

**ORIGINAL RESEARCH ARTICLE** 

Available online at http://www.journalijdr.com



International Journal of Development Research Vol. 09, Issue, 02, pp.25878-25886, February, 2019

#### **OPEN ACCESS**

# EXPERT OPTIMIZATION AND PREDICTION OF BEAD VOLUME OF MILD STEEL BUTT WELDED JOINT

# \*Odoemelam, C., Achebo J.I. and Etin-Osa E.C.

Department of Production Engineering, University of Benin, Benin City, Nigeria

#### **ARTICLE INFO** ABSTRACT Article History: The volume of weld bead deposit on a welded joint, has a lot to say about the integrity of the weldment during its service life.Residual stresses, cracks etc can be greatly initiated with large Received 19th November, 2018 weld bead. In this study, central composite design matrix was employed using Design Expert 7.01 Received in revised form 26<sup>th</sup> December, 2018 software. A total of 20 sets of experiments were produced, the weld specimen was mild steel plate Accepted 13th January, 2019 measuring 60mm x 40mm x 10mm. TIG welding machine with 100% Argon Shielding Gas was Published online 28th February, 2019 used for this experiment and at the end of the experiment, an optimum weld bead volume of 105.75 mm<sup>3</sup>/s was obtained with a coefficient of determination (R<sup>2</sup>) value of 0.9744 Key Words: usingresponse surface methodology (RSM) as the predictivemodeling tool. This quantity of bead volume is expected to contain the adequate molten metal that is required to make the desired bead Butt Welded Joints, Bead Volume, penetration at a minimum cost with appropriate weld quality and productivity.

Copyright © 2019, Odoemelam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Odoemelam, C., Achebo J.I. and Etin-Osa E.C. 2019. "Expert optimization and prediction of bead volume of mild steel butt welded joint", International Journal of Development Research, 09, (02), 25878-25886.

## **INTRODUCTION**

Mild steel, Shielding Gas.

Tungsten Inert Gas (TIG) welding technique is a metal joining process that uses an arc with a non-consumable tungsten electrode on a work piece to create a permanent joint (Hussain et al, 2010, Achebo, 2012). An inert gas (argon, helium or a mixture of both) sustains the arc and protects the molten metal from atmospheric contamination. Filler materials might sometimes be used (Balasubramanian et al. 2010, Aghakhani et al, 2011). Huang et al, (2007) and Farhad and Heidari, (2010), described the TIG welding process as one of the most popular technologies for welding thin materials in manufacturing industries because it produces high quality welds. However, these authors compared TIG welding with the metal inert gas (MIG) welding process and stick weld and came to a conclusion that TIG welding has poor joint penetration when thick materials are welded in a single pass. In a research carried out by Vasudevan, (2007) and Marya and Edward, (2004), were of the opinion that activated TIG welding process was observed to typically increase the penetration capability by 200-300% and thereby reducing weld time and costs for manufacturers. Leconte et al, (2006) also applied activated TIG welding process and noted that it

## \*Corresponding author: Odoemelam, C.,

Department of Production Engineering, University of Benin, Benin City, Nigeria

improves upon conventional GTAW, by increasing the single pass joining thickness from 6 to 10mm for stainless steel which was another breakthrough in time and cost reduction during weld operation, but ignoring the volume content of bead deposited might affect the quality of the welded joint. Venkatesan, (2014) and Esme et al, (2009) analyzed the sectional geometry of single-pass bead and the overlap of the adjacent beads to have critical effects on the dimensional accuracy and quality of metal parts. Therefore In order to find the parameter for optimization, weld bead profile study is needed

#### **MATERIALS AND METHODS**

Materials: 100 pieces of mild steel coupons, measuring 60mm x 40mm x10mm were used for the experiments, the experiment was performed 20 times using, 5 specimen for each run. Figure 1. Shows the weld torch, figure 2. Shows the tig machine, figure 3. Shows the argon gas cylinder and regulator for varying the gas flow rate while figure 4. Shows the mild steel weld sample. The range of values of the process parameters was obtained from the open literature accessed and each parameter has two levels which comprise the high and low as expressed in Table 1 below.



Table 1. Welding Parameters and Their Levels

| Parameters    | Unit    | Symbol | Coded value |           |  |  |  |
|---------------|---------|--------|-------------|-----------|--|--|--|
|               |         |        | Low (-1)    | High (+1) |  |  |  |
| Current       | Amp     | А      | 120         | 190       |  |  |  |
| Gas flow rate | Lit/min | G      | 10          | 17        |  |  |  |
| Voltage       | Volt    | V      | 20          | 27        |  |  |  |



