
ISSN: 2230-9926

# CASE REPORT

Available online at http://www.journalijdr.com



International Journal of Development Research Vol. 09, Issue, 03, pp.26355-26368, March, 2019



# **OPEN ACCESS**

# PHYSICO-CHEMICAL BEHAVIOUR OF SHIVNATH RIVER AT MADKU DWEEP DISTRICT MUNGELI (C.G.)

# \*1Sarita Chandrawanshi, <sup>2</sup>Singh R.K. and <sup>3</sup>Sahu, K.R.

<sup>1</sup>Ph.D Research Scholar Department of Zoology Dr. C. V. Raman University Kargi Road Kota Bilaspur (C.G.)-495113

<sup>2</sup>Head, Department of Zoology, Dr. C. V. Raman University Kargi Road Kota Bilaspur (C.G.)-495113 <sup>3</sup>Professor of Zoology, Govt. E.R.R.P.G. Science College Bilaspur (C.G.)-495001

# ARTICLE INFO

#### Article History:

Received 10<sup>th</sup> December, 2018 Received in revised form 21<sup>st</sup> January, 2019 Accepted 16<sup>th</sup> February, 2019 Published online 31<sup>st</sup> March, 2019

#### Key Words:

Water sample physico-chemical analysis, pH, temperature, TDS, turbidity, BOD, COD, DO, Conductivity, Mg, Ca, Ir, Chloride, Alkalinity, total Alkalinity (water quality), Shivnath River.

# ABSTRACT

H<sub>2</sub>O is one of the most important natural resources in earth. The objective of present research paper to provide Information on the Physico-Chemical behaviour of Shivnath River at MadkuDweep dist. Mungeli (C.G.). During study seasonal variations of water sample directly Influence the abiotic and biotic factors of such particular area. Under study the Physico-chemical parameter are pH, Temperature , Conductivity, TDS, Turbidity , Chloride , Iron, Silica, BOD, COD, DO, Total hardness, Calcium hardness, Magnesium hardness, Alkalinity, Total Alkalinity.

Copyright © 2019, Sarita Chandrawanshi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Sarita Chandrawanshi, Singh R.K. and Sahu, K.R. 2019. "Physico-chemical behaviour of shivnath river at madku dweep District mungeli (C.G.)", International Journal of Development Research, 09, (03), 26355-26368.

# INTRODUCTION

Madkudweep is situated near village MADKU in Pathria Block in Mungeli Dsitrict (C.G.) lacated 38 km towards south from Bilaspur city. As per legend MadkuDweep was originally called Madku Dweep, was named so because Madku Rishi established this ashram here and composed the Madku Upanishad. Veteran archaeologist told that there are 19 shiv temples of which 9 are 'Smatak ling' all belonging to Ratanpur Kings of Kalturi period. Madku Dweep is one of the most valuable and religious monument for Chhattisgarh. The physic-chemical parameter of water were analysed by standard method devised by Trivedi and Goel (1984) Atoni (1985) and American Public Helth Association (APHA 1989) are as follows:- Physical Parameter. The water temperature and atmospheric temperature of the river were seasonal variation recorded with the help of maximum and minimum temperature thermometer water (IJESRT).

Ph.D Research scholar Department of zoology Dr. C. V. Raman University Kargi Road Kota Bilaspur (C.G.)-495113

# **MATERIALS AND METHODS**

The study area Shivnath river at Madkudweepdistt. Mungeli (SRMDM) was visited at monthly interval during the one year period (December 2016 to December 2017). The water sample containing pH, Temperature, Conductivity, TDS, Turbidity, Chloride , Iron, Silica, BOD, COD, DO, Total hardness, Calcium hardness, Magnesium hardness, Alkalinity, Total Alkalinity were collected at the surface of study sites at four stations namely Location -1 to Location-4 and sample was collected between 9 A.M. to 11 A.M. For the collection of planktons glass bottles are preferred. Glass bottles are tightly sealed. The bottles are soaked with 10%HCL for 24 hours and then thoroughly clean and rinse with distilled water. Sampling will do on monthly interval. Water sample will be collected from different locations with the help of ruddiness sampler. Samples will be fixed in the field and are later analyzed in the laboratory. Four location sample of one ml. for each replicate were examined under a compound microscope of various magnifications using a Sedgwick-Raftr counting cell.

<sup>\*</sup>Corresponding author: Sarita Chandrawanshi,

| S. No. | Characteristics  | Method of Testing                       | Unit    |
|--------|------------------|-----------------------------------------|---------|
| 01     | pН               | pH Meter                                | pH Unit |
| 02     | Turbidity        | Turbidity Meter                         | NTU     |
| 03     | Temperature      | Temperature sensitive probe             | °C      |
| 04     | Calcium          | Titrimetric Method                      | Mg/L    |
| 05     | Magnesium        | Hy. Calcution [TH-(CaH)]* 0.243         | Mg/L    |
| 06     | Total Alkalinity | Titrimetric Method                      | Mg/L    |
| 07     | Total Hardness   | Titrimetric Method                      | Mg/L    |
| 08     | TDS              | TDS Meter                               | Mg/L    |
| 09     | DO               | Winkler's iodometric method             | Mg/L    |
| 10     | BOD              | Dilution Method                         | Mg/L    |
| 11     | COD              | Acidic Oxidation + Potassium dichromate | Mg/L    |
| 12     | Iron             | Spectro-photometric method              | Mg/L    |
| 13     | Chloride         | Titration Method                        | Mg/L    |
| 14     | Silica           | Colorimetric method                     | Mg/L    |
| 15     | Conductivity     | Multimeter                              | S/m     |

