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ARTICLE INFO  ABSTRACT 
 
 

Being able to accurately predict point or a real precipitation data at unsampled locations or areas 
using measured precipitation data is important in the work of agriculturists, hydrologists, 
climatologists, engineers, and others. Precipitation phenomenon is a complicated process due to 
the spatial variability, uncertainty, and complexity of the meteorological processes underlying its 
formation. There is a need to investigate the use of the most common geostatistical techniques to 
characterize, interpolate, and analyze precipitation data with the intent to identify the best set of 
semivariogram and spatial interpolation algorithms for characterizing precipitation data in a 
region of interest. Linear kriging (ordinary kriging, simple kriging, and universal kriging) and 
nonlinear kriging (indicator kriging, probability kriging, and disjunctive kriging) algorithms were 
used in this research project to characterize and interpolate precipitation data. Gaussian, circular, 
spherical and exponential semivariograms were employed with the six interpolation algorithms to 
characterize the precipitation data. Statistical measures of correctness (mean prediction error, 
root-mean-square error, standardized root-mean-square error, average standard error) from cross-
validation were used to compare the combination of kriging and semivariogram algorithms. The 
most accurate results were obtained by using indicator kriging (IK) with a circular semivariogram 
for spatial characterization and interpolation of the precipitation data. IK and circular variogram 
algorithms were used to perform multi-scale analysis of the wet and dry months. 
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INTRODUCTION 
 

Precipitation (rainfall and snow) data obtained from radar, or 
measured at structured weather stations several miles apart are 
used to estimate data values at a point or within a specific area. 
The estimates derived from its analysis are critical inputs into 
hydrological, ecological, flood prediction/protection, and other 
models (Running et al. 1987; Dolph et al. 1992; Daly et al. 
1994; Goovaerts, 2000). Accurate estimates of precipitation 
data are required for many applications in hydrologic 
engineering, environmental science, and other disciplines. A 
fundamental problem in hydrology is the spatial 
characterization and estimation (interpolation) of precipitation 
values at unsampled locations using the surrounding 
measured) precipitation data.  
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An accurate estimation of precipitation data values could be 
achieved through the deployment of a densely populated 
network of instrumentation (and personnel) to collect and 
record the data. This costly process could be avoided by 
employing stochastic characterization, which uses neighboring 
precipitation data points to estimate the precipitation values at 
unsampled locations and specific areas of interest (Jones and 
Thornton, 1997; Wilks, 1999; Goovaerts, 2000). Even though 
stochastic characterization has been employed in hydrology 
and engineering studies, it is not evident from the literature 
which method is the most suitable for characterizing 
precipitation data. Various kriging techniques and 
semivariograms were developed but there has been limited 
interest in exploring their merits and demerits or comparison 
of the algorithms to each other. Thus, there is a need to use 
geostatistical techniques to characterize, interpolate and 
analyze precipitation data with the intent to identify and 
compare the most accurate set of semivariogram and spatial 
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interpolation algorithms for characterizing precipitation data in 
a region of interest. The best method for making comparisons 
is to employ cross-validation techniques to compare the 
predicted and actual (observed) precipitation data for each set 
of semivariogram and kriging techniques. The predominant 
methods that have been employed to estimate climate data 
values are inverse distance/distance weighting, Thiessen 
polygon/interpolating polynomials, principal component 
analysis, regression, kriging, neural networks, genetic 
algorithms, splines, and Markov models (Thiessen, 1911; 
Delhomme, 1978; Stewart and Cadou, 1981; Stern and Coe, 
1984; Tabios and Salas, 1985; Bedient and Huber, 1992; 
Phillips et al. 1992; Abtew et al 1993; Bardosy, 1993; 
Eischeid et al. 1995; Hulme at al. 1995; Lennon and Turner, 
1995; Hammond and Yarie 1996; Holdaway 1996; Martinez-
Cob 1996; Ashraf et al. 1997; Dobson and Marks 1997; Jones 
and Thornton, 1997; Demyanov et al. 1998; Huang, et al. 
1998; Hutchinson, 1998; Hutchinson and Gessler, 1994;  
Nalder and Wein, 1998; Wilks 1999; Goovaerts, 2000). 
Entekhabi et al. 1999 and Kyriakidis et al. 2004, emphasizes 
the importance of research in hydrology and engineering to 
accurately characterize and interpolate precipitation values. 
Limited area models have been used to improve the accuracy 
of regional-scale of precipitation data analysis (Giorgi and 
Mearns, 1991; Kim and Soong, 1996; Miller and Kim, 1996; 
Kim et al. 1998). A computationally expensive dynamic 
downscaling procedure has been used.  
 
The area with the most uncertainty in hydrologic models 
employed in operational river stage forecasting is the 
quantitative precipitation forecast (Krzysztofowicz, 1998; Seo 
et al. 2000). Geostatistics offers the best approach to 
characterize and interpolate precipitation data but most of the 
studies have been limited to only one or two algorithms with 
little justification for the choice of algorithms (Bras and 
Rodriguez-Iturbe, 1985; Seo et al. 2000; Kyriakidis et al. 
2001; Kyriakidis et al. 2004). Past research indicates that the 
assumption of spatial correlation and regionalization in 
hydrological studies are justified even with moderate 
deviations, because regional analysis still yields more accurate 
quantile estimates than at-site analysis (Lettenmaier and Potter, 
1985; Lettenmaier et al. 1987; Hosking and Willis 1988; Potter 
and Lettenmaier, 1990; Kyriakidis et al. 2004; Gonzales and 
Valdes, 2008). Thus, geostatistics is an acceptable 
methodology for the characterization and interpolation of 
precipitation data (Delhomme 1978; Creutin and Obled, 1982; 
Lebel et al. 1987; Azimi-Zonooz et al. 1989; Barancourt et al. 
1992; Bacchi and Kottegoda 1995; Goovaerts, 2000, Germann 
and Joss, 2001; Bernes et al. 2004; Bernes, et al., 2009). In 
past research, kriging methods such as ordinary kriging, 
kriging with a trend, universal kriging and others have been 
used to incorporate the heterogeneity and spatial correlation of 
climate variables into the estimation of climate data values 
(Delhomme, 1978; Tabios and Salas, 1985; Phillips et al. 
1992; Bardosy, 1993; Hammond and Yarie, 1996; Holdaway, 
1996; Martinez-Cob, 1996; Ashraf et al. 1997; Nalder and 
Wein, 1998; Goovaerts, 2000; Llyod, 2005; Bargaoui and 
Chebbi, 2009).  
 