Figure 1. TIG Welding Torch





Figure 3. Shielding Gas Cylinder and Regulator



Figure 4. Weld Samples

| File Edit View Display Op                                                                         | otions D           | esign To       | ools Help |                              |                               |                                      |
|---------------------------------------------------------------------------------------------------|--------------------|----------------|-----------|------------------------------|-------------------------------|--------------------------------------|
|                                                                                                   | 🥩 <mark>?</mark> 🕅 | <del>Q</del> * |           |                              |                               |                                      |
| Notes for WIDTH TO DEPTH                                                                          | Std                | Run            | Туре      | Factor 1<br>A:Current<br>Amp | Factor 2<br>B:Voltage<br>volt | Factor 3<br>C:Gas Flow Rate<br>L/min |
| Graph Columns                                                                                     | 15                 | 1              | Center    | 155.00                       | 23.50                         | 13.50                                |
|                                                                                                   | 16                 | 2              | Center    | 155.00                       | 23.50                         | 13.50                                |
| Analysis                                                                                          | 17                 | 3              | Center    | 155.00                       | 23.50                         | 13.50                                |
| - 1 Aspect Ratio (Analy<br>1 Volume of Weld Met<br>1 Electrode Heat Tran<br>1 Rate of Heat Transf | 18                 | 4              | Center    | 155.00                       | 23.50                         | 13.50                                |
|                                                                                                   | 19                 | 5              | Center    | 155.00                       | 23.50                         | 13.50                                |
|                                                                                                   | 20                 | 6              | Center    | 155.00                       | 23.50                         | 13.50                                |
|                                                                                                   | 9                  | 7              | Axial     | 129.77                       | 23.50                         | 13.50                                |
| Optimization                                                                                      | 10                 | 8              | Axial     | 180.23                       | 23.50                         | 13.50                                |
| Graphical                                                                                         | 11                 | 9              | Axial     | 155.00                       | 20.98                         | 13.50                                |
| Ŷil Point Prediction                                                                              | 12                 | °10            | Axial     | 155.00                       | 26.02                         | 13.50                                |
|                                                                                                   | 13                 | 11             | Axial     | 155.00                       | 23.50                         | 10.98                                |
|                                                                                                   | 14                 | 12             | Axial     | 155.00                       | 23.50                         | 16.02                                |
|                                                                                                   | 1                  | 13             | Fact      | 140.00                       | 22.00                         | 12.00                                |
|                                                                                                   | 2                  | 14             | Fact      | 170.00                       | 22.00                         | 12.00                                |
|                                                                                                   | 3                  | 15             | Fact      | 140.00                       | 25.00                         | 12.00                                |
|                                                                                                   | 4                  | 16             | Fact      | 170.00                       | 25.00                         | 12.00                                |
|                                                                                                   | 5                  | 17             | Fact      | 140.00                       | 22.00                         | 15.00                                |
|                                                                                                   | 6                  | 18             | Fact      | 170.00                       | 22.00                         | 15.00                                |
|                                                                                                   | 7                  | 19             | Fact      | 140.00                       | 25.00                         | 15.00                                |
|                                                                                                   | 8                  | 20             | Fact      | 170.00                       | 25.00                         | 15.00                                |

Figure 5. Central Composite Design Matrix (CCD)

**Methods:** The Central Composite Design matrix with 6 central points, 6 axial points and 8 factorial points was developed using the Design Expert 7.01 software, which produced 20 experimental runs.

The input parameters and output parameters made-up the experimental matrix and the responses recorded from the weld samples were used as the data.Table 4 shows the Central Composite Design matrix.

## **RESULTS AND DISCUSSION**

The optimization objective was to reduce the volume of weld metal deposit, the randomized design matrix comprising of three input variables (current, voltage and gas flow rate) and their ranges in real values is presented in Figure 5, the response variable of interest is circled in orange colour. presented in Figure 9. Leverage of a point varies from 0 to 1 and indicates how much an individual design point influences the model's predicted values. Leverages of 0.6698 and 0.6073 calculated for the factorial and axial points coupled with 0.1663 for the center point as observed in Table 9 shows that the predicted values are very close to the experimental values. Hence lower residual value which shows the adequacy of the model.