## DATA ANALYSIS

## Location wise /month wise ph value variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | pН        | 6.65        | 7.52        | 7.01        | 6.54        |
| 2      | Feb   | рН        | 7.74        | 8.42        | 8.03        | 7.84        |
| 3      | March | pH        | 8.35        | 9.05        | 8.99        | 9.04        |
| 4      | April | pH        | 8.5         | 8.4         | 8.4         | 8.3         |
| 5      | May   | pH        | 8.75        | 8.9         | 8.8         | 8.3         |
| 6      | June  | pH        | 8.35        | 9.05        | 8.99        | 8.35        |
| 7      | July  | pH        | 8.5         | 8.5         | 7.7         | 7.5         |
| 8      | Aug   | pH        | 8.42        | 8.03        | 7.84        | 7.74        |
| 9      | Sep   | pH        | 8.1         | 8.09        | 8.2         | 8.25        |
| 10     | Oct   | pH        | 8.5         | 8.4         | 8.4         | 8.3         |
| 11     | Nov   | pH        | 8.75        | 8.9         | 8.8         | 8.7         |
| 12     | Dec   | pH        | 8.35        | 9.05        | 8.99        | 8.35        |

## Location wise /month wise turbidity variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Turbidity | 3.85        | 3.45        | 3.54        | 3.9         |
| 2      | Feb   | Turbidity | 2.5         | 0.9         | 2.8         | 6.7         |
| 3      | March | Turbidity | 1.5         | 1.8         | 3.6         | 2.8         |
| 4      | April | Turbidity | 2.5         | 2.8         | 3.5         | 3.5         |
| 5      | May   | Turbidity | 3.14        | 3.1         | 3.1         | 3.13        |
| 6      | June  | Turbidity | 3.6         | 3.4         | 3.4         | 3.3         |
| 7      | July  | Turbidity | 11.2        | 4.4         | 5.4         | 6.4         |
| 8      | Aug   | Turbidity | 12.6        | 5.4         | 6.4         | 6.6         |
| 9      | Sep   | Turbidity | 12.1        | 6.5         | 6.3         | 6.3         |
| 10     | Oct   | Turbidity | 4.5         | 3.8         | 5.5         | 9.4         |
| 11     | Nov   | Turbidity | 4.6         | 3.1         | 5.1         | 3.13        |
| 12     | Dec   | Turbidity | 5.2         | 3.4         | 6.4         | 3.3         |

## Location wise /Month wise calcium temperature variation

| S. No. | Month | Parameter   | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | TEMPERATURE | 24          | 23          | 24          | 26          |
| 2      | Feb   | TEMPERATURE | 25          | 25          | 23          | 23          |
| 3      | March | TEMPERATURE | 26          | 27          | 26          | 28          |
| 4      | April | TEMPERATURE | 34.5        | 33          | 33.5        | 32          |
| 5      | May   | TEMPERATURE | 36          | 36          | 38          | 37          |
| 6      | June  | TEMPERATURE | 39.5        | 38.5        | 39.5        | 40          |
| 7      | July  | TEMPERATURE | 28.5        | 29.5        | 30          | 30          |
| 8      | Aug   | TEMPERATURE | 29          | 29          | 28          | 28          |
| 9      | Sep   | TEMPERATURE | 31          | 31          | 30.5        | 30          |
| 10     | Oct   | TEMPERATURE | 29          | 29          | 28          | 28          |
| 11     | Nov   | TEMPERATURE | 22          | 21          | 21          | 22          |
| 12     | Dec   | TEMPERATURE | 21          | 22          | 22          | 21          |

#### Location wise /month wise calcium hardness variation

| S. No. | Month | Parameter        | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|------------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Calcium Hardness | 110         | 99          | 110         | 95          |
| 2      | Feb   | Calcium Hardness | 109         | 100         | 99          | 109         |
| 3      | March | Calcium Hardness | 98          | 86          | 87          | 90          |
| 4      | April | Calcium Hardness | 100         | 98          | 98          | 99          |
| 5      | May   | Calcium Hardness | 105         | 103         | 105         | 104         |
| 6      | June  | Calcium Hardness | 102         | 102         | 99          | 94          |
| 7      | July  | Calcium Hardness | 63          | 65          | 65          | 63          |
| 8      | Aug   | Calcium Hardness | 85          | 85          | 88          | 85          |
| 9      | Sep   | Calcium Hardness | 92          | 94          | 94          | 90          |
| 10     | Oct   | Calcium Hardness | 100         | 98          | 98          | 93          |
| 11     | Nov   | Calcium Hardness | 105         | 104         | 105         | 105         |
| 12     | Dec   | Calcium Hardness | 102         | 103         | 99          | 99          |

## Location wise /month wise magnesium hardness variation

| S. No. | Month | Parameter          | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|--------------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Magnesium Hardness | 40          | 35          | 39          | 40          |
| 2      | Feb   | Magnesium Hardness | 19          | 18          | 17          | 19          |
| 3      | March | Magnesium Hardness | 18          | 16          | 17          | 16          |
| 4      | April | Magnesium Hardness | 30          | 28          | 27          | 27          |
| 5      | May   | Magnesium Hardness | 33          | 30          | 30          | 32          |
| 6      | June  | Magnesium Hardness | 29          | 29          | 27          | 26          |
| 7      | July  | Magnesium Hardness | 32          | 34          | 34          | 32          |
| 8      | Aug   | Magnesium Hardness | 35          | 36          | 36          | 33          |
| 9      | Sep   | Magnesium Hardness | 45          | 45          | 42          | 42          |
| 10     | Oct   | Magnesium Hardness | 30          | 28          | 27          | 27          |
| 11     | Nov   | Magnesium Hardness | 34          | 30          | 30          | 32          |
| 12     | Dec   | Magnesium Hardness | 30          | 29          | 27          | 26          |

