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ARTICLE INFO  ABSTRACT 
 
 

Buildings are one of the largest energy consumers in developed countries as well as in Brazil, and 
no other segment has such a potential for improving energy efficiency. Several policies have been 
applied for this purpose around the world and energy benchmarking is one of the most used 
worldwide. Thus, this paper brings a new benchmarking approach that involves not only energy 
consumption, but it also evaluates managerial issues in energy. For this, Support Vector Machine 
was used in order to predict the energy consumption using data of vocational schools in the São 
Paulo state, Brazil, to validate the methodology and Data Envelopment Analysis was used for the 
elaboration of the efficiency scale. It were considered 92 school buildings for the development of 
the predictive model and 72 for elaborating the efficiency scale in DEA. The results indicated a 
great potential for saving energy and financial resources when compared to the best practices. 
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INTRODUCTION 
 

Buildings represent one of the largest sectors in terms of 
energy consumption. In general, in developed countries the 
share of energy consumption of the building sector is between 
20% and 40% of the final energy consumption (Pérez-
Lombard et al., 2008). In Brazil, buildings are also among the 
largest energy consumers and the sector accounted for 51% of 
the total electricity consumption in 2016 (EPE, 2017). Energy 
efficiency in existing buildings represents one of the most 
important research areas in the energy field (WANG and XIA, 
2015), and no other area has such a great potential for 
improvements (ÜRGE-VORSATZ et al., 2009). However, 
only an evaluation of the projects can be insufficient due to the 
difference between the expected consumption in the project 
and in the occupation phase, a phenomenon known as 
performance gap, described by Olivia and Christopher (2015) 
and Brady and Abdellatif (2017). Several policies are used to 
establish efficient buildings, such as benchmarking, which is 
defined by Spendolini (1992) as a process of comparing 
products and services against the best practices, and are  
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discussed by Pérez-Lombard et al. (2009), Chung (2011) and 
Borgstein et al. (2016). Much effort has been made in order to 
understand the complexity of energy consumption in buildings 
and also to search for mechanisms to predict energy 
consumption (Wei et al., 2018). Machine learning (ML) 
algorithms have been widely used for this purpose 
(GALLAGHER et al., 2018), they use data from the past 
aiming to "learn" a pattern of energy consumption and then 
predict future values of it (AMASYALI and EL-GOHARY, 
2018). Comparative analysis between ML algorithms for 
energy consumption prediction in buildings were performed by 
Molina-Solana et al., (2017), Robinson et al. (2017), Wang 
and Srinivasan (2017) and also Wei et al. (2018). The Support 
Vector Machine (SVM) algorithm, proposed by Cortes and 
Vapnik (1995), has risen great interest given its great 
performance in the most diverse fields (ČEPERIC et al., 
2017), and has been used to predict energy consumption in 
buildings by Jung et al. (2015), Paudel et al. (2017) and Zhang 
et al. (2016). Another important approach, Data Envelopment 
Analysis (DEA) proposed by Charnes et al. (1978), based on 
Farrell (1957), refers to an efficiency oriented approach in a 
set of entities called Decision Making Units (DMU), which 
relates inputs to output products (COOPER et al., 2011). 
Although it can be seen as a production frontier evaluation 
tool, it can be considered that its goal is to evaluate the 
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organizational performance against the best practices (COOK 
et al., 2014). DEA is a tool based on optimization in 
mathematical programming that, according to Chung (2011), 
has as its main advantage the non-parametric treatment, which 
does not assume any particular functional form. Although 
there are variants, the two classic models are the Constant 
Return to Scale (CRS) model and the Feature Return to Scale 
(VRS) model proposed by Banker et al. (1984),which 
substitutes the axiom of proportionality between inputs and 
outputs from the axiom of convexity, in both cases two 
approaches concerning to orientation are possible, the so-
called input orientation, that seeks to minimize input values for 
the same production of output,  and the output orientation, 
where the inverse analysis is observed. A problem of this 
methodology is its benevolent character that results in a large 
number of efficient DMUs, which makes the analysis more 
difficult, especially when it is intended to order the DMUs by 
efficiency. That can be overcome by some methods discussed 
by Angulo-meza et al. (2002). One used methods is known as 
super-efficiency (SE-DEA), proposed by Andersen and 
Petersen (1993), and its basic idea is that the evaluated DMU 
is excluded from the reference set, allowing even higher values 
than the maximum value without changing the ordering of the 
others. In this sense, this paper brings a new methodology for 
the evaluation of energy performance and benchmarking in a 
portfolio of buildings, taking as case of study buildings that 
dwells vocational schools in the São Paulo, Brazil, using SVM 
to predict energy consumption, and DEA for the efficiency 
analysis and benchmarking by characteristic features. 
 

