$). Figure 1 presents the hierarchical model used to define the results. In this model, the upper-level variables interact and define the lower-level variables. The effect of each explanatory variable over the results was controlled by the variables of the same level and higher levels in the model. The data were tabulated and analyzed using IBM SPSS *Statistics for Windows* software (IBM SPSS 21.0, 2012, Armonk, NY: IBM Corp.).

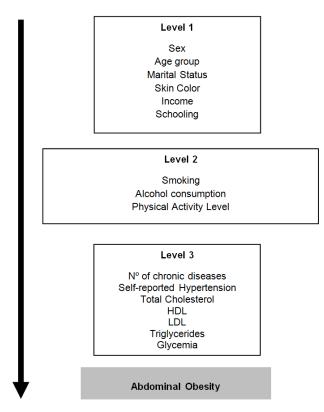


Figure 1. Conceptual Model of the outcome determination used for multiple analysis

RESULTS

There were identified 379 elderly people residents of the urban area of the city.. Of these, 09 were excluded 72 had affected cognitive function, 34 were not found in the city and 20 refused to participate. Of the 244 elderly that responded the questionnaire, 65 did not attend to the assessment of anthropometric measures, thus resulting in a population of 179 elderly people. The elderly were between 60 and 91 years old, with a mean of 70.6 ± 7.2 years. According to what is observed in Table 1, female elderly prevailed, with ages between 60-69 years, with a partner, that declared themselves as non-whites, with ≤ 4 years of study, non-smokers, nonalcoholic, physically active and with at least one self-reported chronic disease. The prevalence of inadequate Waist-to-Hip ratio (WHR) was more than 80%. The data displayed in Table 2 show the prevalence of inadequate Hip Waist Ratio, in compliance with the explanatory variables of the study. Inadequate WHR was meaningfully more prevalent in the elderly women, with two or more diseases, hypertension, triglycerides and glycemia altered, low weight and overweight / obesity.

Table 1. Characteristics of the study's population, Aiquara, 2015

Variables	% answer	n	%
Sex	100,0	_	-
Male	,	82	45.8
Female		97	54,2
Age group	100,0		- ,
60-69	,-	83	46,3
70-79		71	39,7
80 and more		25	14,0
Marital Status	100,0	25	14,0
	100,0	103	57,5
With a partner		76	42,5
Without a partner	02.0	/0	42,5
Skin color White	93,8	18	10,1
Not white	00.0	161	89,9
Income	98,9	00	50.0
Until 1 minimum wage		90	50,8
Higher or equal to 1 minimum wage		87	49,2
Schooling	98,3		
\leq 4 years of study		153	86,9
> 4 years of study		23	13,1
Alcohol consumption	100,0		
Yes		43	24,0
No		136	76,0
Currently smoking	93,3		
Yes		18	10,8
No		149	89,2
Physical activity level	100,0		,
Insufficiently active) -	72	40,2
Active		107	59,8
N° of Self-reported diseases	100,0		.,,,
No disease	100,0	35	19,6
One disease		76	42,5
Two or more diseasesq		68	38,0
Self-reported Hypertension	100,0	00	50,0
Yes	100,0	114	63,7
No		65	36,3
	077	05	30,5
Total Cholesterol	97,7	00	5((
Altered		99 76	56,6
Normal		76	43,4
HDL	95,0		
Altered		148	87,1
Normal		22	12,9
LDL	92,1		
Altered		83	50,3
Normal		82	49,7
Triglicérides	97,7		
Altered		59	33,7
Normal		116	66,3
Glycemia	98,3		, i i i i i i i i i i i i i i i i i i i
Altered	,	73	41,5
Normal		103	58,5
BMI	100,0		20,0
Underweight	100,0	37	20,6
Eutrophic		64	35,8
Overweight/obesity		78	43,6
	100.0	10	43,0
WHR	100,0	20	15.0
Adequate Inadequate		28 151	15,6 84,4