## Location wise /month wise total alkalinity variation

| S. No. | Month | Parameter        | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|------------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | TOTAL ALKALINITY | 145         | 125         | 145         | 128         |
| 2      | Feb   | TOTAL ALKALINITY | 160         | 148         | 144         | 148         |
| 3      | March | TOTAL ALKALINITY | 134         | 128         | 126         | 124         |
| 4      | April | TOTAL ALKALINITY | 142         | 140         | 140         | 141         |
| 5      | May   | TOTAL ALKALINITY | 145         | 144         | 140         | 140         |
| 6      | June  | TOTAL ALKALINITY | 143         | 140         | 142         | 145         |
| 7      | July  | TOTAL ALKALINITY | 116         | 115         | 118         | 118         |
| 8      | Aug   | TOTAL ALKALINITY | 119         | 122         | 122         | 119         |
| 9      | Sep   | TOTAL ALKALINITY | 123         | 126         | 126         | 123         |
| 10     | Oct   | TOTAL ALKALINITY | 142         | 140         | 140         | 141         |
| 11     | Nov   | TOTAL ALKALINITY | 145         | 144         | 140         | 140         |
| 12     | Dec   | TOTAL ALKALINITY | 143         | 140         | 142         | 145         |

## Location wise /month wise alkalinity (p) variation

| S. No. | Month | Parameter     | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|---------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | ALKALINITY(P) | 0           | 12          | 9           | 9           |
| 2      | Feb   | ALKALINITY(P) | 0           | 0           | 0           | 19          |
| 3      | March | ALKALINITY(P) | 0           | 16          | 17          | 16          |
| 4      | April | ALKALINITY(P) | 0           | 8           | 8           | 9           |
| 5      | May   | ALKALINITY(P) | 10          | 8           | 7           | 7           |
| 6      | June  | ALKALINITY(P) | 9           | 6           | 6           | 8           |
| 7      | July  | ALKALINITY(P) | 0           | 0           | 0           | 0           |
| 8      | Aug   | ALKALINITY(P) | 0           | 0           | 0           | 0           |
| 9      | Sep   | ALKALINITY(P) | 0           | 0           | 0           | 0           |
| 10     | Oct   | ALKALINITY(P) | 0           | 8           | 8           | 9           |
| 11     | Nov   | ALKALINITY(P) | 10          | 8           | 7           | 7           |
| 12     | Dec   | ALKALINITY(P) | 9           | 6           | 6           | 8           |

#### Location wise /month wise total hardness variation

| S. No. | Month | Parameter      | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|----------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Total Hardness | 120         | 110         | 130         | 99          |
| 2      | Feb   | Total Hardness | 128         | 118         | 116         | 128         |
| 3      | March | Total Hardness | 116         | 102         | 104         | 106         |
| 4      | April | Total Hardness | 110         | 116         | 113         | 113         |
| 5      | May   | Total Hardness | 102         | 102         | 105         | 106         |
| 6      | June  | Total Hardness | 104         | 104         | 108         | 108         |
| 7      | July  | Total Hardness | 94          | 92          | 98          | 98          |
| 8      | Aug   | Total Hardness | 111         | 110         | 113         | 115         |
| 9      | Sep   | Total Hardness | 114         | 116         | 117         | 118         |
| 10     | Oct   | Total Hardness | 110         | 116         | 113         | 119         |
| 11     | Nov   | Total Hardness | 102         | 103         | 105         | 106         |
| 12     | Dec   | Total Hardness | 104         | 105         | 108         | 105         |

#### Location wise /month wise tds variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | TDS       | 182         | 223         | 224         | 228         |
| 2      | Feb   | TDS       | 295         | 313         | 314         | 321         |
| 3      | March | TDS       | 320         | 310         | 316         | 314         |
| 4      | April | TDS       | 205         | 220         | 220         | 210         |
| 5      | May   | TDS       | 220         | 230         | 245         | 216         |
| 6      | June  | TDS       | 245         | 245         | 235         | 225         |
| 7      | July  | TDS       | 123         | 125         | 125         | 123         |
| 8      | Aug   | TDS       | 145         | 140         | 140         | 135         |
| 9      | Sep   | TDS       | 155         | 150         | 150         | 154         |
| 10     | Oct   | TDS       | 205         | 220         | 220         | 210         |
| 11     | Nov   | TDS       | 220         | 230         | 245         | 216         |
| 12     | Dec   | TDS       | 245         | 245         | 235         | 225         |

## Location wise /month wise d o(dissolved oxygen) variation

| S. No. | Month | Parameter        | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|------------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Dissolved Oxygen | 7.6         | 7.8         | 8.7         | 8.7         |
| 2      | Feb   | Dissolved Oxygen | 7.9         | 7.2         | 7.1         | 7.7         |
| 3      | March | Dissolved Oxygen | 7.5         | 8.7         | 7.4         | 7.3         |
| 4      | April | Dissolved Oxygen | 6.8         | 6.4         | 6.5         | 6.6         |
| 5      | May   | Dissolved Oxygen | 5.5         | 5.6         | 5.5         | 5.4         |
| 6      | June  | Dissolved Oxygen | 5.3         | 4.9         | 4.7         | 4.8         |
| 7      | July  | Dissolved Oxygen | 6.9         | 6.2         | 6.4         | 6.4         |
| 8      | Aug   | Dissolved Oxygen | 6.2         | 6.5         | 6.6         | 6.9         |
| 9      | Sep   | Dissolved Oxygen | 7.1         | 6.7         | 6.4         | 7.1         |
| 10     | Oct   | Dissolved Oxygen | 8.1         | 7.8         | 7.9         | 7.7         |
| 11     | Nov   | Dissolved Oxygen | 7.6         | 7.1         | 7.1         | 7.2         |
| 12     | Dec   | Dissolved Oxygen | 8.8         | 7.9         | 8.2         | 8.9         |