Kriging is a generalized least-square, spatial 
estimation/interpolation method that was introduced by Krige 
(1951) and formalized (developed into a mathematical model) 
by Matheron (1963). Kriging is an optimal (best linear 
unbiased) spatial interpolation or prediction procedure based 
on using regression analysis against observed data points 

obtained from surrounding locations. It is weighted against 
spatial covariance values and optimized with respect to 
specific error criteria (Bohling, 2005). Kriging could be 
described as a methodology that employs the notion of 
regionalized variables or autocorrelation to estimate values at 
unsampled locations. It is a linear regression technique that 
minimizes the estimation from fitted covariance models or 
semivariograms (Royle et al. 1981; Lam 1983; Heine 1986; 
Davis 2002). Kriging is used to construct a minimum error 
variance linear estimate at a location where the actual value is 
unknown. It could be employed to estimate a series of 
posterior conditional probability distributions from which 
unsmoothed images of the attribute spatial distribution are 
drawn (Deustch and Journel, 1998). Kriging could be used as a 
tool for interpolating precipitation data, calculating the 
conditional cumulative distribution function (ccdf) values and 
as a mapping algorithm (Goldberger 1968; Luenberger, 1969; 
Matheron, 1971; David 1977; Brooker 1979; Hohn, 1988; 
Journel, 1989; Isaaks and Srivastava 1989; Cressie 1991; 
Goovaerts 1997; Deustch and Journel, 1998; Chiles and 
Delfiner, 1999; Goovaerts, 2000; Lloyd and Atkinson, 2001; 
Journel and Huijbregts, 2003). Stochastic characterization and 
interpolation tools (geostatistics) are a collection of numerical 
techniques that could be used to analyze spatially distributed 
data and aid in decision making. Even though many 
precipitation research studies have acknowledged the need for 
spatial modeling approaches, there is limited evidence of 
research approaches aimed at defining optimal spatial 
interpolation methods (Goodrich et al. 1995; Guan et al. 
2005). The predominant practice is using a single kriging 
method together with one semivariogram model to 
characterize and interpolate climate data (Delhomme, 1978; 
Tabios and Salas, 1985; Phillips et al., 1992; Bardosy, 1993; 
Hammond and Yarie, 1996; Holdaway, 1996; Martinez-Cob, 
1996; Ashraf et al. 1997; Atkinson and Llyod, 1998; Nalder 
and Wein, 1998; Goovaerts, 2000; Llyod, 2005).   
 
According to the work of Nalder and Wein (1998), four 
semivariogram models were used for each variable 
(temperature and precipitation) each month, leading to a total 
of 120 models. None of the semivariogram models were 
identified and accorded the same attention as the interpolation 
algorithms. There was no attempt to find the combination of 
kriging and semivariogram algorithms most suitable for 
characterizing and interpolating the climate data. A 
fundamental requirement in geostatistics is that the model 
developed should represent the structure of the unknown 
function to be estimated. Therefore, models developed using 
geostatistic methods must be checked and validated (Box and 
Jenkins, 1976; Delfiner, 1976; Dubrule, 1984; Kitanidis and 
Vomvoris, 1983; Davis 1987; Borgman, 1988; Kitanidis, 
1988; Snodgrass and Kitanidis, 1997). There is little evidence 
about how the data affects the performance of the kriging 
technique and the semivariogram models. It is speculated that 
it may not be possible to find the best kriging technique and 
semivariogram for a given precipitation data set (Burrough and 
McDonnell, 1998; Jones et al., 2003; Zhou et al. 2007). 
 

MATERIALS AND METHODS 
 
In this research, three linear (ordinary, simple, and universal 
kriging) and three nonlinear (indicator, probability, and 
disjunctive kriging) algorithms, were combined with four 
semivariogram techniques (circular, spherical, exponential, 
and Gaussian) to characterize and interpolate precipitation data 
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of the state of North Dakota. The six spatial interpolation 
techniques and the four semivariogram models are the most 
widely-used geostatistical algorithms and are employed by the 
majority of researchers in geostatistics. At the genesis of the 
research, exploratory data analysis techniques were used to 
determine the linear statistical properties of the data. If the data 
were lognormally distributed, it would have been transformed 
prior to semivariogram modeling and kriging. The 
combination of six kriging methods and four semivariogram 
models were sequentially applied to the precipitation data. 
There was no scientific basis for the order of application of the 
methods. The actual ordering was done randomly. Thus, there 
were no prejudicial effects for the ordering of the kriging and 
semivariogram algorithms. Each kriging run was followed by 
cross-validation and the necessary statistics were compiled, 
analyzed, and compared. The best set of kriging and variogram 
algorithms were then used to study the seasonal differences 
and multi-scale effects of the wet and dry months. Figure 1 
summarizes the research methodology. 
 

 
 

Figure 1. Summary of Research Methodology 
 

Precipitation Data 
 

The precipitation data used in this study was extracted from 
the National Climate Data Center (NCDC) Summary entitled 
Climatography of the United States No. 81 (NOAA, 2009). 
The extracted data contains monthly precipitation (for each 
recording station) data points for a thirty-year period termed 
normals (for the period 1971-2000). The extracted data was for 
the state of North Dakota. Figure 2 provides the location of the 
weather stations where the data was recorded in North Dakota. 
 