Nevertheless, inadequate WHR was less prevalent among those with altered HDL. The results revealed that the explanatory variables that have not reached a statistical significance ($p \le 0.20$) to be comprised in the multiple regression model were: age group, marital status, individual income, schooling, alcohol consumption, currently smoking, physical activity level and LDL. After inter and intra levels adjusting in accordance with the hierarchical model, the variables skin color, diseases' number, hypertension, total cholesterol and glycemia did not stay in the final model, because a significance criterion was not found ($p \le 0.20$). Inadequate WHR was positively linked to female gender, overweight / obesity, and increased triglycerides. Although the HDL variable remained in the model for adjustment, this was not linked to the inadequate WHR (Table 3).

Table 2. Gros	ss analysis of	data by Poissor	i regression, A	iquara, 2015

		-	-		-
	Variables	-	-	WHR	_
	Sex	%	PR	CI95%	Р
	Male	69,5 06.0	1 1,39	1 20 1 61	<0.001
	Female Age group	96,9	1,39	1,20 - 1,61	<0,001
	Age group 60 – 69	83,1	1		
	70 – 79	87,3	1,05	0,92 - 1,19	0,46
	80 and more	80,0	0,96	0,77 - 1,19	0,73
	Marital status	00,0	0,20	0,77 1,19	0,75
Level 1	With union	81,6	1		
	Without union	88,2	1,08	0,95 - 1,22	0,21
	Skin color				
	White	94,4	1		
	Not white	83,2	0,88	0,77 - 1,00	0,06
	Individual income				
	<1 minimum wage	82,2	1		
	≥ 1 minimum wage	86,2	1,04	0,92 - 1,19	0,46
	Schooling	02.7	1		
	≤ 4 years of study	83,7	1	0.97 1.22	0.66
	> 4 years of study	87,0	1,03	0,87 - 1,23	0,66
	Alcohol consumption				
	Yes	83,7	0,99	0,85 - 1,15	0,89
	No	84,6	1	0,00 1,10	0,05
	Currently smoking	- ,-			
Level 2	Yes	77,8	0,90	0,70 - 1,16	0,44
	No	85,9	1		
	Physical activity level				
	Insufficiently active	86,1	1,03	0,91 – 1,17	0,59
	Active	83,2	1		
	N° of Self-reported diseases	04.1	1 41	1 1 4 1 7 6	0.02
	Two or more	94,1	1,41	1,14 - 1,76	0,02
	One disease None	81,6	1,14 1	0,89 – 1,46	0,29
	Self-reported Hypertension	71,4	1		
	Yes	92,1	1,30	1,10-1,53	0,02
	No	70,8	1,50	1,10 1,55	0,02
	Total Cholesterol	, 0,0	-		
	Altered	87,9	1,11	0,97 - 1,27	0,12
	Normal	78,9	1	, ,	,
	HDL				
	Altered	82,4	0,86	0,76 - 0,97	0,01
Level 3	Normal	95,5	1		
	LDL				
	Altered	86,7	1,06	0,93 – 1,21	0,37
	Normal	81,7	1		
	Triglyceride	04.0	1.01	1.00 1.25	0.01
	Altered	94,9 78.4	1,21 1	1,08 - 1,35	0,01
	Normal Chycemia	78,4	1		
	Glycemia Altered	90,4	1,13	1,00 - 1,28	0,04
	Normal	90,4 79,6	1,15	1,00 - 1,20	0,04
	BMI	, ,,,,	1		
	Low weight	59,5	1,36	1,02 - 1,82	0,03
	Eutrophic	81,3	1	., 1,02	-,
	Overweight/obesity	98,7	1,66	1,27 - 2,16	< 0,001
1 .		,	í.)	

p-value: <0,05. %: Outcome prevalence obtained from Pearson chi–square test and Fisher Exact Test; Minimum wage=R\$788,00

Table 3. Final model of Poisson regression. Aiquara, 2015.