#### Location wise /month wise b o d variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | BOD       | 2.2         | 2.4         | 3.1         | 3.4         |
| 2      | Feb   | BOD       | 4.2         | 3.3         | 3.2         | 3.3         |
| 3      | March | BOD       | 5.1         | 4.2         | 4.3         | 4.4         |
| 4      | April | BOD       | 4.6         | 3.8         | 4.6         | 4.7         |
| 5      | May   | BOD       | 6.5         | 5.4         | 5.4         | 4.5         |
| 6      | June  | BOD       | 5.2         | 4.4         | 3.8         | 3.5         |
| 7      | July  | BOD       | 4.2         | 4.2         | 5.8         | 5.7         |
| 8      | Aug   | BOD       | 5.8         | 4.8         | 6.9         | 6.7         |
| 9      | Sep   | BOD       | 2.1         | 3.4         | 5.7         | 4.3         |
| 10     | Oct   | BOD       | 2           | 2.01        | 3.1         | 3.1         |
| 11     | Nov   | BOD       | 3           | 3.1         | 3.8         | 3.8         |
| 12     | Dec   | BOD       | 3.9         | 3.9         | 3.7         | 3.8         |

## Location wise /month wise c o d variation

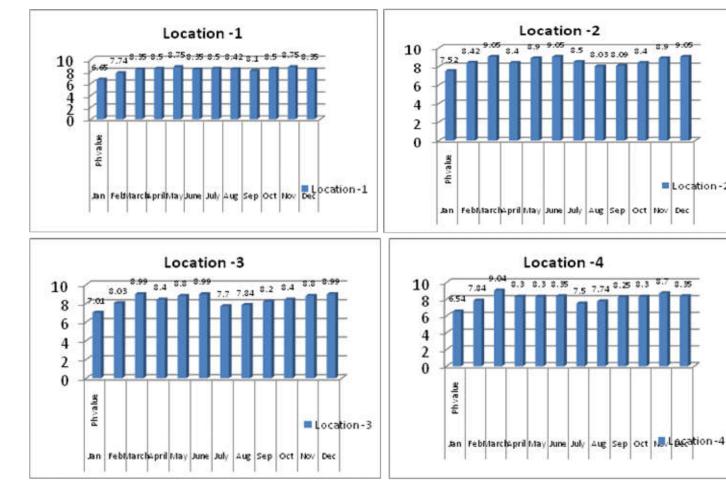
| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | COD       | 21          | 23          | 23          | 24          |
| 2      | Feb   | COD       | 20          | 23          | 25          | 24          |
| 3      | March | COD       | 22          | 24          | 24          | 25          |
| 4      | April | COD       | 28          | 27          | 27          | 29          |
| 5      | Ŵау   | COD       | 26          | 25          | 24          | 24          |
| 6      | June  | COD       | 29          | 28.2        | 28          | 24          |
| 7      | July  | COD       | 27.3        | 27.1        | 26          | 25          |
| 8      | Aug   | COD       | 30          | 31          | 32          | 32.1        |
| 9      | Sep   | COD       | 30.2        | 31          | 28.9        | 29.3        |
| 10     | Oct   | COD       | 32          | 34          | 33.5        | 32.5        |
| 11     | Nov   | COD       | 36          | 35          | 35          | 36          |
| 12     | Dec   | COD       | 34          | 34.5        | 32          | 35.25       |

## Location Wise /Month Wise Iron Variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | IRON      | 0           | 0.0099      | 0.0099      | 0.0082      |
| 2      | Feb   | IRON      | 0.0142      | 0.0424      | 0.0142      | 0.0714      |
| 3      | March | IRON      | 0           | 0.0087      | 0.0087      | 0.0017      |
| 4      | April | IRON      | 0           | 0.009       | 0.0092      | 0.0085      |
| 5      | Ŵау   | IRON      | 0.014       | 0.0325      | 0.0143      | 0.0404      |
| 6      | June  | IRON      | 0.002       | 0.0075      | 0.0079      | 0.0027      |
| 7      | July  | IRON      | 0.0102      | 0.0105      | 0.0102      | 0.0105      |
| 8      | Aug   | IRON      | 0.0094      | 0.0099      | 0.0098      | 0.0094      |
| 9      | Sep   | IRON      | 0.0091      | 0.0091      | 0.0093      | 0.0097      |
| 10     | Oct   | IRON      | 0           | 0.009       | 0.0092      | 0.0086      |
| 11     | Nov   | IRON      | 0.014       | 0.0325      | 0.0148      | 0.0404      |
| 12     | Dec   | IRON      | 0.002       | 0.0075      | 0.0079      | 0.0024      |

## Location wise /month wise choloride variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | CHOLORIDE | 45.56       | 39.7        | 45.65       | 45.65       |
| 2      | Feb   | CHOLORIDE | 38.34       | 41.18       | 41.18       | 38.34       |
| 3      | March | CHOLORIDE | 35.5        | 34.08       | 41.18       | 41.18       |
| 4      | April | CHOLORIDE | 40.2        | 39.85       | 40.2        | 41.15       |
| 5      | May   | CHOLORIDE | 42.05       | 41.7        | 41.5        | 41.15       |
| 6      | June  | CHOLORIDE | 42          | 40          | 41.35       | 40.25       |
| 7      | July  | CHOLORIDE | 48          | 48          | 47          | 46          |
| 8      | Aug   | CHOLORIDE | 51          | 52          | 51          | 52          |
| 9      | Sep   | CHOLORIDE | 56          | 53          | 53          | 54          |
| 10     | Oct   | CHOLORIDE | 40.2        | 39.85       | 40.2        | 41.15       |
| 11     | Nov   | CHOLORIDE | 48.05       | 41.7        | 41.5        | 41          |
| 12     | Dec   | CHOLORIDE | 43          | 40          | 41.35       | 40.25       |