| File Edit View Display C        | Opti | ons [ | Design T   | ools Help |                              |                               |                                      |                                   |                                                      |                                                               |                                            |
|---------------------------------|------|-------|------------|-----------|------------------------------|-------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
|                                 | 8    | ?     | <b>Q</b> : |           |                              |                               |                                      |                                   |                                                      |                                                               |                                            |
| Notes for WIDTH TO DEPTH        |      | Std   | Run        | Туре      | Factor 1<br>A:Current<br>Amp | Factor 2<br>B:Voltage<br>volt | Factor 3<br>C:Gas Flow Rate<br>L/min | Response 1<br>Aspect Ratio<br>Nil | Response 2<br>Volume of Weld Metal Deposit<br>mm*3/s | Response 3<br>Electrode Heat Transfer Coefficient<br>W/m²2 0C | Response 4<br>Rate of Heat Transfer<br>J/S |
| Graph Columns                   |      | 15    | 1          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9511                            | 1255.38                                              | 259.78                                                        | 3264                                       |
|                                 |      | 16    | 2          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9513                            | 1255.42                                              | 259.77                                                        | 3266                                       |
| Analysis                        |      | 17    | 3          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9512                            | 1255.39                                              | 259.79                                                        | 3267                                       |
| 🕂 📙 Aspect Ratio (Analy         |      | 18    | 4          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9511                            | 1255.41                                              | 259.8                                                         | 3265                                       |
| - \downarrow Volume of Weld Met |      | 19    | 5          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9512                            | 1255.38                                              | 259.78                                                        | 3264                                       |
| – 上 Electrode Heat Tran         |      | 20    | 6          | Center    | 155.00                       | 23.50                         | 13.50                                | 0.9513                            | 1255.41                                              | 259.79                                                        | 3266                                       |
| L 📘 Rate of Heat Transf         |      | 9     | 7          | Axial     | 129.77                       | 23.50                         | 13.50                                | 0.5136                            | 1037.78                                              | 272.49                                                        | 2992                                       |
| Optimization                    |      | 10    | 8          | Axial     | 180.23                       | 23.50                         | 13.50                                | 0.6842                            | 1278.34                                              | 260.24                                                        | 3400                                       |
| -) Numerical                    |      | 11    | 9          | Axial     | 155.00                       | 20.98                         | 13.50                                | 0.6256                            | 1251.3                                               | 222.82                                                        | 2805                                       |
| 2 Point Prediction              |      | 12    | 10         | Axial     | 155.00                       | 26.02                         | 13.50                                | 0.8312                            | 1198.65                                              | 255.62                                                        | 3128                                       |
| _                               |      | 13    | 11         | Axial     | 155.00                       | 23.50                         | 10.98                                | 0.9752                            | 1125.94                                              | 248.23                                                        | 2932.5                                     |
|                                 |      | 14    | 12         | Axial     | 155.00                       | 23.50                         | 16.02                                | 0.7704                            | 1149.76                                              | 243.61                                                        | 3187.5                                     |
|                                 |      | 1     | 13         | Fact      | 140.00                       | 22.00                         | 12.00                                | 0.709                             | 1061.3                                               | 243.61                                                        | 2618                                       |
|                                 |      | 2     | -14        | Fact      | 170.00                       | 22.00                         | 12.00                                | 0.8485                            | 1200.99                                              | 266.71                                                        | 3323.5                                     |
|                                 |      | 3     | 15         | Fact      | 140.00                       | 25.00                         | 12.00                                | 0.8147                            | 1020.26                                              | 239.91                                                        | 2856                                       |
|                                 |      | 4     | 16         | Fact      | 170.00                       | 25.00                         | 12.00                                | 0.7204                            | 1317.83                                              | 248.23                                                        | 3612.5                                     |
|                                 |      | 5     | 17         | Fact      | 140.00                       | 22.00                         | 15.00                                | 0.602                             | 1176.44                                              | 215.89                                                        | 2967                                       |
|                                 |      | 6     | 18         | Fact      | 170.00                       | 22.00                         | 15.00                                | 0.7633                            | 1135.17                                              | 235.92                                                        | 3012                                       |
|                                 |      | 7     | 19         | Fact      | 140.00                       | 25.00                         | 15.00                                | 0.606                             | 1116.7                                               | 289.87                                                        | 2975                                       |
|                                 |      | 8     | 20         | Fact      | 170.00                       | 25.00                         | 15.00                                | 0.6378                            | 1234.9                                               | 273.61                                                        | 3368                                       |

Figure 6. Design Matrix showing the Real Values and the Experimental Values



Figure 7. RSM Design Summary for Optimizing Weld Parameters

Analysis of the model standard error was employed to assess the suitability of response surface methodology using the quadratic model to maximize the electrode heat transfer coefficient, minimize the aspect ratio, minimize the volume of weld metal deposit and also minimize the rate of heat transfer from the heat source to the work piece. The computed standard errors for the selected responses are presented in Figure 7. To understand the influence of the individual design points on the model's predicted value, the model leveages were computed as In assessing the strength of the quadratic model towards minimizing the volume of weld metal deposit one way analysis of variance (ANOVA) was done for each response variable and result is presented in Figure 10; From the result of Figure 10 the Model F-value of 42.24 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, AB, AC,  $A^2$ ,  $B^2$ ,  $C^2$  are significant model terms.

| File Edit View Display   | Options De     | sign Tools Help |        |                   |                |                |             |  |
|--------------------------|----------------|-----------------|--------|-------------------|----------------|----------------|-------------|--|
|                          |                |                 |        |                   |                |                |             |  |
| Notes for WIDTH TO DEPTH | f(x) Mod       | el Results      | Graphs |                   |                |                |             |  |
| - 🏥 Summary              |                |                 |        |                   |                |                |             |  |
| - 🔄 Graph Columns        |                |                 |        |                   |                |                |             |  |
| Evaluation               |                |                 |        |                   | Power at 5 % a | Ipha level for | effect of   |  |
| - 🗾 Analysis             | Ter            | m StdErr**      | VIF    | <b>Ri-Squared</b> | 0.5 Std. Dev.  | 1 Std. Dev.    | 2 Std. Dev. |  |
| Aspect Ratio (Analy      | A              | 0.27            | 1.00   | 0.0000            | 13.3 %         | 38.6 %         | 91.4 %      |  |
| Volume of Weld Met       | В              | 0.27            | 1.00   | 0.0000            | 13.3 %         | 38.6 %         | 91.4 %      |  |
| Rate of Heat Transf      | c              | 0.27            | 1.00   | 0.0000            | 13.3 %         | 38.6 %         | 91.4 %      |  |
| Optimization             | AE             | 0.35            | 1.00   | 0.0000            | 9.8 %          | 24.9 %         | 72.2 %      |  |
| -Mumerical               | AC             | 0.35            | 1.00   | 0.0000            | 9.8 %          | 24.9 %         | 72.2 %      |  |
| - 🎦 Graphical            | BC             | 0.35            | 1.00   | 0.0000            | 9.8 %          | 24.9 %         | 72.2 %      |  |
| └ Ŷi Point Prediction    | A              | 0.26            | 1.02   | 0.0179            | 40.4 %         | 92.7 %         | 99.9 %      |  |
|                          | B <sup>2</sup> | 0.26            | 1.02   | 0.0179            | 40.4 %         | 92.7 %         | 99.9 %      |  |
|                          | C <sup>2</sup> | 0.26            | 1.02   | 0.0179            | 40.4 %         | 92.7 %         | 99.9 %      |  |
|                          | **Basis        | Std. Dev. = 1.0 |        |                   |                |                |             |  |



