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ARTICLE INFO  ABSTRACT 
 
 

In this paper, we derive a common fixed point theorem for two pairs of occasionally weakly 
compatible mappings as an extension of fixed point theorem of a pair occasionally weakly 
compatible mapping established by Jungek and Rhoades. 
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INTRODUCTION 
 

Fuzzy set as a generalization of classical set was defined by L. 
A. Zadeh [7] in 1965 AD. Kramosil and Michalek [6] 
introduced concept of fuzzy metric space. Later, George and 
Veeramani [2] modified the notion of fuzzy metric space with 
help of continuous t-norms. Several researchers have derived 
fixed point theorems for fuzzy mappings on complete metric 
spaces. G. Jungek and B. E. Rhoades [4] defined compatibility 
and weakly compatibility of mappings. The concept of 
occasionally weakly compatible mapping was introduced by 
M. Al Thagafi and Naseer Shahzad [1] and then G. Jungek and 
B. E. Rhoades [4] proved a fixed point theorem for a pair of 
occasionally weakly compatible mappings. In this paper, we 
present a common fixed point theorem for two pairs of 
occasionally weakly compatible fuzzy mappings.  
 
Definition 1.1[2] 
 
A binary operation: [0,1] × [0,1]→[0,1] is called a continuous 
t-norm if ∗ satisfies following conditions: 
 

(i)   ∗ is commutative and associative; 
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(ii)  ∗ is continuous; 
(iii) a∗1 = a for all ∈ [0,1]; 
(iv)  a∗b ≤ c∗d whenever a ≤ cand b ≤ d for a, b, c, d

[0,1]. 
 

Definition 1.2[2] 
 
A triplet (X, M, ∗) is said to be a fuzzy metric space if  X is an 
arbitrary nonempty set, ∗ is a continuous t-norm and M is a 
fuzzy set on X2×[0,∞) satisfying the following conditions, for 
all x, y, zX,  

 
(1) M (x, y, 0) = 0 and M (x, y, t ) > 0 for all t> 0; 
(2)  M(x, y, t) = 1 if and only if x = y for all t> 0; 
(3)  M(x, y, t) = M(y, x, t)≠ 0 for all t> 0; 
(4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t +s) for s, t > 0; 
(5) M (x, y, .) : [0,∞) →[0,1] is left continuous and, 
(6) lim�⟶∞ �(�, �, �) = 1for� > 0. 
 
Then, M is called a fuzzy metric on X. Here, M(x, y, t) denotes 
the degree of nearness between x and y with respect to t. 
 
Definition 1.3[2] 
 
Let (X, M,∗) be a fuzzy metric space. Then,  
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a) sequence {xn} in X is said to converges to x in X if for 

eachε>0 and each t>0, there exists noN such that M(xn,x,t)>1-
ε for all n≥no (�. �.		�� lim�→� �(��, �, �) = 1	��� � > 0). 

(b) a sequence {xn} in X is said to be Cauchy if for each ε>0 and 

each t>0, there exists noN such that M(xn,xm,t)>1–ε for all 

n,m≥no .��. �.		�� lim�→∞ ������, �, �� = 1	��� � > 0, ���� > 0�. 

(c)  A fuzzy metric space in which every Cauchy sequence is 
convergent is said to be complete fuzzy metric space. 

 
Definition 1.4[5] 
 

(a) For any nonempty set X, a fuzzy set �� is definedas set of 
ordered pairs (�, �(x)),where� ∶ � → [0,1]is called 
membership function and the collection of all fuzzy sets on X 
is denoted byℱ(�).  

(b) A mapping F from X to ℱ(�) is called a fuzzy mapping  if for 
each xX, F(x) (sometimes denoted by Fx) is a fuzzy set on 
Y and Fx(y) denotes the degree of membership of y in Fx 

 
Definition 1.5[3] 
 
 Let X be a nonempty set and f,g selfmaps of X. A point x 
in X is called a coincidence point of f and giff fx=gx. We shall 
call w=fx=gx a point of coincidence of f and g. 
 
1. Compatibility 
 
Definition 2.1[3] 
 

(a) Two self maps f and g of a fuzzy metric space (X, M, ∗) are 
called compatible if limn→∞  M(fgxn,gfxn,t)=1 whenever {xn} 
is a sequence in X such that limn→∞ fxn = limn→∞ gxn = x for 
some x in X. 

(b) Two self mapsf and g is called weakly compatible pair if they 
commute at coincidence points. 

(c) Two self maps f and g of set X are occasionally weakly 
compatible (owc) iff there is a point x in X which is a 
coincidence point of f and g at which f and g commute. 

 
A. Al-Thagafi and NaseerShahzad [1] have shown that weakly 
compatible is occasionally weakly compatible but converse is 
not true. 
 
Example 2.2[1] 
 

Let ℝ be the usual metric space.  
 

Define �, �: ℝ→ℝ by Fx = 2x andGx = x2 for all xℝ. Then, 
Fx = Gx for x = 0, 2 but FG0 = GF0 and FG2 ≠GF2. Maps F 
and G are occasionally weakly compatible self maps but not 
weakly compatible. 
 
Lemma 2.3[1] 
 
Let X be a nonempty set and f, g owc self maps of X. If f and g 
have a unique point of coincidence, w = fx = gx then w is the 
unique common fixed point of f and g. 
Now we deriveour common fixed point theorem for two pairs 
of occasionally weakly compatible (owc) mappings in fuzzy 
metric spaces. 
 
2. Main Theorem   
 
Let (X, M, ∗) be a complete fuzzy metric space and let A, B, S 
and T be self-mapings of X. Let the pairs {A,S} and {B,T} be 
owc. If there exists q (0, 1) such that 
 

M(Ax, By, qt) ≥ min{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), 
 
M(Ax, Ty, t), M(By, Sx, t)}        …………....(1) 
 
for all x,yX and for all t >0, then there exists a unique point 
wX such that Aw=Sw=w and a unique point zX such that 
Bz=Tz=z. Moreover, z=w, so that there is a unique common 
fixed point of A, B, S and T. 
 
Proof 
Let the pairs {A,S} and {B,T } be owc, so there are points  
 
x,yX such that Ax=Sx and By=Ty. We claim that Ax=By. 
 
If not, by inequality (1), 
 
M(Ax, By, qt) ≥ min {M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), 
 
M(Ax, Ty, t), M(By, Sx, t)} = min {M(Ax, By, t), M(Ax, Ax, t), 
M(By, By, t), 
 
M(Ax, By, t), M(By, Ax, t)} = M(Ax, By, t). 
 
Therefore Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there 
isanother point z such that Az = Sz then by (1), we have 
Az = Sz = By = Ty, so Ax = Az and w = Ax = Sx is the unique 
point of coincidence of A and S. By Lemma (2.3), w is the only 
common fixed point of A and S. Similarly there is a unique 
point    zX such that z = Bz= Tz. 
 

Assume that w ≠ z. We have  
 

M(w,z,qt) = M(Aw,Bz,qt) 
 
≥min {M(Sw,Tz,t), M(Sw,Aw,t), M(Bz,Tz,t), M(Aw,Tz,t), 
M(Bz,Sw,t)} 
= min {M(w,z,t), M(w,w,t), M(z,z,t), M(w,z,t), M(z,w,t)} 
= M(w,z,t).  
 

Therefore, we have z = w by Lemma (2.3). Hence, z = w is a 
unique common fixed point of A, B, S and T. 
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