#### Location wise /month wise silica variation

| S. No. | Month | Parameter | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|-----------|-------------|-------------|-------------|-------------|
| 1      | Jan   | SILICA    | 9.5         | 9.5         | 8.85        | 8.85        |
| 2      | Feb   | SILICA    | 5.42        | 4.74        | 4.91        | 5.058       |
| 3      | March | SILICA    | 7.12        | 6.61        | 7.45        | 6.61        |
| 4      | April | SILICA    | 8.1         | 8.4         | 8.45        | 8.85        |
| 5      | May   | SILICA    | 8.05        | 7.3         | 7.5         | 8           |
| 6      | June  | SILICA    | 6.95        | 7.25        | 7.45        | 6.91        |
| 7      | July  | SILICA    | 3.72        | 3.89        | 3.38        | 3.22        |
| 8      | Aug   | SILICA    | 4.61        | 3.94        | 3.94        | 4.72        |
| 9      | Sep   | SILICA    | 6.8         | 5.4         | 5.4         | 4.5         |
| 10     | Oct   | SILICA    | 7.8         | 7.9         | 7.8         | 7.7         |
| 11     | Nov   | SILICA    | 7.12        | 6.61        | 7.45        | 6.61        |
| 12     | Dec   | SILICA    | 5.42        | 4.74        | 4.91        | 5.08        |

#### Location wise /month wise conductivity variation

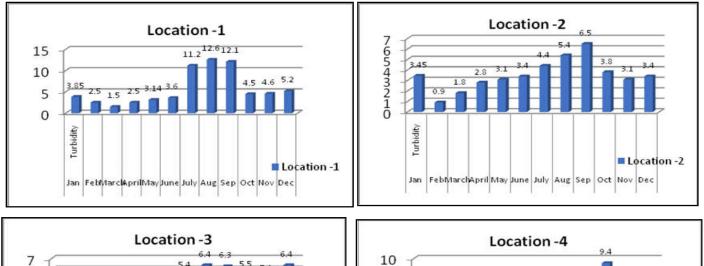
| S. No. | Month | Parameter    | Location -1 | Location -2 | Location -3 | Location -4 |
|--------|-------|--------------|-------------|-------------|-------------|-------------|
| 1      | Jan   | Conductivity | 352         | 368         | 372         | 379         |
| 2      | Feb   | Conductivity | 442         | 469         | 472         | 481         |
| 3      | March | Conductivity | 480         | 465         | 474         | 460         |
| 4      | April | Conductivity | 208         | 210         | 205         | 210         |
| 5      | May   | Conductivity | 250         | 210         | 250         | 205         |
| 6      | June  | Conductivity | 302         | 300         | 300         | 305         |
| 7      | July  | Conductivity | 270         | 260         | 260         | 260         |
| 8      | Aug   | Conductivity | 280         | 280         | 265         | 265         |
| 9      | Sep   | Conductivity | 300         | 300         | 305         | 304         |
| 10     | Oct   | Conductivity | 208         | 210         | 205         | 210         |
| 11     | Nov   | Conductivity | 250         | 210         | 250         | 205         |
| 12     | Dec   | Conductivity | 302         | 300         | 300         | 305         |

## Location wise /month wise phyalue variation graph



## The water sample containing pH, Temperature , Conductivity, TDS, Turbidity, Chloride, Iron, Silica, BOD, COD, DO, Total hardness, Calcium hardness, Magnesium hardness, Alkalinity, Total Alkalinity there location wise graph is shown above.

8.03 8.09 8.4


7.74 8.25 8.3

\$.7 \$.35

Location -2

# **RESULT AND DISCUSSION**

Shivnath River at Madkudweep dist. Mungeli (SRMDM) was visited at monthly interval during the one year period (December 2016 to December 2017).

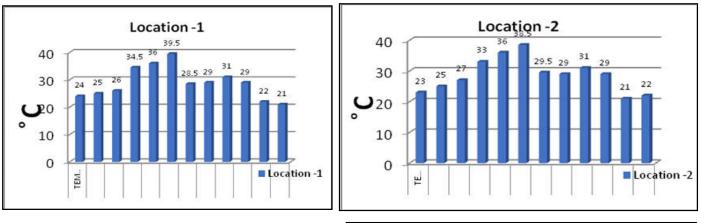


8

6

420

3.9


Turbidity

3.5

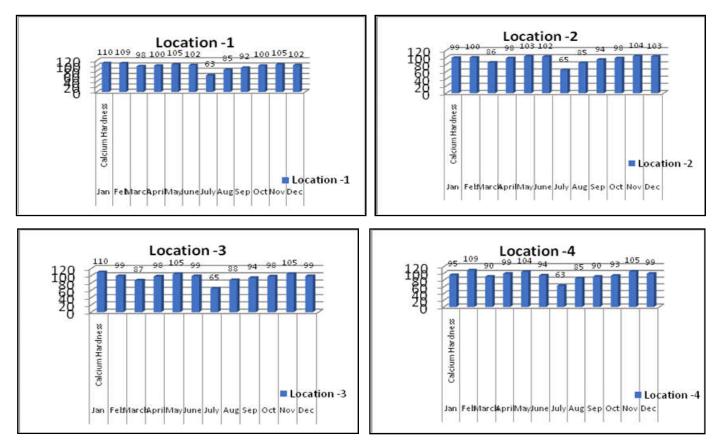
#### Location wise /month wise turbidity variation graph



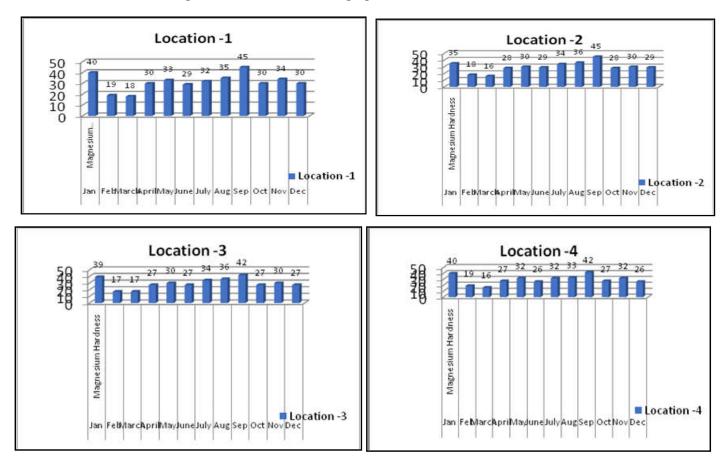
## Location wise /month wise temperature variation graph