MATERIALS AND METHODS 
 
In general, the methodology was based on four pillars: 
preparation stage, development of the predictive model, the 
construction of the features to characterize the performance in 
the management and energy consumption, and finally the 
benchmarking and the construction of the efficiency scale. An 
overview of the methodology is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preparation: An exploratory analysis on the typology of the 
buildings of the portfolio is done aiming the understanding of 
the energy flows, profiles of use and occupancy, and the 
hypothesis formulation about the features that can affect the 
performance. Features related to the constructive attributes, 
infrastructure, use profile, energy and climatic characteristics 
were collected for testing and construction of the predictive 
model. The initial data treatment consisted of removing the 
missing and the outliers. The interquartile range, also applied 
by Liu et al. (2017), was used in order to identify outliers. 
Since an excessive number of predictor features may worsen 
the performance of the model, due to overfitting (Liu et al., 

2017), the Pearson Correlation coefficient (r) was used as a 
selection criterion, as done by Capozzoli et al. (2015) and 
Deng et al. (2018), and then the features whose r value were 
larger than 0.20were included in the model. The correlation 
between the input features, a problem known as 
multicollinearity, should also be avoided in order to keep the 
quality of the model. The creation of auxiliary features and 
combination of features can also act positively. Then, climatic, 
and usage and occupancy features were created for statistical 
tests. 

 
Development of the predictive model: The predictive model 
was built using the SVM to predict the monthly energy 
consumption for each building given their characteristics. 
Some metrics are usually used to evaluate predictive models 
and are discussed by Amasyali and El-Gohary (2018). For the 
evaluation of the proposed model, the Coefficient of 
Determination (R2), the Root Mean Square Error (RMSE) and 
the Coefficient of Variation of RMSE (CV-RMSE) were used. 

 
Features of energy performance: Features were developed in 
order to characterize the performance in the management and 
energy consumption of the buildings, which were used in the 
DEA benchmarking. They are described below as follows: 

 
Annual actual energy (AAE_obs): the sum of the actual 
monthly energy consumption for a period of twelve months. 
 
Annual predicted energy (AAEpred): the sum of the monthly 
active energy consumption predicted by the predictive model 
for each vocational school building, developed over a period of 
twelve months. 

 
Annual reactive surplus energy (RAE): the sum of the 
monthly energy consumption of reactive surplus that exceed 
the Power Factor limit of 0.92, based on energy bills for a 
period of twelve months. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Peek demand deviation (PDD): the difference between the 
ideal value calculated (PDS) for a period of twelve months and 
the contracted peek demand (PDC). In the Brazilian eletricity 
tariff model, customers of group A must contract the 
maximum demand power and the whole amount is charged, 
being either used or not, incurring in a fine if the tolerance of 
5% is exceeded. This fine is equivalent to twice the unit value 
of the contracted demand. The determination of the ideal 
demand assesses whether the measured demand is less or 
greater the contracted demand and complements the value to 
the corresponding feature, if the measured demand is greater 

 
 

Figure 1. Block diagram of the proposed methodology 
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than the contracted demand the difference is considered twice. 
Thus, the value of PDD is defined as Equation 1. 
 
If PDC	 ≥ PDS: PDD = PDC − PDS                        (1) 
 
If PDC	 < ���: PDD = 2	 × 	(PDS − PDC) 
 
Average active energy during non-school months (AEN 
nsm): the average energy consumption during the non-school 
months (January, July and December). 

 
Total number of students (TNS): total number of students of 
each vocational school building. 