 
 

Figure 2. Map of North Dakota Showing the Location of the 
Weather Stations 

 

Methods 
 
Mathematical Modeling of Spatial Structure: A 
semivariogram model (a relationship between meteorological 
distance and Euclidean distance) is an important statistical tool 

used to measure spatial correlation in all geostatistical 
applications (Cressie, 1985; Goovaerts, 1997; Chiles and 
Delfiner, 1999; Deutsch, 2002; Journel and Huijbregts, 2003; 
Menezes et al. 2005). The semivariogram quantifies the spatial 
variability of the variables by computing the variance of the 
variables measured at some distance h, apart. Thus, the 
semivariogram is an important tool in the analysis of spatial 
continuity of the natural phenomena under investigation. 
Often, as the separation distance increases, the samples 
become more dissimilar and hence the semivariogram/variance 
increases. In order to have one and only one solution to the 
kriging equation, the left-hand covariance matrix must satisfy 
a mathematical condition termed positive definiteness. During 
geostatistical characterization of a regionalized variable/ 
phenomenon, an estimated semivariogram is needed for 
kriging/interpolation (determining kriging weights) of the 
random fields with similar spatial properties, understanding the 
spatial structure of the variable, optimal sampling design and 
exploring the scaling properties of the models using the 
variable as an input (Matheron, 1962; Burgess and Webster, 
1980; McBratney et al.1981; Papritz and Webster, 1995; 
Genton, 1998; Oliver, 1999; Lark, 2000; Deutsch, 2002). Thus, 
the semivariogram is used to simulate the observed variability 
present in the available data (Gringarten and Deutsch, 2001).   

 
The positive definite condition could be satisfied by ensuring 
that the functions combined to form the semivariogram model 
are known and tested to be positive definite. Therefore, a linear 
combination of such functions is positive definite (additivity of 
positive definiteness). The basic models of regionalization 
(semivariogram) are pure nugget effect - white noise (Journel 
and Huijbregts, 2003), spherical (Deutsch and Journel, 1998), 
Gaussian (Goovaerts, 1997), hole effect - cardinal sine, 
triangle, cubic, circular (Chiles and Delfiner, 1999), 
generalized Cauchy (Journel and Huijbregts, 2003), Bessel, 
power-law, logarithmic - de Wijsian (Chiles and Delfiner, 
1999) and other models. Besides the power model, all of the 
other semivariogram models are termed bounded, that is they 
reach a constant sill at some distance, termed the range. The 
most commonly used semivariograms are the spherical, 
circular, exponential, and Gaussian models. Generally, 
experimental semivariogram models are built as a linear 
combination of two or more types of basic models. The 
fundamental elements of the modeling process are (1) 
calculating an experimental semivariogram; (2) considering 
meteorological information and knowledge of the area (if 
available) to supplement the calculated points; and (3) fitting a 
licit positive definite model to the data. The resulting 
semivariogram model must capture all the major features of 
the phenomenon (precipitation data) under investigation. 
 
For two sample values z(x) and z(x+h) at two points x and x+h 
separated by the vector h, the semivariogram obtained by using 
Matheron’s method of moments (Matheron, 1962) could be 
defined as the expected value (equation 1); 
 

        (1)                                              2
2

hxZxZEh   

 
Where 2γ is the semivariogram and γ(h) is the semivariogram. 
Thus, the semivariogram is the expectation of the squared 
difference between two data points separated by a distance, h. 
The semivariogram for N number of pairs of lag distance h is 
represented by equation 2 (Deutsch and Journel 1998; 
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Goovaerts 1998; Chiles and Delfiner 1999; Lark 2000; Journel 
and Huijbregts 2003): 
 

      

        (2)                            , , 
2

1
         

)(2

1

2

)(

2

AhxxhxZxZE

hxZxZ
hN

h
hN



   

 

The linear models of regionalization that would be employed 
in this research are the circular, spherical, exponential, and 
Gaussian semivariograms. These are presented in Table 1. In 
the Gaussian model, the range is given by 1.732a and the sill is 
reached asymptotically. For small distances, a local variation 
could be interpreted as a stationary Gaussian structure or as a 
drift effect (Chiles and Delfiner, 1999; Journel and Huijbregts, 
2003). The exponential semivariogram reaches its sill 
asymptotically, as h turns to infinity. The practical range (95% 
of the sill or a correlation of only 5%) of the semivariogram is 
about 3a. The gradient of the spherical and exponential models 
are the same at h = 0. The gradient of the Gaussian model is 
zero at h = 0. 
 

Mathematical Modeling of Spatial Interpolation (Linear 
and Non-linear) Algorithms: Both linear (ordinary kriging, 
simple kriging, and universal kriging) and nonlinear (indicator 
kriging, probability kriging, and disjunctive kriging) 
interpolation techniques were used in this study. The basic 
assumptions made in the kriging estimator were: the unknown 
sample data, z(x) and the n sample values belong to the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

regionalized variables, Z(x), and Z(x1),.... , Z(xn). There were 
no measurement or positional errors. For any two points x1 and 
x2 in the area over which z(x) is being estimated, the 
covariance Cov(Z(x1), Z(x2)) of the associated regionalized 
variables Z(x1) and Z(x2) were known. The non-negative 
matrix of covariances between the measured variables (data) at 
the sample points were positive definite. The covariance 
between x1 and x2 were shortened as (equation 3): 
 

 ))(),((),( 2121 xZxZCovxxC                              (3) 
 