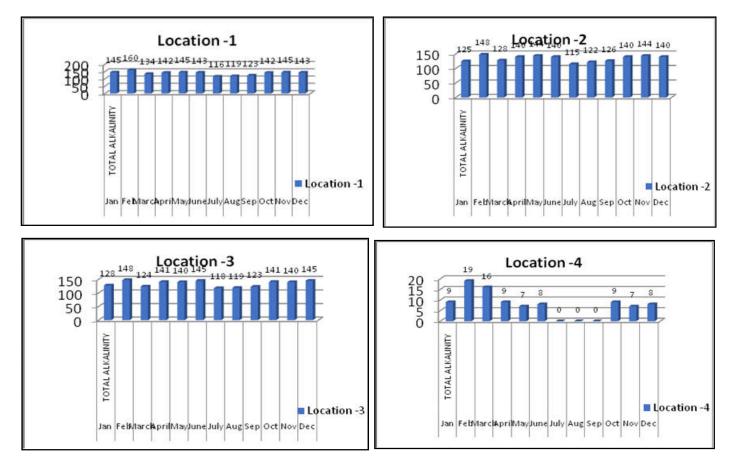




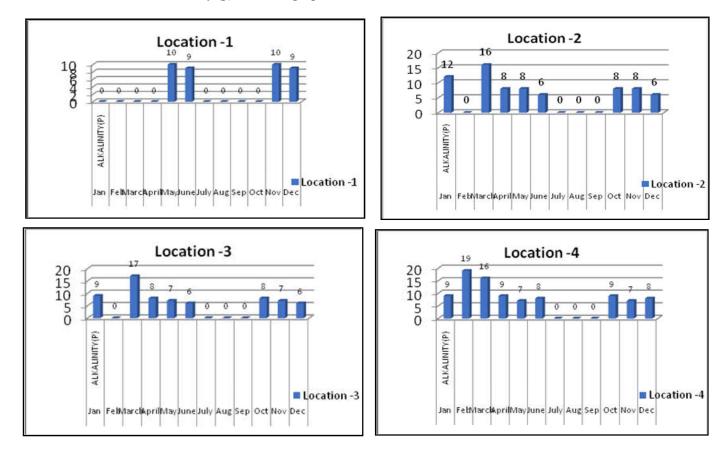

6.4 6.6 6.3


Jan FebruarchApril May June July Aug Sep Oct 100 Age on -4

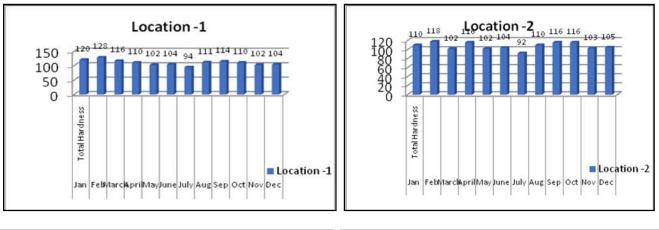
3.3

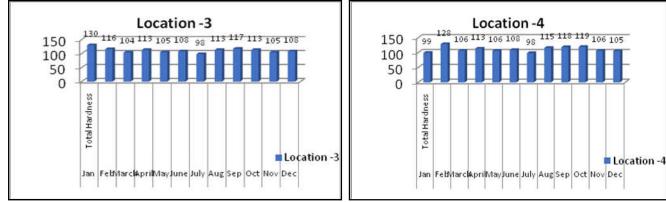

Location wise /month wise calcium hardness variation graph



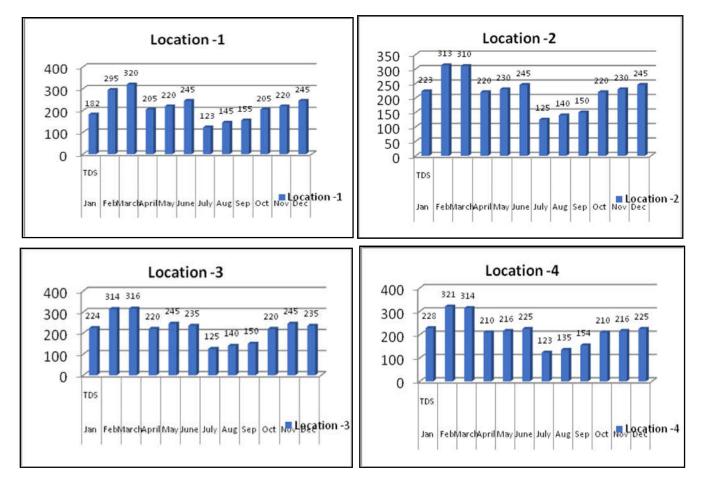

Location wise /month wise magnesium hardness variation graph



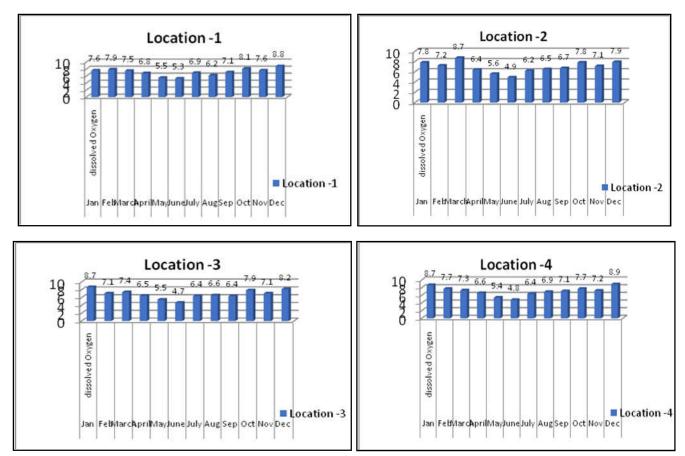

Location wise /month wise total alkalinity variation graph



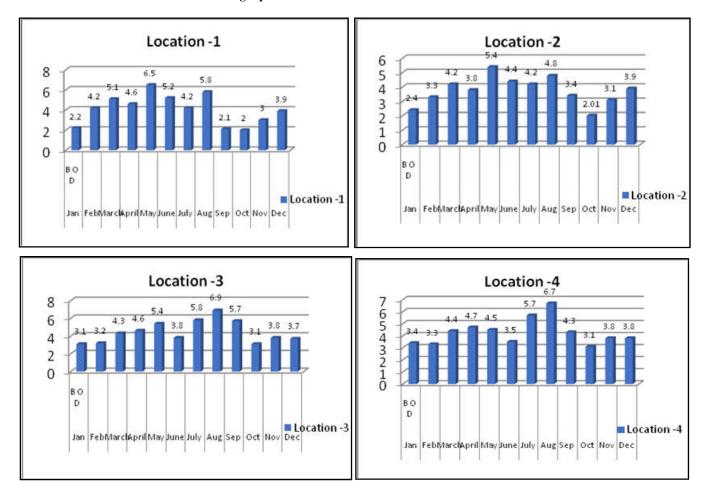

Location wise /month wise alkalinity (p) variation graph



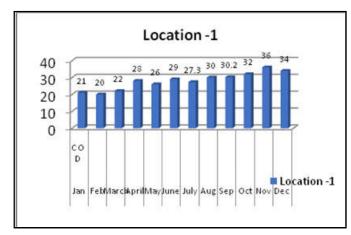

## Location wise /month wise total hardness variation graph

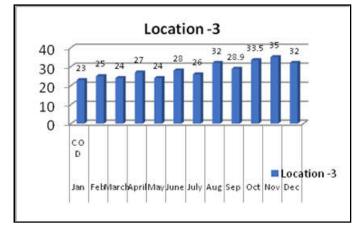


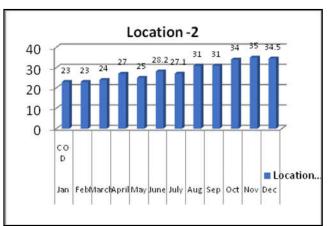


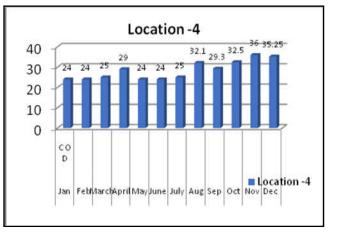


# Location wise /month wise tds variation graph



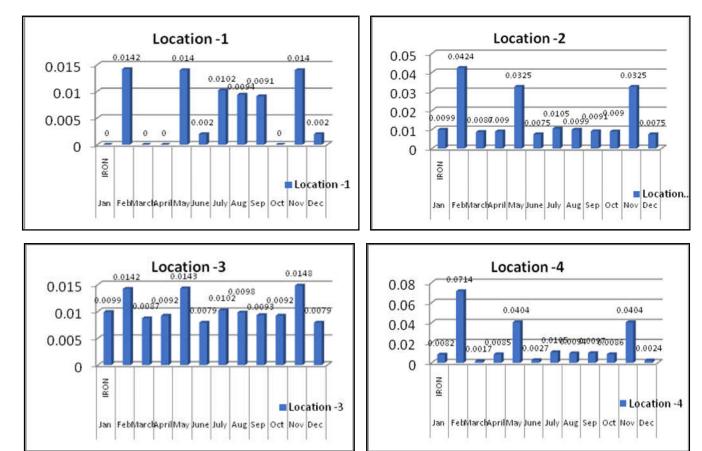

Location wise /month wise d o(dissolved oxygen) variation graph

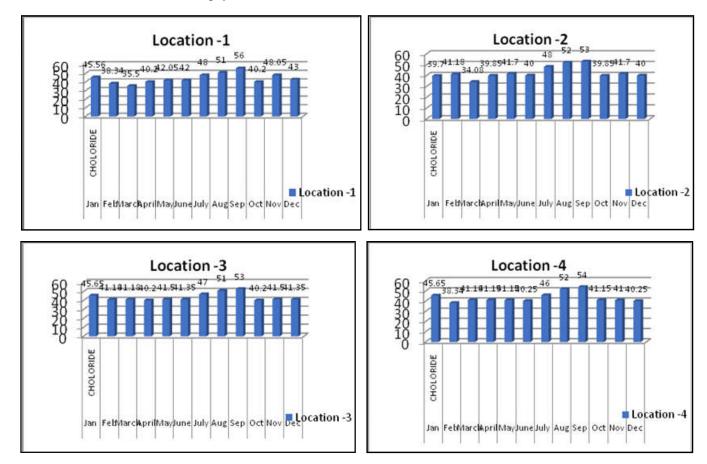




## Location wise /month wise b o d variation graph



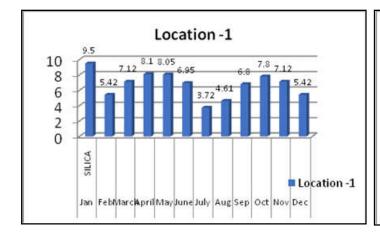

## Location wise /month wise c o d variation graph

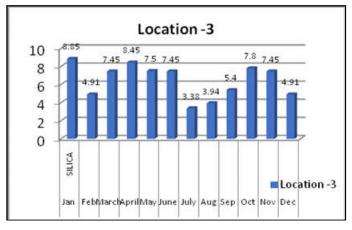


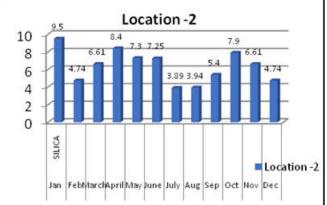







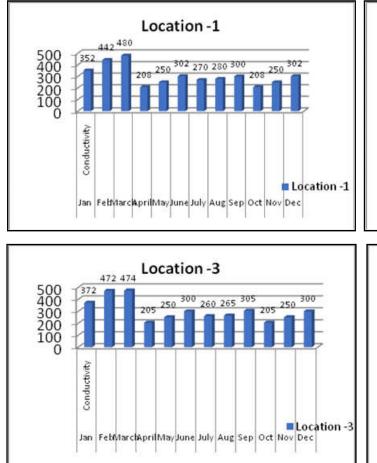


## Location wise /month wise iron variation graph



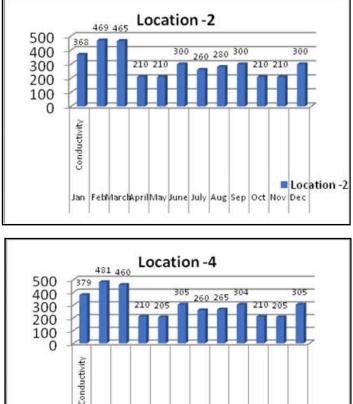

Location wise /month wise choloride variation graph