 
Energy benchmarking using DEA: The energy 
benchmarking was based on DEA, taking each vocational 
school building as a DMU and using the constructed features 
in order to characterize the energy performance. The model for 
analysis of efficiency should consider the inputs and outputs in 
order to obtain the efficiency of each DMU to elaborate the 
efficiency scale. Thus, input features should tend to minimum 
values while output features should tend to maximum values. 
The model was constructed using SE-DEA approach, CCR 
input orientation, as shown below: 
 
Inputs: PDD, AAE_obs, RAE, AEN_nsm 
 
Outputs: AEE_pred, TNS. 
 

RESULTS AND DISCUSSION 
 
The dataset consists of 223 public vocational schools whose 
courses were divided into 12 technological axes plus high 
school (CPS, 2018). Two typologies of use were identified and 
agricultural schools were excluded from the dataset and only 
conventional vocational schools were selected given the 
significant difference in the profile of use. 

 
Initial features of the model: The features used in the 
predictive model were chosen in order to test the hypothesis of 
their statistical significance in the energy consumption of each 
teaching unit. Furthermore, four new features related to the 
climate and three features related to the effective were created. 
Cooling degrees-day (CDD), as discussed in Meng and 
Mourshed (2017) and Golden et al. (2017), was used to assess 
the impact of climatic conditions on energy consumption and 
they were calculated using climatic data from a typical 
reference year (USFC, 2016) of the closest city to each school. 
Thus, two balance point temperatures (Bt) were tested in the 
CDD construction: dry bulb temperature of 20 °C 
(CDD_DB20), and wet bulb temperature of 17 °C 
(CDD_WB17). Since the CDD feature impacts more 
significantly buildings with large air-conditioned áreas, a 
weighting was made taking into account the proportion of the 
area under CDD. Considering CBA as the air-conditioned area 
and BUA is the constructed area for each school, the feature 
ACBt = (CBA / BUA) × CDD_Bt was created, with Bt being 
the balance point temperature for the two tested cases. The 
total number of students (TNS) stands for to the sum of 
students in different periods, and the adjusted number of 
students (NSA) also refers to the same sum, but it considers a 
double weight to the number of full time students and it was 
created in order to test the hypothesis of the larger weight of 
them. The feature SCC = ESD + MAB + CPD + SEC + HSC 

means the sum of the number of students in technological axes 
with similarity to the infrastructure, and it was created as a 
form of dimensionality reduction. Data of energy consumption 
referring to the period from January to December of 2017 were 
collected in energy bills and data of use and population of the 
buildings were collected from the staff of the schools. Thus, 
after the removal of agricultural schools and outliers, the final 
dataset for the predictive model has a total of 91 vocational 
schools. As the model was constructed aiming to predict 
monthly energy consumption, it has the total of 1,092 
observations for training and testing. The raw data and 
description of each feature is in a public repository available in 
(SILVA, 2018). 

 
Features selection of predictive model: The Pearson 
correlation coefficient (r) test for each feature in relation to 
consumption (ENE) was performed, and the features with r 
values less than 0.20 were excluded from the model. In 
addition, an analysis of the correlation between continuous 
predictor features was also done in order to exclude the ones 
with multicollinearity problems. The selection was finalized 
with the choice of the feature MTH (categorical feature 
equivalent to the reference month) as a way of capturing the 
seasonality in energy consumption. The climatic features did 
not present significant correlation and were excluded from the 
model.  
 
The final model represented by ��(predictor features), and �� 
(objective features) was: 
 
��: TNS, BUA, CIP, EIXAGR, IPD, IFS, EHA, IAC, SCD, 
MTH; and 
��: ENE 
 
Development and test of the predictive model: For the 
elaboration, development and testing of the predictive model 
the Python programming language version 3.6.5 was used, and 
the dataset was divided in the proportion of 70% of the data for 
the training set, which is equivalent to 764 records, and 30% of 
the data for the test set, which corresponds to 328 records. The 
training of the predictive model was performed using MVS 
algorithm wher w the RBF kernel function was selected, and 
the values of C = 3.9E3, ε = 0.1, γ = 0.09 were used in the 
finalized model. The application of the metrics to the test set, 
when the predicted values were compared to the actual values, 
obtained theR2 of 0.90, the RMSE of 2,252.87 kilowatt-hour 
and a CV-RMSE of 18.30%. 