The trend in the area of interest is homogeneous. Thus, the 
mean of the regionalized variables is the same for the data 
points xn in the area in which z(x) is being estimated. If a trend 
exists in the area of interest, the stationarity of the local mean 
is relaxed and a non-stationary random function is employed to 
represent the mean (kriging with a trend or universal kriging). 
Kriging techniques are extensions or transformations of the 
generalized linear regression algorithm. The objective of 
kriging algorithms is to minimize the estimation or error 
variance σ2

E, under estimator unbiasedness constraints (see 
equation 4). That is: 
 

             0 s.t.  2   xZxZExZxZVarxMin E (4) 
 
Linear kriging algorithms are distribution-free, linear 
interpolation techniques, which are akin to linear regression.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Four Commonly Used Variogram Models 
 

Model Mathematical Representation 
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Variogram 
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Variogram     0  
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Variogram   0  
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


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Where c= sill; h = lag distance and a = range (Chiles and Delfiner, 1999, Deutsch and Journel, 1998, Goovaerts, 1998, Journel and Huijbregts, 2003). 
 

Table 1. Linear and Nonlinear Spatial Interpolation Algorithms 
 

Type Mathematical Representation 
Linear Spatial Interpolation Algorithms 

 
Ordinary Kriging           )(1)(.

11

* xmxxZxxZ
n

i
ii

n

i
iOK 








 



  

Journel and Deustch, 1998. 
 
Simple Kriging          1)(.

11

* mxxZxxZ
n

x
ii

n

i
iSK 








 




 

Journel and Deustch, 1998. 
 
Universal Kriging     )().()(

1

*
i

n

i
iKT xZxxZ 



 
 

Goovaerts, 1997; Deutsch and Journel 1998; Chiles and Delfiner, 1999; Lloyd and Atkinson, 2001; Journel and Huijbregts, 
2003. 

Nonlinear Spatial Interpolation Algorithms 
 
Indicator Kriging 

           )(|Prob(n)|;; ***
nzxZzxIEzxi kkk   

Journel, 1983 and 1986; Isaaks and Srivastava, 1989; Ying, 2000.  
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Disjunctive Kriging   ))(()(

1

*
i

n

i
iDK xZxZ 


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Matheron, 1963 and 1971; Rivoirard 1994; Journel and Huijbregts, 2003; Lark and Ferguson, 2004; Webster and Oliver, 2007. 
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The linear kriging equations are depicted in the upper part of 
Table 2,  where Z(x) is the random variable at the location x, 
all xi values are the n data locations, m(x)=E{Z(x)} is the 
location-dependent expected value of the RV Z(x), ωi(x) are 
the weights, and m is the constant mean. The ordinary kriging 
technique is a nonstationary algorithm, which involves 
estimating the mean value at each location, and it is generally 
applied in moving search neighborhoods. However, the 
covariance function is stationary. A location-dependent 
estimate of the mean is used to replace the constant mean of 
the simple kriging technique. In ordinary and simple kriging, 
the mean value of the variable is assumed to be constant (local 
stationarity) over the search area. In some practical situations 
the local mean varies over the search area. Kriging with a trend 
(universal kriging) involves situations where the local mean is 
variable over the study area. Kriging with a trend is meant to 
accommodate a non-stationary mean; where the expected 
value of Z(x) is a deterministic function of the coordinates. 
The random function, Z(x), is a combination of a trend 
component with a deterministic variation, m(x), and a residual 
component (with randomness or stochastic variation), R(x), as 
depicted in equation 11 in Table 2 (Goovaerts, 1997; Deutsch 
and Journel, 1998; Chiles and Delfiner, 1999; Lloyd and 
Atkinson, 2001; Journel and Huijbregts, 2003). In universal 
kriging, the residual component, R(x) is considered a 
stationary random variable with zero mean and a covariance, 
CR(h). A first degree polynomial (which avoids unpredictable 
behavior at the outer margins of the data set) is used to set the 
trend. 
 
The three nonlinear kriging algorithms used in this work were 
indicator kriging, probability kriging and disjunctive kriging. 
In this study, indicator kriging, probability kriging and 
disjunctive kriging algorithms, were used. Nonlinear kriging 
algorithms are linear kriging algorithms applied to nonlinear 
transformations of the data points into a continuous (Gaussian) 
variable (Journel and Deustch, 1998). Indicator kriging, which 
is a least-squares estimator of the cumulative distribution 
function at a threshold or cutoff (zk), was introduced to update 
prior probabilities into posterior or conditional probability 
distributions and was later extended to include inequality 
constraints (Journel, 1983 and 1986). Indicator kriging 
employs the samples in a neighborhood to estimate the 
probability of data points in a given area exceeding a defined 
threshold (Isaaks and Srivastava, 1989; Ying, 2000). In the 
application of indicator kriging, data are transformed into 
indicator values (0 and 1). Values that exceed a certain 
threshold are coded 1 and those below it are coded 0. The 
major advantage of indicator kriging is that different types of 
soft secondary data could be combined with direct data points 
and inequalities to estimate the quantity of interest. Probability 
kriging, a conditional cumulative distribution function model 
for Z(x), is a form of cokriging that uses the original values 
instead of their indicator transformations of the data values at 
thresholds different from that being estimated (Sullivan, 1984; 
Verly and Sullivan, 1985). In probability kriging, ωα and να are 
the cokriging weights of the indicator data and the uniform 
data respectively. The weights are location (x) and threshold 
(zk) dependent; while p(xα) = F(z(xα)) Є [0,1] is the uniform 
(cumulative distribution function) of the datum value z(xα). If 
the stationary mean or the expected value is 0.5; then F(z) = 
Prob{Z(x)≤z} which is the stationary cumulative distribution 
function of Z(x). The estimates resulting from indicator and 
probability kriging are probabilities that the sample points in 
question are above the cutoff or the percentage of samples 

above the cutoff. These probabilities could be used to estimate 
the actual values at the unsampled locations.  
 