Variables		-	
Sex Male	PR 1	CI95%	Р
Female	1,29	1,12 - 1,48	<0,001
HDL	,	, ,	,
Normal	1		
Altered	0,84	0,70 - 1,01	0,075
Triglycerides Normal	1		
Altered	1,15	1,01 - 1,31	0,045
BMI Low weight	0,75	0,56 - 1,01	0,64
Eutrophic	1		
Overweight/obesity	1,14	1,02 - 1,30	0,026
p-value: <0,05.			

DISCUSSION

The results show significant aspects about the inadequate Waist-Hip Ratio and its linked factors, with WHR as an indicator of abdominal obesity (ROCHA et al., 2013). In the present study, it was noticed the high upshot prevalence among the elderly people, a scenery that can also be seen in other national studies (CUNHA et al., 2012; MASTROENI et al., 2010; MONTENEGRO NETO et al., 2008; AMER; MARCON; SANTANA, 2011). In a prospective cohort study with elderly women, the authors stated the importance of WHR as a central fat distribution parameter, taking into account that the rise in this measure is a risk factor for total mortality (CABRERA et al., 2005). In this study, there was a connection between sex and inadequate WHR, with women displaying an increased prevalence, agreeing with the studies of Medeiros et al. (2014), Chagas et al. (2011) and Montenegro Neto et al. (2008), who also detected a statistically important difference between the sexes for WHR. Such fact may be explained by the difference in fat redistribution between the sexes and the alterations that happen in the postmenopausal period, like basal metabolism reduction and regular physical activity level, with consequent increase in weight (DUARTE, 2007). Among the life styles proposed by WHO as risk factors for CVD, in this study there were assessed the alcohol consumption, smoking and the physical activity level. Among the elderly people assessed, there was a low frequency of alcohol consumption (24%), though this value is above the national proportion (14.2%). Also a low tobacco consumption (10%) was below the national proportion (13.3%). In relation to the level of physical activity, the percentage of elderly people who performed the recommended physical activity was 4 times greater than the national percentage (13.6%) (IBGE, 2014).

The high prevalence of SH in the present study resembles the one that was found by Jacinto et al. (2014) in Minas Gerais. This is one of the main risk factors for several chronic diseases and it is considered as the most significant changeable factor in the emergence of ischemic diseases (SBC, 2010). It is noticed that, even though no significant statistical relation was found in the final regression model between hypertension and inadequate WHR, people with SH have a greater probability (PR = 1.3) of having some cardiovascular event compared to those that do not have the disease. As in this study, regarding triglycerides (TGs), Klein and Oliveira (2012) and Cabral et al. (2012) also displayed that most seniors presented outcomes within the advisable. In the studied population, this variable was essentially linked to the outcome just as in Rocha et al (2013). As stated by Jeppesen et al. (1997) and Pedroza-Tobias et al. (2014) TGs are an independent risk factor for CVD. High TG rates are directly associated to the central accumulation of fat, having an important impact on the emergence and on the blood pressure increase and they may lead to metabolic changes being therefore linked to high cardiovascular mortality in the seniors (ROCHA et al., 2013). Among the elderly assessed, the prevalence of subjects in situation of overweight / obesity supports the study of Oar and Rosado (2010). These authors warn about the need for an educational and health intervention meant for the general population, aiming at the basic prevention of cardiovascular events, since this is a condition that predisposes the subject to numerous diseases such as SH, dyslipidemias, type II Diabetes Melittus, among others. It is worth highlighting that the prevalence of SH and diabetes is three times bigger in people

who reach the mark of 20% of overweight (MÁRTIRES; COSTA; SANTOS, 2013). The meaningful association between overweight / obesity and inadequate WHR is emphasized in this study and may be elucidated due to the negative effect that excessive visceral fat plays on risk factors for CVD like blood pressure, blood lipid profile, insulin resistance, among other factors (RYAN et al., 2014; WANG et al., 2015). The study reported as limitations its design, which disallows the determination of a causality among the factors. the reduced size of the sample because of a considerable decrease arising from a low cognitive level and the struggle of comparison between the studies, since there is no consensus concerning the cutoff point of the waist-hip ratio. By contrast, it is highlighted the strength point of this study as the simultaneous use of anthropometric measurements and the lipid's profile analysis, which is rare in the literature when concerning the northeast region and particularly in small cities.