## Location wise /month wise silica variation graph








#### Location wise /month wise conductivity variation graph



The water samples containing pH, Temperature, Conductivity, TDS, Turbidity, Chloride, Iron, Silica, BOD, COD, DO, Total hardness, Calcium hardness, Magnesium hardness, Alkalinity, Total Alkalinity were collected at the surface of study sites at four stations namely Location -1 to Location-4 and sample was collected between 9 A.M. to 11 A.M. In these all locations some of them are too much polluted and that locations of water are not suitable for use as drinking or household purposes also, because that locations of water containing heavily exceeds of pH, TDS, turbidity, BOD, COD, Mg, Ca, Ir and Chloride that locations are-

- 1. Temperature- highest- (40 °C)loc. 4 Lowest- (21 °C)loc. 1&4
- 2. pH- highest- (9.05) loc. 2 Lowest- (6.54)loc. 1&4
- 3. Conductivity- highest- (481) loc. 4 Lowest- (205) loc. 3
- 4. Total Hardness- highest- (330) loc. 3 Lowest-(92) loc. 2
- Calcium Hardness- highest- (110) loc. 1 Lowest-(63) loc. 4
- 6. MagnesiumHardness- highest- (45) loc. 2 Lowest-(16) loc. 4
- TDS- highest- (321) loc. 4 Lowest- (123) loc. 1
- Turbidity- highest- (12.6) loc. 1 Lowest- (0.9) loc. 2
- Alkalinity (P)- highest- (10) loc. 1 Lowest-(6) loc. 2
- 10. Total Alkalinity- highest- (160) loc. 1 Lowest-(115) loc. 2



Jan FebMarchAprilMayJune July Aug Sep Oct Nov Dec

Location -4

- 11. Chloride- highest- (56) loc. 1 Lowest- (39.7) loc. 2
- 12. Iron- highest- (0.0148) loc. 3 Lowest- (0.0017) loc. 4
- 13. Silica-highest- (9.5) loc. 1 Lowest- (3.94) loc. 3
- 14. BOD-highest- (6.9) loc. 3 Lowest- (2.1) loc. 1
- 15. COD- highest- (35.25) loc. 4 Lowest- (20) loc. 1
- 16. DO- highest- (8.9) loc. 4 Lowest- (6.2) loc. 1