| File Edit View Display C                     | ptions Design | Tools Help       |                |  |
|----------------------------------------------|---------------|------------------|----------------|--|
|                                              | a ? 😵         |                  |                |  |
| Notes for THERMAL COND                       | f(x) Model    | Results          | 🔀 Graphs       |  |
| 💼 Summary<br>🔄 Graph Columns<br>🕅 Evaluation | Measures [    | )erived From the | (X'X)-1 Matrix |  |
| Analysis                                     | Std           | Leverage         | Point Type     |  |
| Heat Input (Analyze                          | 1             | 0.6698           | Fact           |  |
| Inermal Conductivity                         | 2             | 0.6698           | Fact           |  |
| Colouing Time (Analy                         | 3             | 0.6698           | Fact           |  |
|                                              | 4             | 0.6698           | Fact           |  |
| Numerical                                    | 5             | 0.6698           | Fact           |  |
| 🕅 Graphical                                  | 6             | 0.6698           | Fact           |  |
| Point Prediction                             | 7             | 0.6698           | Fact           |  |
|                                              | 8             | 0.6698           | Fact           |  |
|                                              | 9             | 0.6073           | Axial          |  |
|                                              | 10            | 0.6073           | Axial          |  |
|                                              | 11            | 0.6073           | Axial          |  |
|                                              | 12            | 0.6073           | Axial          |  |
|                                              | 13            | 0.6073           | Axial          |  |
|                                              | 14            | 0.6073           | Axial          |  |
|                                              | 15            | 0.1663           | Center         |  |
|                                              | 16            | 0.1663           | Center         |  |
|                                              | 17            | 0.1663           | Center         |  |
|                                              | 18            | 0.1663           | Center         |  |
|                                              | 19            | 0.1663           | Center         |  |
|                                              | 20            | 0.1663           | Center         |  |



| File Edit View Display O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ptions Design To                                                                                                                                            | ols Help                 |                   |                                     |                |            |             |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-------------------------------------|----------------|------------|-------------|--|--|--|--|--|
| Notes for WIDTH TO DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y <sup>A</sup> Transform                                                                                                                                    | Fit Summary              | f(x) Model        | ANOVA                               | Diagnos        | tics Model | Graphs      |  |  |  |  |  |
| - Summary<br>- Compared Columns<br>- Col | USE your mouse to right click on individual cells for definitions.<br>Response 2 Volume of Weld Metal Deposit<br>ANOVA for Response Surface Quadratic Model |                          |                   |                                     |                |            |             |  |  |  |  |  |
| - J Aspect Ratio (Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis of vari                                                                                                                                            | ance table [Pa<br>Sum of | artial sum of squ | uares - Type III]<br>Mean F p-value |                |            |             |  |  |  |  |  |
| Rate of Heat Transf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source                                                                                                                                                      | Squares                  | df                | Square                              | Value<br>42.24 | Prob > F   | ningificant |  |  |  |  |  |
| Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A-Current                                                                                                                                                   | 61809.53                 | 1                 | 61809.53                            | 174.07         | < 0.0001   | Sighinicani |  |  |  |  |  |
| Graphical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B-Voltage                                                                                                                                                   | 54.35                    | 1                 | 54.35                               | 0.15           | 0.7038     |             |  |  |  |  |  |
| Point Prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-Gas Flow Rat                                                                                                                                              | 775.17                   | 1                 | 775.17                              | 2.18           | 0,1703     |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AB                                                                                                                                                          | 12588.88                 | 1                 | 12588.88                            | 35.45          | 0.0001     |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC                                                                                                                                                          | 16229.71                 | 1                 | 16229.71                            | 45.71          | < 0.0001   |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC                                                                                                                                                          | 160.29                   | 1                 | 160.29                              | 0.45           | 0.5169     |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sup>2</sup>                                                                                                                                              | 19385.41                 | 1                 | 19385.41                            | 54.59          | < 0.0001   |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B <sup>2</sup>                                                                                                                                              | 2442.38                  | 1                 | 2442.38                             | 6.88           | 0.0255     |             |  |  |  |  |  |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sup>2</sup>                                                                                                                                              | 27674.55                 | 1                 | 27674.55                            | 77.94          | < 0.0001   |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual                                                                                                                                                    | 3550.79                  | 10                | 355.08                              |                |            |             |  |  |  |  |  |

| File     Edit     View     Display O       D     D     J     J | ptions Design T<br>Design T     | Fools Help       |            |               |                  |              |
|----------------------------------------------------------------|---------------------------------|------------------|------------|---------------|------------------|--------------|
| Notes for WIDTH TO DEPTI<br>-  Design (Actual)                 | y <sup>X</sup> Transform        | Fit Summary      | f(x) Model | ANOVA         | Diagnostics      | Model Graphs |
| - Graph Columns                                                | Std. Dev. 18.84<br>Mean 1191.89 |                  | R          | I-Squared     | 0.9744           |              |
| - L Aspect Ratio (Analy                                        | C.V. %<br>PRESS                 | 1.58<br>26956.99 | P          | red R-Squared | 0.8054<br>22.813 |              |