Conclusion

On the basis of the outcomes of this study, it was concluded that the prevalence of abdominal obesity taken from the Waist-Hip Ratio was high (84.4%) and identified as associated factors the female sex, high levels of triglyceride and obesity. Whereas the accumulation of abdominal fat enhances the risk of morbidities and mortality and that the rise of obesity predisposes the subject to cardiovascular diseases, it is realized the importance of following the anthropometric measures in elderly people, since the weight control may be a relevant preventive strategy.

REFERENCES

- AAFP American Academy of Family Physicians, American Dietetic Association, National Council on the Aging (2002). Nutrition screening and intervention resources for healthcare professionals working with older adults. Nutrition Screening Initiative. Washington: American Dietetic Association.
- Amer NM, Marcon SS, Santana RG. 2011. Índice de massa corporal e hipertensão arterial em indivíduos adultos no Centro-Oeste do Brasil. Arg Bras Cardiol., 96(1):47-53.
- Bertolucci PHF *et al.* 1994. O mini exame do estado mental em uma população geral: impacto da escolaridade. *Arq Neuropsiquistr.*, 52(1):1-7.
- Cabral NAL *et al.* 2012. Cintura hipertrigliceridêmica e risco cardiometabólico em mulheres hipertensas. *Rev Assoc Med Bras.*, 58(5):568-573.
- Cabrera MAS *et al.* 2005. Relação do índice de massa corporal, da relação cintura-quadril e da circunferência abdominal com a mortalidade em mulheres idosas: seguimento de 5 anos. *Cad. Saúde Pública*, 21(3): 767-775.
- Chagas P *et al.* 2011. Associação de diferentes medidas e índices antropométricos com a carga aterosclerótica coronariana. *Arq Bras Cardiol.*, 97(5):397-401.
- Cortez ACL, Silva KL, Castro HN. 2012. Relação entre a gordura da cintura e do quadril sobre o decréscimo na capacidade funcional da mulher de meia idade. *Rev Piauiense de Saúde*, 1:17-22.
- Cunha RM *et al.* 2012. Nível de atividade física e índices antropométricos de hipertensos e/ou diabéticos de uma cidade do Brasil. *Rev Salud Pública.*, 14(3): 429-437.
- Duarte ER. 2007. A mulher e o envelhecimento: alterações cardiovasculares na mulher geriátrica. *Rev Sociedade Cardiol Rio Grande do Sul.*, 12:1-6.

Eskinazi FMV et al. 2011. Envelhecimento e a epidemia da obesidade. Cient Ciênc Biol Saúde., 13(Esp): 295-298.