 
Energy benchmarking between vocational schools: The 
method was applied in all schools, excluding agricultural 
schools and schools where no data were available for the 
selected period. Thus, the method was applied in 72 vocational 
schools. The calculation of the performance features was done 
by using the model previously trained with the whole dataset 
for predicting the monthly energy consumption of the 72 
vocational schools, as well as the calculation of the respective 
annualised values. The other features were also calculated for 
all vocational schools and the final model with the complete 
set of features is available in (SILVA, 2019). The DEA 
analysis was performed using the SE-DEA and it was 
implemented in Python programming language. In order to 
compare each DMU with the others on a scale of efficiency, an 
analysis of the accumulated frequency of the efficiencies was 
created with five levels, from A to E, where A is the most 
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efficient. A normality test, which was applied upon the 
calculated efficiencies, rejected the normality hypothesis and 
the log-logistic distribution was used, since the Kolmogorov
Smirnov test, considering a significance level of 5%,
in a p-value of 0.4334, which means no evidence to reject the 
null hypothesis. Thus, the five levels of the scale were divided 
according to percentiles shown in Figure 2. 

 

 
Figure 2. Accumulated efficiency frequency

 
Thus, discriminating each DMU by its calculated efficiency 
for each category, and then considering schools clas
and B as efficient, schools level C as typical and D and E as 
inefficient, the final result is shown in Figure 3.

 

 

Figure 3. Efficiency scale for all DMUs

 
Conclusion 

 
The proposed benchmarking scale allows a global assessment 
of the level of efficiency regarding to energetic metrics, 
permitting the formulation of policies backed by decision 
support tools. Nevertheless, the proposed method can be 
implemented for energy management in any use typology of 
buildings, since customized features for the portfolio are
selected in order to characterize the performance.
merit of the method lies in the fact that the insertion of the 
other features extrapolates the analysis beyond the energy 
consumption and encompasses managerial issues.
schools included in the benchmarking mechanism, 26 schools 
were considered efficient (grades A and B), 22were considered 
typical schools (grades C), and 24were considered inefficient 
schools (grades D and E). Considering only the inefficient 
schools, the annual potential of energy saving,
account the waste of energy and comparing it to
energy consumption and the actual consumption, is 259,846 
kilowatt hour, which represents an average value of 10,827 
kilowatt-hour per school. High values of reactive energy were 
also observed and it summed 396,219 kilovolt
resulting in an annual value of 44,336 kilovolt
above efficient schools. Furthermore, the cumulative deviation 
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Figure 2. Accumulated efficiency frequency 

Thus, discriminating each DMU by its calculated efficiency 
for each category, and then considering schools classified as A 
and B as efficient, schools level C as typical and D and E as 
inefficient, the final result is shown in Figure 3. 

 

Figure 3. Efficiency scale for all DMUs 

The proposed benchmarking scale allows a global assessment 
of efficiency regarding to energetic metrics, 

permitting the formulation of policies backed by decision 
Nevertheless, the proposed method can be 

implemented for energy management in any use typology of 
r the portfolio are 

selected in order to characterize the performance. The main 
merit of the method lies in the fact that the insertion of the 
other features extrapolates the analysis beyond the energy 
consumption and encompasses managerial issues. From the 72 
schools included in the benchmarking mechanism, 26 schools 
were considered efficient (grades A and B), 22were considered 
typical schools (grades C), and 24were considered inefficient 
schools (grades D and E). Considering only the inefficient 

the annual potential of energy saving, taking into 
and comparing it to the predicted 

energy consumption and the actual consumption, is 259,846 
kilowatt hour, which represents an average value of 10,827 

of reactive energy were 
summed 396,219 kilovolt-ampere-reactive 

resulting in an annual value of 44,336 kilovolt-ampere-reactive 
above efficient schools. Furthermore, the cumulative deviation 

in the contracting demand was 
was billed monthly. It is also important to highlight that the 
average consumption ratio between the non
the school months is 0.66 for all the efficient schools, while 
this value is 0.76 for inefficient sch
energy consumption in non-school months when compared to 
more efficient schools. These numbers show a great potential 
for saving energy and financial resources, especially in the 
buildings classified as inefficient by the method 
compared to the best practices. 
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