Figure 11. GOF Statistics for Validating Model Significance towards Minimizing the Volume of Weld Metal Deposit

| File Edit View Display O         | ptions Design To         | ols Help    |            |          |             |               |      |
|----------------------------------|--------------------------|-------------|------------|----------|-------------|---------------|------|
| Notes for WIDTH TO DEPTH         | y <sup>λ</sup> Transform | Fit Summary | f(x) Model |          | Diagnostics | s Model Grapi | ns   |
| - 🖬 Summary<br>- 🔄 Graph Columns |                          | Coefficient | Į_         | Standard | 95% CI      | 95% CI        |      |
| - 🗐 Analysis                     | Factor                   | Estimate    | df         | Error    | Low         | High          | VIF  |
| Aspect Ratio (Analy              | Intercept                | 1255.74     | 1          | 7.69     | 1238.62     | 1272.87       |      |
| Volume of Weld N                 | A-Current                | 67.27       | 1          | 5.10     | 55.91       | 78.64         | 1.00 |
| Rate of Heat Transf              | B-Voltage                | 1.99        | 1          | 5.10     | -9.37       | 13.36         | 1.00 |
| Optimization                     | C-Gas Flow Rat           | 7.53        | 1          | 5.10     | -3.83       | 18.90         | 1.00 |
| Numerical                        | AB                       | 39.67       | 1          | 6.66     | 24.82       | 54.51         | 1.00 |
| - D Graphical                    | AC                       | -45.04      | 1          | 6.66     | -59.89      | -30.20        | 1.00 |
|                                  | BC                       | -4.48       | 1          | 6.66     | -19.32      | 10.37         | 1.00 |
|                                  | A <sup>2</sup>           | -36.68      | 1          | 4.96     | -47.74      | -25.62        | 1.02 |
|                                  | B <sup>2</sup>           | -13.02      | 1          | 4.96     | -24.08      | -1.96         | 1.02 |
|                                  | C <sup>2</sup>           | -43.82      | 1          | 4.96     | -54.88      | -32.76        | 1.02 |

Figure 12. Coefficient Estimates Statistics for Minimizing the Weld Bead Volume

| File Edit View Display Optic               | ons Design Tools Help                                                          |
|--------------------------------------------|--------------------------------------------------------------------------------|
|                                            | 2 發                                                                            |
| Notes for WIDTH TO DEPTH R/                | y <sup>A</sup> Transform Fit Summary f(X) Model ANOVA Diagnostics Model Graphs |
| Graph Columns                              | Final Equation in Terms of Actual Factors:                                     |
| - 🗾 Analysis<br>- 📗 Aspect Ratio (Analyzec | Volume of Weld Metal Deposit =<br>-8597.59367                                  |
| - Volume of weid Meta                      | +40.60979 * Current<br>+26.85213 * Votage                                      |
| Optimization                               | +887.91872 * Gas Flow Rate                                                     |
| -Mumerical                                 | +1.76306 * Current * Voltage                                                   |
| - 🎦 Graphical                              | -2.00183 * Current * Gas Flow Rate                                             |
| - X Point Prediction                       | -1.98944 * Voltage * Gas Flow Rate                                             |
|                                            | -0.16301 * Current <sup>2</sup>                                                |
| -                                          | -5.78592 * Voltage <sup>2</sup>                                                |
| -                                          | -19.47629 * Gas Flow Rate <sup>2</sup>                                         |

Figure 13. Optimal Equation in terms of Actual Factors for Minimizing the Weld Bead Volume

Values greater than 0.1000 indicate the model terms are not significant. To validate the adequacy of the model based on its ability optimize the volume of weld metal deposit. the goodness of fit statistics presented in Figure 11 were employed; Coefficient of determination (R-Squared) value of 0.9744 was obtained whichshows the strength of response surface methodology and its ability to minimize the volume of weld metal deposit. Adjusted (R-Squared) value of 0.9513 was also observed in figure 11 which indicates a model with 95.13% reliability.

Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. To obtain the optimal solution, we first consider the coefficient statistics and the corresponding standard errors. The computed standard error measures the difference between the experimental terms and the corresponding predicted terms. Coefficient statistics for bead volume is presented in Figure 12. The optimal equation which shows the individual effects and combine interactions of the selected input variables (Current, Voltage and Gas flow rate) against the mesured responses (Volume of weld metal deposit), is presented based the actual factors as shown in Figure 13. The diagnostics case statistics which shows the observed values of each respones variable (Volume of weld metal deposit,) against their predicted values is presented in Figure 14.