Disjunctive Kriging is a non-linear kriging method, which was 
introduced by Matheron (1963). It uses a bivariate probability 
model for the estimation of any function z(x). The disjunctive 
kriging technique is more accurate than the linear kriging 
methods but less accurate than the unknown conditional 
expectation of the variable. It is considered as an intermediate 
estimator (Journel and Huijbregts, 2003). In disjunctive 
kriging, the data points are assumed to be realizations of a 
second-order stationary bivariate diffusion process (Lark and 
Ferguson, 2004). In the disjunctive kriging estimator, λi are 
non-linear functions of the data. Generally the expansion is 
truncated at p≤100. The most common form of the disjunctive 
kriging technique is the Gaussian diffusion process and 
Hermite polynomials could be used to transform the data into 
normality (Rivoirard, 1994; Lark and Ferguson, 2004; Webster 
and Oliver, 1992; 2007). Each experiment (semivariogram 
fitting and kriging run) was followed by cross-validation and 
the statistics were compiled, analyzed and compared. The 
mean prediction error (mean), the standardized mean 
prediction error (SM), the root-mean-squared prediction error 
(RMSE), the standardized root-mean-squared prediction error 
(RMSES), and the average standard error (ASE) were used to 
compare the characterization and interpolation results. 
 
Model Checking and Statistical Comparison 

 
Selection of the correct model is important to the success of all 
spatial interpolation and simulation studies. According to Irobi 
et al (2004), a correct model could be considered as the closest 
representation of a system because of the abstract complexity 
of natural processes. Cross-validation is the preferred model 
checking method (Stone, 1974; Bowman, 1984; Hardle and 
Marron, 1985). The complexity of meteorological processes, 
problems with sampling, and lack of knowledge, result in 
model uncertainty and cross-validation is used to check the 
accuracy and consistency of the interpolation techniques and 
algorithms (Voltz and Webster, 1990; Gotway and Rutherford, 
1994; Deutsch, 1997; Chiles and Delfiner, 1999; Deutsch, 
2002; Robinson and Metternicht, 2006). Cross-validation 
could be used choose between and/or compare weighting 
procedures, search strategies, and interpolation and simulation 
algorithms (Goovaerts, 1997; Chiles and Delfiner, 1999; 
Deutsch, 2002; Robinson and Metternicht, 2006; Emery and 
Ortiz, 2007). Cross-validation is used to evaluate the predictive 
capabilities of models (Stone, 1974). 
 
In cross validation, the data is used to develop the model. In 
leave-one-out cross-validation, the entire set of available data 
is used to develop the model. When one data point is removed, 
the kriging model with the variogram is used to predict the 
missing data (Goovaerts, 1997; Deutsch, 2002; and Chiles and 
Delfiner, 1999). The actual and interpolated values are then 
compared. Equation 5 is used to assess the systematic error.   
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Equation 6 represents the standardized mean prediction error:  
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Equations 7 and 8 represent the root mean square prediction 
error and the standardized root-mean-square prediction error 
respectively. 
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ASE, the average standard error (ASE) is given by equation 9;

 

n

s
ASE                                                          

 
ASE also termed the standard error of the mean is the measure 
of the accuracy of the average of the prediction standard 
errors. The ASE has the property of increasing as the 
variability of the data increases, and decreasing as the sample 
size increases. In equations 5, 6, 7, 8 and 9, σ
variance at location xi; s is the standard deviation; n is the 
number of data points. The statistics from equations 5, 6, 7, 8 
and 9 are compiled and employed to assess and compare the 
models. 

 
Statistical Decision Criteria and Optimality

 
The five statistics from equations 5, 6, 7, 8, and 9 were
evaluate the output of the combinations of six kriging and four 
semivariogram algorithms. The statistics of the best set of 
semivariogram and kriging methods were the following: (1) a 
small average standard error (ASE); (2) a mean prediction 
error (mean) near 0; (3) a standardized mean prediction error 
(SM) near 0; (4) a standardized root-mean-squared prediction 
error (RMSES) near 1; and (5) a small root
prediction error (RMSE) (Pardo-Igusquiza, 1998; Robinson 
and Metternicht, 2006). The root-mean-squared error of the 
preferred combination of kriging and semivariogram model is 
approximately equivalent (closest) to the average error.  Using 
the equivalency of the root-mean-squared error (RMSE) and 
the average standard error (ASE) as the optimality criteria, the 
decision criterion is represented by the equation 10:
 

            0RMSEASE                                  
 
For a number of n equiprobable models the decision rule is 
given by equation 11 
 

      )( nRMSEASEMinimize                                      

 
Multi-scale Spatial Analysis of Wet and Dry Months
Suppose a smaller random rectangular block with value Y
superimposed on and used to sample a larger block with value 
Y2, the expected value of Y1 is Y2 and it is given by E(Y
Y2 . However this property could be violated if the data is not 
gridded and/or the trend in all directions is not the same.   The 
cross-validation statistics and variogram properties of the 
blocks would also be compiled and compared.
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RESULTS 
 

Implementation and Discussion of Results

 
The experiments were conducted using the Geostatistical 
Analysts module of ESRI’s ArcGIS software (versions 9.3 and 
10.3) and Minitab 17. The order of performance of the 
experiments were: exploratory data
transformation (if required); fitting of a licit semivariogram to 
the data; use of each of the six spatial interpolation algorithms 
and the fitted semivariogram to characterize the data in a GUI 
environment; cross validation of the results an
compilation of the resulting statistics; and development of 
tables and graphs to analyze, compare and select the most 
appropriate models (Chiles and Delfiner, 1999; Deutsch, 
2002). Some processes have been combined with others in the 
descriptions that follow.    