- Gravina CF *et al.* (2010). Sociedade Brasileira de Cardiologia. II Diretrizes Brasileiras em Cardiogeriatria. *Arq Bras Cardiol.*, 95(3 supl.2): p. 1-112.
- Guedes DP. 2006. Recursos antropométricos para análise da composição corporal. Rev Bras Educ Fís Esp. 20:115-119.
- IBGE Instituto Brasileiro de Geografia e Estatística/ Fundação Oswaldo Cruz, 2014. Pesquisa Nacional de Saúde 2013: Percepção do estado de saúde, estilos de vida e doenças crônica. Rio de Janeiro.
- Jacinto LAT *et al.* 2014. Doença arterial coronariana e suporte familiar em idosos. Revenferm UERJ. 22(6):771-777.
- JeppesenJ *et al.* 1997. Effects of low-fat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women. *Am J Clin Nutr.*, 65:1027-1033.
- Klein KB, Oliveira TB. 2012. Avaliação dos fatores de risco para doenças cardiovasculares em idosos participantes do projeto viva a vida no município de Santo Ângelo, RS. Rev Bras Farm., 93(2): 215-220.
- Lebrão ML, Duarte YAO. 2003. SABE Saúde, Bem-estar e Envelhecimento – O Projeto Sabe no município de São Paulo: uma abordagem inicial. Brasília: Organização Pan-Americana de Saúde.
- Mártires MAR, Costa MAM, Santos CSV. 2013. Obesidade em idosos com hipertensão arterial sistêmica. *Texto & Contexto Enferm.*, 22(3):797-803.
- Mastroeni MF et al. 2010. Antropometria de idosos residentes no município de Joinville-SC, Brasil. Rev Bras Geriatr Gerontol., 13(1):29-40, 2010.
- Mazo GZ, Benedetti TRB. 2010. Adaptação do questionário internacional de atividade física para idosos. *Rev Bras Cineantropom Desempenho Hum.*, 12(6):480-484.
- Medeiros P *et al.* 2014. Aspectos nutricionais de idosos atendidos em um centro de saúde. *Rev Pesq Saúde.*, 15(3):351-355.
- Montenegro Neto ANM *et al.* 2008. Estado nutricional alterado e ua ssociação com perfil lipídico e hábitos de vida em idosos hipertensos. *Arch LatinoAm Nutr.*, 58(4):350-356.
- Oar AMA, Rosado LEFPL, 2010. Relações entre parâmetros antropométricos, de composição corporal, bioquímicos e

clínicos em indivíduos com Síndrome Metabólica. Nutrire Rev Soc Bras Alim Nutr, 35(2):117-129.

- Pedroza-Tobias A et al. 2014. Classification of metabolic syndrome according to lipids alterations: analysis from the Mexican National Health and Nutrition Survey 2006. *BMC Public Health*, 14:1056.
- Pereira RA, Sichieri R, Marins VMR. 1999. Razão cintura/quadril como preditor de hipertensão arterial. *Cad. Saúde Pública*, 15(2):333-334.
- Petroski EL. 1999. Antropometria: técnicas e padronizações. Porto Alegre: Pallotti.
- Rocha FL *et al.* 2013. Correlação entre indicadores de obesidade abdominal e lipídeos séricos em idosos. *Rev Assoc Med Bras.*, 59(1):48-55.
- Ryan JM. et al. 2014. Waist circumference provides an indication of numerous cardiometabolic risk factors in adults with cerebral palsy. *Arch phys med rehabil.* 95:1540-1546.
- SBC Sociedade Brasileira de Cardiologia/Sociedade Brasileira de Hipertensão/Sociedade Brasileira de Nefrologia (2010). VI Diretrizes Brasileiras de Hipertensão. Arq Bras Cardiol., 95(1 supl. 1):1-51.
- SBD Sociedade Brasileira de Diabetes, 2015. Diretrizes da Sociedade Brasileira de Diabetes: 2014-2015. São Paulo: AC Farmacêutica.
- Venturini CD *et al.* 2013. Prevalência de obesidade associada à ingestão calórica, glicemia e perfil lipídico em uma amostra populacional de idosos do Sul do Brasil. Rev *Bras Geriatr Gerontol.*, 16(3):591-601.
- Veras R, DUTRA S 2008. Perfil do idoso brasileiro: questionário BOAS. Rio de Janeiro; UERJ. UnATI.
- Wang S et al. 2015. A novel quantitative body shape score for detecting association between obesity and hypertension in China. BMC Public Health.15:7.
- WHO World Health Organization (2010).Global recommendations on physical activity for health.Genebra: WHO.
- XAVIER, H. T. *et al.* 2013. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol, v. 101, n. 4 Supl.1, p. 1-22.