To asses the accuracy of prediction and established the suitability of response surface methodology using the quadratic model, a reliability plot of the observed and predicted values of bead volume is presented in Figures 15.

| У | A Transform | Fit Summary     | f(x) Model     |           | A 🚺 Diag | nostics 🔀 Mod | el Graphs   |              |          |       |
|---|-------------|-----------------|----------------|-----------|----------|---------------|-------------|--------------|----------|-------|
|   |             |                 |                |           |          |               |             |              |          |       |
|   | Response    | 2               | Volume of We T | ransform: | None     |               |             |              |          |       |
|   |             |                 |                |           |          |               |             |              |          |       |
|   | Diagno      | ostics Case Sta | tistics        |           |          |               |             |              |          |       |
|   |             |                 |                |           |          | Internally    | Externally  | Influence on |          |       |
|   | Standard    | Actual          | Predicted      |           |          | Studentized   | Studentized | Fitted Value | Cook's   | Run   |
|   | Order       | Value           | Value          | Residual  | Leverage | Residual      | Residual    | DFFITS       | Distance | Order |
|   | 1           | 1061.30         | 1075.58        | -14.28    | 0.670    | -1.318        | -1.376      | -1.960       | 0.352    | 13    |
|   | 2           | 1200.99         | 1220.87        | -19.88    | 0.670    | -1.836        | -2.139      | * -3.05      | 0.684    | 14    |
|   | 3           | 1020.26         | 1009.18        | 11.08     | 0.670    | 1.023         | 1.026       | 1.461        | 0.212    | 15    |
|   | 4           | 1317.83         | 1313.15        | 4.68      | 0.670    | 0.432         | 0.414       | 0.589        | 0.038    | 16    |
|   | 5           | 1176.44         | 1189.68        | -13.24    | 0.670    | -1.223        | -1.258      | -1.791       | 0.303    | 17    |
|   | 6           | 1135.17         | 1154.81        | -19.64    | 0.670    | -1.814        | -2.100      | * -2.99      | 0.667    | 18    |
|   | 7           | 1116.70         | 1105.38        | 11.32     | 0.670    | 1.046         | 1.051       | 1.497        | 0.222    | 19    |
|   | 8           | 1234.90         | 1229.18        | 5.72      | 0.670    | 0.528         | 0.508       | 0.723        | 0.057    | 20    |
|   | 9           | 1037.78         | 1038.87        | -1.09     | 0.607    | -0.092        | -0.087      | -0.109       | 0.001    | 7     |
|   | 10          | 1278.34         | 1265.15        | 13.19     | 0.607    | 1.117         | 1.133       | 1.409        | 0.193    | 8     |
|   | 11          | 1251.30         | 1215.57        | 35.73     | 0.607    | * 3.026       | ** 9.88     | * 12.29      | * 1.42   | 9     |
|   | 12          | 1198.65         | 1222.28        | -23.63    | 0.607    | -2.001        | -2.451      | * -3.05      | 0.619    | 10    |
|   | 13          | 1125.94         | 1119.13        | 6.81      | 0.607    | 0.577         | 0.557       | 0.692        | 0.051    | 11    |
|   | 14          | 1149.76         | 1144.47        | 5.29      | 0.607    | 0.448         | 0.429       | 0.534        | 0.031    | 12    |
|   | 15          | 1255.38         | 1255.74        | -0.36     | 0.166    | -0.021        | -0.020      | -0.009       | 0.000    | 1     |
|   | 16          | 1255.42         | 1255.74        | -0.32     | 0.166    | -0.019        | -0.018      | -0.008       | 0.000    | 2     |
|   | 17          | 1255.39         | 1255.74        | -0.35     | 0.166    | -0.021        | -0.020      | -0.009       | 0.000    | 3     |
|   | 18          | 1255.41         | 1255.74        | -0.33     | 0.166    | -0.019        | -0.018      | -0.008       | 0.000    | 4     |
|   | 19          | 1255.38         | 1255.74        | -0.36     | 0.166    | -0.021        | -0.020      | -0.009       | 0.000    | 5     |
|   | 20          | 1255.41         | 1255.74        | -0.33     | 0.166    | -0.019        | -0.018      | -0.008       | 0.000    | 6     |

Figure 14. Diagnostics Case Statistics Report of Observed and Predicted Volume of Weld Metal Deposit







Figure 16. Normal Probability Plot of Studentized Residuals for minimizing Weld Bead Volume

To study the effects of combine variables on each response (Volume of weld metal deposit, 3D surface plots presented in Figure 17. Finally, numerical optimization was performed to ascertain the desirability of the overall model. In the numerical optimization phase, we ask Design Expert to minimize the weld bead, also determining the optimum value of current, voltage and gas flow rate. The interphase of the numerical optimization is presented as shown in Figure 18. The numerical optimization produces about twenty two (22) optimal solutions which are presented as shown in Figure 19. From the results of figure 20 it was observed that a current of 140.00 Amp, voltage of 25.00 volt and a gas flow rate of 15.00 L/min will produce a weld material with volume of weld metal deposit (1105.57mm<sup>3</sup>/s. This solution was selected by Design Expert as the optimal solution with a desirability value of 96.70%.