 
Exploratory Data Analysis: The monthly precipitation data 
was averaged to develop an annual profile for each weather 
location sampled. The monthly maximum, average and 
minimum annual precipitation were determined and averaged 
for the thirty-year period. The data was subjected to 
exploratory statistical data analysis to understand it. The 
techniques employed were measures of central tendency, 
histograms plots, and quantile
average precipitation for each month (
the sampled 118 weather stations spread over the state of 
North Dakota is presented in Figure 3. A histogram of the 
precipitation data for North Dakota is presented in Figure 4. 
The precipitation data was divided into the distinct f
seasons. On the basis of the distinct four seasons the data 
showed different results. Minitab was used to fit distributions 
to the histograms of the four seasons. Whereas spring and fall 
seasons are approximately normal, the winter and summer are 
skewed. The descriptive statistics of the four seasons are 
presented in Table 3. Precipitation in summer (with a mean of 
7.997) and spring (with a mean of 4.465) are higher than 
winter (with a mean of 1.365) and fall (with a mean of 3.824).

 

 

Figure 3. Plot of Monthly Precipitation Data for January to 
December of the Sampled 118 Weather Stations

 

Test for normality was performed on the four seasons and the 
results are presented in Figure 5. The graphical plot of normal 
percent versus the four season data depart from the fitted line 
both extreme ends. The Ryan
indicates that, at α values greater than 0.020, there is evidence 
that the data does not follow a normal distribution for the 
spring season. For the other seasons, the αs are less than the 
0.05 confidence interval. The p
greater than 0.05 confidence interval, and thus the null 
hypothesis was rejected. 
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Implementation and Discussion of Results 

The experiments were conducted using the Geostatistical 
Analysts module of ESRI’s ArcGIS software (versions 9.3 and 
10.3) and Minitab 17. The order of performance of the 
experiments were: exploratory data analysis and 
transformation (if required); fitting of a licit semivariogram to 
the data; use of each of the six spatial interpolation algorithms 
and the fitted semivariogram to characterize the data in a GUI 
environment; cross validation of the results and the 
compilation of the resulting statistics; and development of 
tables and graphs to analyze, compare and select the most 
appropriate models (Chiles and Delfiner, 1999; Deutsch, 
2002). Some processes have been combined with others in the 

The monthly precipitation data 
was averaged to develop an annual profile for each weather 
location sampled. The monthly maximum, average and 
minimum annual precipitation were determined and averaged 

year period. The data was subjected to 
exploratory statistical data analysis to understand it. The 
techniques employed were measures of central tendency, 
histograms plots, and quantile-quantile (Q-Q) plots. The 
average precipitation for each month (January to December) of 
the sampled 118 weather stations spread over the state of 
North Dakota is presented in Figure 3. A histogram of the 
precipitation data for North Dakota is presented in Figure 4. 
The precipitation data was divided into the distinct four 
seasons. On the basis of the distinct four seasons the data 
showed different results. Minitab was used to fit distributions 
to the histograms of the four seasons. Whereas spring and fall 
seasons are approximately normal, the winter and summer are 

d. The descriptive statistics of the four seasons are 
presented in Table 3. Precipitation in summer (with a mean of 
7.997) and spring (with a mean of 4.465) are higher than 
winter (with a mean of 1.365) and fall (with a mean of 3.824). 

 

. Plot of Monthly Precipitation Data for January to 
December of the Sampled 118 Weather Stations-North Dakota 

Test for normality was performed on the four seasons and the 
results are presented in Figure 5. The graphical plot of normal 

cent versus the four season data depart from the fitted line 
both extreme ends. The Ryan-Joiner (RJ) test’s p-value 
indicates that, at α values greater than 0.020, there is evidence 
that the data does not follow a normal distribution for the 

For the other seasons, the αs are less than the 
0.05 confidence interval. The p-values for the four seasons are 
greater than 0.05 confidence interval, and thus the null 
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 Mean

Winter 1.365
Spring 4.465
Summer 7.997
Fall 3.824

 

Figure 
 

Figure 
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Table 2. Descriptive Statistics for Precipitation Data 

Mean St. Dev Minimum Maximum Skewness Kurtosis

1.365 0.2769 0.770 2.010 0.40 -0.36 
4.465 0.5683 3.370 6.190 0.66 0.43 
7.997 0.9866 5.630 9.930 -0.17 -0.78 
3.824 0.5915 2.510 5.210 0.29 -0.39 

 

Figure 4. Histogram and Normal Plot of Precipitation Data 

 
  

  
 

Figure 5. Plot of Normality Test of Precipitation Data 
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The data would not be transformed prior to geostatistical 
characterization and interpolation on the basis of normality test 
(Figure 6). The p-value for the entire precipitation data is 
greater than 0.100 compared to α of 0.05 confidence interval. 
 

 
 

Figure 6. Plot of Normality Test of the Precipitation Data 

 
Semivariogram Fitting, Interpolation, and Cross-
Validation 

 
Each of the four semivariogram models – spherical, 
exponential, circular and Gaussian were used to fit an 
experimental semivariogram to the data prior to kriging with 
the six interpolation algorithms. After running each 
combination of kriging and semivariogram algorithms, leave-
one-out cross-validation (LOOOC) was performed and the 
resulting statistics were compiled and analyzed for the 
precipitation data of North Dakota. The cross-validation 
statistics are presented in Figures 7 to 11. In Figure 7, the 
pairing of both spherical and circular semivariograms with 
indicator kriging yielded the lowest mean (closest to zero) and 
were closely followed by the exponential semivariogram 
combined with indicator kriging. The combination of Gaussian 
semivariogram with all six kriging methods had large negative 
deviations from zero. The worst combinations were the 
Gaussian semivariogram with both ordinary and universal 
kriging methods. 
 