#### Conclusion

In above study it was found that maximum parameters were not under allowable BIS limits. pH, temperature, TDS, turbidity, BOD, COD, DO, Conductivity, Mg, Ca, Ir, Chloride, Alkalinity, total Alkalinity exceeded the BIS limits. The amount of pH, TDS, turbidity, BOD, COD, Mg, Ca, Ir and Chloride was very high and sometimes very low which makes the water unsuitable for use. These all show that the quality of the river water is below the prescribed standards and it is unsuitable for drinking or household purposes without any disinfection process.

# REFERENCES

- Analytical Chemistry by B. K. Sharma, pp. 104-145.
- Analytical Chemistry by Dr.Alka L. Gupta, A Pragati Edition, pp. 147-195.

Analytical Chemistry by H. Kaur, A Pragati Edition, pp. 148-181.

- APHA. AWWA & WPCF (1982) Standard Method for the examination of water & Waste water. 17<sup>th</sup> edition. APHA, INC, New York pp. 60.
- Ecology and Environment by P. D. Sharma. 10<sup>th</sup> revised edition, pp. 1-35.
- Irfanali khan and Atiya khan (Third revised addition) Fundamentals of Bio Statistics (1987 to 1980)Ukaaz Publications, Moosarambagh, Hyderabad – 36 (A.P.)
- Morden text book of zoology "INVERTEBRATES" by R. L. Kotpal. 9<sup>th</sup> revised edition.
- Physico-chemical analysis of ground water of selected area of Ghazipur city-A case study: Sandeep K Pandey, Shweta Tiwati "Nature and Science 7 (1), 17-20, 2009.
- Physico-chemical parameters for testing of water-A review: PN Patil, DV Sawant, RN Deshmukh "International Journal of Environment Sciences 3 (3), 1194, 2012.

Spectroscopy of Organic Compounds by P. S. Kalsi, pp. 382.

Water analysis: A practical guide to physic-chemical, chemical, and microbiological water examination and quality assurance: Wilhelm Fresenius, Karl Ernst Quentin, Wilhelm Schneider, E Lopez- Ebri "Springer-Verlag, 1998.

\*\*\*\*\*\*