Figure 17. Effect of Current and Voltage on Volume of Weld Metal Deposit

| File Edit View Display Opti | ons Design Tools I                                                                                                                | Help                                                                                                                                                  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | ? 😵                                                                                                                               |                                                                                                                                                       |
| Notes for WIDTH TO DEPTH RJ | Current<br>Voltage<br>Gas Flow Rate<br>Aspect Ratio<br>Voltime of Kield Metal<br>Electrode Heat Transfer<br>Rate of Heat Transfer | Solutions Graphs<br>Volume of Weld Metal<br>Deposit<br>Goal minimize  Lower Upper<br>Limits: 1020.26 1317.63<br>Weights: 1 0.1<br>Importance: +++++ ▼ |
|                             | 1020.26<br>Vol                                                                                                                    | 1317.83<br>ume of Weld Metal Deposit                                                                                                                  |

Figure 18. Interphase of Numerical Optimization Model for Optimizing the Weld Bead Volume

|                             | 11          |             |                       |              |              |                |               |                 |                |          |               |
|-----------------------------|-------------|-------------|-----------------------|--------------|--------------|----------------|---------------|-----------------|----------------|----------|---------------|
| Notes for WEITH TO DEPTH R/ | A Criteria  | / Solutions | Graphs                |              |              |                |               |                 |                |          |               |
| Summary                     | Calutore 10 | Lalai       | 6 6 6 1 7             | la la        | las las la   | alalal         | as Las La     | 1 40 1 40       | an   at   at   | Las Las  | <br>ar.   ar. |
| -L Graph Columna            |             |             |                       |              | 2002 201 3   |                | 10 10 1       | 1.0 1.0         |                | 1-2 -4   | <br>          |
| - Strakation                |             |             |                       |              |              |                |               |                 |                |          |               |
| - 📶 Analysis                | -           |             |                       |              |              |                |               |                 |                |          |               |
| Aspect Ratio (Analyzec      | Solutions   | 10000007    | And the second second |              |              |                |               |                 | Territoria and |          |               |
| Volume of Weid Metal D      | Rumber      | Current     | Voltage               | as Flow Rate | Aspect Ratio | Volume of Welt | sectrode Heat | tate of Heat Tr | Desirability   | 200000   |               |
| - Electrode Heat Transfer   | - 1         | 540.00      | 25.00                 | 15.00        | 0.848234     | 1105.57        | 287.712       | 3078.76         | 0.967          | Selected |               |
| - ) Hate of heat inanster ( | - 2         | 140.00      | 24.98                 | 15.00        | 0.847235     | 1106.18        | 267 533       | 3080.22         | 0.967          |          |               |
| P sumerical                 | - 3         | 140.00      | 25.00                 | 14.95        | 0.849695     | 1106.35        | 267.465       | 30/8.28         | 0.967          |          |               |
| Graphical                   | - :         | 140.20      | 25.00                 | 15.00        | 0.650899     | 1107.83        | 287.486       | 3080.87         | 0.967          |          |               |
| Ront Prediction             |             | 140.27      | 24.93                 | 15.00        | 0.855428     | 1110.72        | 286.631       | 3087.94         | 0.965          |          |               |
|                             | - 6         | 140.00      | 24.69                 | 15.00        | 0.00005      | 1119.04        | 283.317       | 3108.2          | 0.961          |          |               |
|                             | - /         | 140.00      | 22.02                 | 12.00        | 0.686936     | 1075,49        | 245.766       | 2665.85         | 0.960          |          |               |
| Salutions Tool IP           | -           | 140.09      | 22.00                 | 12.00        | 0.685689     | 1076.46        | 245.61        | 2663.97         | 0.960          |          |               |
|                             | - 9         | 140.61      | 22.00                 | 12.00        | 0.69656      | 1081.5         | 245.806       | 2674.55         | 0.958          |          |               |
| Report                      | 10          | 140.00      | 22.05                 | 12.14        | 0.69105      | 1008.62        | 245,756       | 2700.36         | 0.957          |          |               |
| Bar Granh                   |             | 140.00      | 25.00                 | 13.97        | 0.735101     | 1111.88        | 277.541       | 3047.29         | 0.957          |          |               |
|                             | 12          | 140.00      | 22.00                 | 12.62        | 0,675262     | 1128.24        | 243.308       | 2778.16         | 0.958          |          |               |
|                             | 13          | 140.00      | 22.96                 | 12.00        | 0.800421     | 1065.61        | 251.745       | 2797.41         | 0.958          |          |               |
|                             | 14          | 140.00      | 24.87                 | 12.28        | 0.829145     | 1037.77        | 252.285       | 2870.02         | 0.946          |          |               |
|                             | 15          | 140.00      | 23.57                 | 15.00        | 0.680392     | 1158.68        | 262,413       | 3144.42         | 0.944          |          |               |
|                             | 16          | 140.09      | 22.83                 | 12.93        | 0.769164     | 1139.55        | 252,971       | 2941.24         | 0.942          |          |               |
|                             | 17          | 155.33      | 25.00                 | 15.00        | 0.783775     | 1205.28        | 276.104       | 3210.37         | 0.929          |          |               |
|                             | 18          | 170.00      | 22.00                 | 12.00        | 0.814533     | 1220.89        | 267 389       | 3197.1          | 0.918          |          |               |
| -                           | 19          | 170.00      | 22.53                 | 15.00        | 0.786791     | 1175.7         | 239.84        | 3137.96         | 0.916          |          |               |
|                             | 20          | 169.99      | 22.70                 | 15.00        | 0.792532     | 1181.54        | 243.063       | 3165.91         | 0:916          |          |               |
|                             | 21          | 170.00      | 22.94                 | 15.00        | 0.797182     | 1189.23        | 247.349       | 3201.33         | 0.916          |          |               |
|                             | 22          | 170.00      | 23.66                 | 15.00        | 0.78684      | 1208.84        | 258.336       | 3279.06         | 0.915          |          |               |