 
 

Figure 7. Graph of Mean Error (Mean) of the Kriged 
Precipitation Data 

 

As depicted in Figure 8, the RMSE for the combinations of 
indicator and probability kriging techniques with all the four 
semivariograms were approximately the same and were the 
lowest in values. The combinations of ordinary kriging, simple 

kriging, universal kriging and disjunctive kriging and the four 
semivariograms were high and approximately similar in values 
as well. The indicator kriging and probability kriging could be 
combined with a number of semivariogram models to 
characterize this type of data. 

 

 
 

Figure 8. Graph Showing Root-Mean Square Error (RMSE) of 
the Kriged Precipitation Data 

 
In Figure 9 the indicator and probability kriging have the 
lowest ASE values for all four semivariogram models. For all 
the semivariogram models, ordinary and universal kriging 
were approximately the same and so were disjunctive and 
simple kriging. However, the combination of exponential 
semivariogram with indicator kriging had the lowest average 
standard error. The combination of exponential semivariogram 
with disjunctive kriging exhibited the highest ASE value. 

 

 
 
Figure 9. Graph Showing Average Standard Error (ASE) of the 

Kriged Precipitation Data 

 
The mean standardized prediction error is shown in Figure 10. 
The Gaussian semivariogram with ordinary kriging and/or 
universal kriging had the lowest values. The exponential 
semivariogram with ordinary kriging had the highest positive 
value. The standardized mean prediction error value of the set 
of spherical semivariogram and simple kriging was nearest to 
zero and could be considered the best combination of 
semivariogram and kriging algorithms. The exponential 
semivariogram and probability kriging set of algorithms was 
the second best combination. The root mean square error 
standardized (RMSES) is shown in Figure11. The ideal set of 
semivariogram and kriging algorithms would have an RMSES 
value of 1 and be approximately equivalent to the average 
standard error (ASE).  
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The best set of semivariogram and spatial interpolation 
algorithms is the circular semivariogram and indicator kriging. 
This is closely followed by the set of exponential 
semivariogram and indicator kriging as well as spherical 
semivariogram and indicator kriging respectively. The least 
accurate combinations were circular semivariogram and 
ordinary kriging, as well as circular semivariogram and 
indicator kriging. 

 

 
 
Figure 10. Graph of Mean Standardized Prediction Error of the 

Kriged Precipitation Data 
 

 
 

Figure 11. Graph of Root-Mean-Mean-Square Error 
Standardized of the Kriged Precipitation data 

 

DISCUSSION 
 

Comparative Analysis of the Sets of Semivariogram-
Kriging Algorithms: The decision matrix in Table 4 
summarizes the performance of all 24 sets of semivariogram 
and kriging algorithms.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each type of semivariogram model, the performance 
rating, or order of preference of the various sets of 
semivariogram and interpolation algorithms, are rated from 1 
to 6, with 1 being the best or the most preferred and 6 being 
the worst or the least preferred. For instance if RMSES were 
used as the decision criterion, the best set of semivariogram 
and spatial interpolation algorithms is the circular 
semivariogram and indicator kriging and it is assigned a value 
of 1. The assigned values are added together and the aggregate 
is used to select the best set of semivariogram and 
interpolation algorithms. The set of semivariogram-kriging 
algorithms with the RMSE closest to ASE is considered as the 
best. The kriging – semivariogram combination which has the 
lowest difference between RMSE and ASE values and the 
lowest decision matrix aggregate value is considered the best. 
Thus, a plot of the relationship between RMSE and ASE 
should be close to 45 degrees if the set of algorithms are valid. 
Figure 12 depicts the relationship between RMSE and ASE 
values. The sets of indicator kriging and circular 
semivariogram and indicator kriging and Gaussian 
semivariograms could be considered the most accurate. The 
mean and mean standardized error values of the Gaussian 
semivariogram for the various kriging algorithms were quite 
unstable. Thus, the indicator kriging and circular 
semivariogram algorithms could be considered as the best set 
for characterizing and interpolating the precipitation data. 

 

 
 

Figure 12. RMSE – ASE Plot for Precipitation Data 

 
Multi-scale Spatial Analysis: The precipitation data for the 
wet and dry months were selected for further study. ArcGIS 
tools were used to draw a rectangle around the state (Figure 
13).  The centroid of the state was calculated to be -1000 27’ 
46.467”and 470 33’ 48.716”. The state was divided into 
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Table 3. Decision Matrix Summarizing the Sets of Semivariogram and Kriging Algorithms 
 

 Circular Variogram Spherical Variogram 

OK SK UK IK PK DK OK SK UK IK PK DK 
Mean 5 4 5 1 2 3 5 4 5 2 1 3 
RMSE 4 3 4 1 2 5 4 3 4 1 2 5 
ASE 3 4 3 1 2 5 3 4 3 1 2 5 
MSE 5 1 5 2 4 3 5 1 5 2 4 3 
RMSES 5 3 5 1 2 4 5 3 5 1 2 4 
Aggregate 22 15 22 6 12 20 22 15 22 7 11 20 
 Exponential Variogram Gaussian Variogram 

OK SK UK IK PK DK OK SK UK IK PK DK 
Mean 3 5 3 2 1 4 5 3 5 1 2 4 
RMSE 3 4 3 1 2 5 3 4 3 1 1 5 
ASE 3 5 3 1 2 4 3 4 3 1 2 5 
MSE 5 3 5 2 1 4 5 2 5 1 4 3 
RMSES 2 5 2 1 3 4 1 4 1 2 3 5 
Aggregate 16 22 16 7 9 21 17 17 17 6 12 22 
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quadrants represented by A, B, C and D (1/4th of North 
Dakota) and one of the four quadrants A was selected. The 
state was further divided into 16 quadrants (1/16th of North 
Dakota) and one of them A1 was selected. The centroid of 
quadrant A is -1020 17’ 12.088”and 480 11’ 51.577” and that 
of A1 is -1030 11’ 30.686”and 480 34’ 58.531”. The wet and 
dry data from the state (118 data points), 1/4th of the state, A 
(29 data points) and 1/16th of the state, A1 (8 data points) were 
subjected to indicator kriging (using the circular variogram). 
Further subdivision of into smaller quadrants resulted in grids 
with just one or two, or no rain gauges. The kriging results in 
the form of maps are shown in Figures 14 and 15.  
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Figure 13. Subdivision of North Dakota Precipitation into 
 Several Quadrants 