Figure 19. Optimal Solutions of Numerical Optimization



Figure 20. Predicting the Weld Bead Volume using Contour Plot

The contour plots showing weld bead volume response variable against the optimized value of the input variable is presented in Figure 20.

will produce a welded material having a bead volume 1105.57mm<sup>3</sup> at a desirability value of 96.7%.

#### Conclusion

In this study, the response surface methodology was used to optimize the weld bead volume of tungsten inert gas mild steel welds. To validate the adequacy of the model based on its ability to optimize the weld bead volume, the goodness of fit statistics presented in Figure 11 was employed.Coefficient of determination ( $\mathbb{R}^2$ ) values of 0.9744 as observed in Figure 11 for weld bead volume indicated the adequacy of the models. To asses the accuracy of the prediction and established the suitability of response surface methodology using the quadratic model, a reliability plot of the observed and predicted values of each response was obtained as presented in Figures 18 shows the relationship between the input variables (voltage, current and gas flow rate) and the response variable (weld beadvolume).

Similarly, based on the optimal solution the expert system generated contour plots as observed in figures 21 showing several predicted responses and their respective input variables, all within the boundaries of experimental design. The quality of a weld is determined by the quality of the weld bead geometry and rate of heat transfer. The bead volume isa very important factor toconsider in assessing the quality of weldment. Weld bead geometry is described by the bead width, bead depth and bead volume. This study has shown that current has very strong influence on the on bead volume and rate of heat transfer. The models developed possess a variance inflation factor of 1.0 and P- values < 0.05 indicating that the models are significant, the models also possessed a high goodness of fit with R<sup>2</sup> (Coefficient of determination) values of 94% for aspect ratio, 97% for bead volume. Adequate precision value of 22.813 was observed for the Bead volume. The model produced numerical optimal solution of Current 140.0Amp, Voltage of 25Volt and a Gas flow rate of 15L/min

#### REFERENCES

- Achebo, J. I. 2012. 317 324Complex Behavior of Forces Influencing Molten Weld Metal Flow based on Static Force Balance Theory International Conference on Solid State Devices and Materials Science
- Aghakhani, M., Mehrdad, E. and Hayati, E. "Parametric Optimization of Gas Metal Arc Welding Process by Taguchi Method on Weld Dilution, 2011
- Ahmed K.Hussain, Abdul Lateef, MohdJaved, PrameshT., 2010. "Influence of welding speed on tensile strength of welded joint in TIG welding process", *Int Journal of Applied Engg Research*, Vol.1 No.3.
- Balasubramanian M., Jayabalan V., Balasubramanian V., Effect of process parameters of pulsed current tungsten inert gas welding on weld pool geometry of titanium welds, ACTA metallurgical sinica, August 2010.
- Esme, U.; Bayramoglu, M.; Kazancoglu, Y.; and Ozgun S. 2009.Optimization of weld bead geometry in TIG welding process using greyrelation analysis and Taguchi method. Materials and Technology, 43(3),143-149.
- FarhadKolahan and Mehdi Heidari, 2010. "A new approach for predicting and optimizing weld bead geometry in GMAW", *International Journal of Mechanical Systems Science and Engineering*, Vol. 2, pp.138 – 142.
- Huang Yong, Fan Ding, Fan Qinghua. 2007. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy: Higher Education Press and Springer-Verlag. DOI 10.1007/ s11465-007-0076-9
- Leconte, S &Paillard, Philippe &Chapelle, Pierre &Henrion, Gérard &Saindrenan, J. 2006. Effect of oxide fluxes on activation mechanisms of tungsten inert gas process. *Science and Technology of Welding & Joining*. 11. 389-397. 10.1179/174329306X129544.

- Marya, M.; Edward, G.R.; and Liu, S. 2004. An investigation on the effects of gases in GTA welding of a Wrought AZ80 magnesium alloy. *Welding Journal*, 83(7), 2035-212s.
- Vasudevan, M. 2007 'Computational and experimental studies on arc welded austenitic stainless steels', PhD thesis, Indian Institute of Technology, Chennai, India.
- Venkatesan M. V. and Murugan N. 2014. Role of FCA Welding Process Parameters on Bead Profile, Angular and Bowing Distortion of Ferritic Stainless Steel Sheets. *Journal of Engineering Science and Technology* Vol. 9,107 – 122

\*\*\*\*\*\*