 
Figure14 presents the spatial distribution maps of the wet 
precipitation month for North Dakota (a); 1/4th of the state, A 
(b); and 1/16th of the state, A1 (c) of the average monthly 
precipitation for the reference period (1971-2000). The number 
of rain gauges n is n1 > n2 > n3 for the three conditions 
considered, respectively. The top row of the Figure presents 
the simulated wet monthly precipitation data for North Dakota 
(a), while the bottom row provide simulated results for the 
smaller areas for A (b) and A1 (c). Analysis of the wet monthly 
precipitation along the west-east shows low precipitation at the 
west and higher precipitation accumulations in the eastern area 
of North Dakota. A similar trend is observed for the other 
small areas of the state considered (Figure 14 (b) and (c). In 
the north-south direction, a different trend of spatial 
distribution is exhibited; particularly in the central area of the 
state (a) which has high precipitation accumulations. For the 
smaller areas (b) and (c), the north–south longitudinal 
gradients of the spatial distributions of precipitation seems to 
be uniform. The latitudinal gradients increase along the west-
east for all the three scales considered. For the dry month 
[Figure 15 (a), (b), and (c)] precipitation accumulations are 
from low to high along the west-east of the state. Along the 
north-south of the state, precipitation decreases from the 
maximum precipitation along the northern boundary to the 
south. This trend could be due the snow accumulation from the 
arctic and the large body of water in the northern part of the 
state. The analysis for the smaller areas (b) and (c) show a 

similar trend.  Thus both the wet and dry monthly precipitation 
have longitudinal and latitudinal accumulations are presented 
in Figure 3 and 4. Precipitation accumulation is affected by 
changes in slope in the direction, which is not the case for 
North Dakota which has almost a constant slope. The models 
were used to estimate precipitation on a regular grid for the 
wet and dry month (Figures 14(c) and 15(c)) and the spatial 
maps of precipitation produced were physically realistic. The 
indicator kriging and circular semivariogram produced 
observable patterns well and reveal a representation can be 
secured even for small grids.  
 

 
 

Figure 13. Wet Month Spatial Distribution of North Dakota 
precipitation 

 

Table 5 shows the cross-validation statistics and the spatial 
statistics (variogram properties) for the three scales. In the case 
of the wet month cross-validation statistics, the mean of the 
state of 3.172 (n = 118) reduced to 2.976 (n1 = 29) for 1/4th of 
the state and 2.762 (n2 = 8) for 1/16th of the state. The mean of 
the dry month cross-validation statistics for the same scale 
were 0.427, 0.456, and 0.448 respectively. The standard 
deviation and the skewness increased for the wet month data 
but they followed the same trend as the mean for the dry 
month data. It is apparent that the degree of variation between 
the wet and dry months is quite significant. The nugget effect 
of the wet month data changed from 0.118 for the state (n1 = 
118) to 0.06 for 1/4th of the state (n1 = 29) and 0.272 for 1/16th 
of the state (n2 = 8). The nugget effect for the same scale 
decreased from 0.185 to 0.06 and then increased to 0.272 
respectively.  
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The sill for the wet month increased from 0.198 to 0.253 and 
0.293 for the three scales. The sill for the dry month increased 
as well.   
 
Conclusion 

 
Forecasts from quantitative precipitation models are 
considered as the largest source of uncertainty in hydrologic 
models because of the complexity and spatial distribution of 
precipitation data (obtained from radar or sampling stations). 
Even though spatial statistics have been used to characterize 
and analyze precipitation data, there is a lack of knowledge of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
which kriging method and semivariogram to use. In this study 
six linear and nonlinear kriging techniques were paired with 
four semivariogram models to characterize and interpolate the 
precipitation data of North Dakota. The results were cross-
validated and a decision matrix was developed to summarize 
the statistics of all the 24 combinations of kriging and 
variogram algorithms. The models were rated in order of 
preference from 1 to 6; 1 being the best and 6 being the worst. 
Another criteria, the difference between the RMSE and ASE 
was used in conjunction with the performance rating to select 
the best combination of kriging and semivariogram techniques. 
Thus the kriging – semivariogram combination, which has the 

 
 

Figure 14. Dry Month Spatial Distribution of North Dakota Precipitation 
 

Table 4. Classical Statistics and Spatial Statistics from the Multi-scale Analysis 
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lowest difference between RMSE and ASE values and the 
lowest decision matrix aggregate value, was considered the 
best. The indicator kriging method coupled with the circular 
semivariogram was considered the best set of algorithms 
which could be employed to characterize this precipitation 
data. The set of indicator kriging and circular variogram 
algorithms were used to investigate the effects of scale and two 
extreme weather seasons – dry and wet months. The centroid 
of the state (with 118 data points) was calculated and used to 
divide it into 4 quarters. One of the quarters was randomly 
selected to represent 1/4th of the state (29 data points). The 
state was further divided into 16 quarters and one of the 16 
quarters was selected to represent 1/16th of the state (with 8 
data points). The cross-validation statistics and variogram 
properties were discussed. The wet month statistics exhibited a 
reduction in the mean and an increase in the standard deviation 
with scale. The sill increased for both the wet and dry months 
as the scale was reduced. There was considerable degree of 
variation between the wet and dry months. It is suggested that 
more work should be done to document the effects of scale / 
sample size and sample locations (gridded and ungridded) on 
the results of models. Research in computational processes to 
ensure the use of better algorithms should also be advanced. 
 
Acknowledgement: To all the authors  
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