
  
 

 
 

 
 

ORIGINAL RESEARCH ARTICLE 
 

IL-10 PLAYS A KEY ROLE IN THE REGULATION OF TNF-alfa mRNA EXPRESSION DURING DNA 
FRAGMENTATION IN THE NEPHROTOXICITY GENERATED BY AMPHOTERICIN  

B AND CYCLOSPORINE 
 

1Flávia Dayrell França, 2Glaucy Rodrigues Araújo, 3Cleiber Lucan Alves Araújo, 3Sandra de Sousa 
Araújo,2Alessandra Vieira and 2Míriam Martins Chaves 

 

1Clinical Analyze Laboratory, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito 
Santo, Rodovia BR 101 Norte, Km 60, CEP 29932-900, São Mateus/ES – Brasil 

2Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry, Biological Sciences 
Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo 

Horizonte/MG – Brasil 
3IVC in vitro Tests and Human Health Laboratory, Av. José Cândido da Silveira, 2100, sala 23, CEP 31035-536, 

Belo Horizonte/MG – Brasil 
 

 

ARTICLE INFO  ABSTRACT 
 
 

Inflammation is considered the most important cause of tissue injury in organs subjected to 
nephrotoxicity induced by drugs. The mechanism that triggers inflammation and organ injury 
remains to be elucidated, although different causes have been postulated. Thus, this 
researchinvestigated whether nephrotoxicity generated by amphotericin B (AmB) and 
cyclosporine (CsA) depends on the balance of cytokines IL-10 and TNF-α, through the evaluation 
of DNA fragmentation and gene expression of these cytokines in renal cell lines.The results 
showed that LPS enhances TNF-α mRNA expression and that TNF-α mRNA significantly 
decreased in the presence of IL-10. The same profile was observed in response to incubation with 
AmB and CsA,in which both drugs increased the expression of TNF-α mRNA and IL-10 
decreases this expression. Thus, IL-10 can reduce the effects generated by nephrotoxicity caused 
by AmB and CsAby reducing the production of TNF-α. In this context, these results suggest that 
therapeutic strategies that induce an increase in IL-10 gene expression may be an alternative to 
decrease the nephrotoxicity caused by AmB and CsA, as demonstrated by IL-10 that modulates 
the production and gene expression of the TNF-α mRNA and reduces the fragmentation of the 
DNA induced by drugs. 
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INTRODUCTION 
 

The kidney is an essential organ required by the body to 
perform several important functions including the maintenance 
of homeostasis, regulation of the extracellular environment, 
such as detoxification, and excretion of toxic metabolites and 
drugs. Therefore, the kidney can be considered a major target 
organ for exogenous toxicants and approximately 20% of 
nephrotoxicity is induced by drugs (Kim and Moon, 2012). 
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Amphotericin B (AmB) has been the gold standard for treating 
invasive fungal diseases for many years. This drug combines 
with cell membrane sterols of host cells, forming pores that 
leak electrolytes in an antifungal action. This drug’s 
mechanism of action can lead to systemic toxicity (Harmsen et 
al., 2011). Nephrotoxicity is the main treatment-limiting 
adverse effect of AmB (Kato et al, 2018). As the toxicity is 
generally related to biological disturbances at the cellular 
level, the knowledge of these and their impacts on cellular 
functions are essential(Van de Water et al., 2006). 
Cyclosporine A (CsA) is a very important immunosuppressive 
drug and greatly improves the survival rates of patients and 
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grafts after solid-organ transplantation (Tafazoli, 2015; Ziaei et 
al., 2016; Zimmermann et al., 2017). It is also increasingly 
being used to treat autoimmune diseases such as psoriasis and 
rheumatoid arthritis (Di Lernia et al., 2016; Kisiel et al., 
2015). However, the chronic use of CsA is associated with 
high incidences of nephrotoxicity and the eventual 
development of chronic renal failure (Caires et al., 2017; Lai et 
al., 2017). The chronic CsA nephrotoxicity is usually 
characterized by tubular atrophy, inflammatory cell influx, 
striped tubule interstitial fibrosis, arteriolopathy and increased 
intrarenal immunogenicity (Yoon and Yang, 2009; Lee, 2010). 
Renal cell lines have been employed as alternative methods for 
the study of therapeutic products that cause nephrotoxicity 
(Pfallerand Gstraunthaler, 1998; Price et al., 2004; 
Lincopanand Mamizuka, 2005; Jung et al., 2009) and the use 
of in vitro techniques has enhanced the comprehension of 
molecular mechanisms of nephrotoxicity(Wilmes et al., 2009). 
The LLC-PK1 (porcine proximal tubular cells) and MDCK 
cells (canine distal cells) are considered acceptable models to 
study drug nephrotoxicity (El Mouedden et al., 2000; Servais 
et al., 2006; Yano et al., 2009; Yuan et al., 2011; Shin et al., 
2010; Ramseyer et al., 2013). 
 

In this context, the development of nephrotoxicity was 
attributed to the propensity of AmB and CsAto induce 
proinflammatory cytokines (Chai et al., 2013; França et al., 
2014a) and among the proinflammatory cytokines that were 
associated with the pathophysiology of nephrotoxicity we 
highlight the tumor necrosis factor alpha (TNF-α) (Streetz et 
al., 2001). TNF-α is a pleiotropic proinflammatory and 
immunoregulatory cytokine that acts as a mediator of tissue 
injury. In the kidney, infiltrating macrophages and endothelial, 
mesangial, glomerular, and tubular epithelial cells synthesize 
and release TNF-α. This cytokine is a key participant in the 
pathogenesis of kidney injury, triggering inflammation, 
apoptosis, and the accumulation of extracellular matrix, 
impairing glomerular blood flow and damaging the glomerular 
permeability barrier with the development of albuminuria 
(Sanchez-Niño et al., 2010). Interleukin 10 (IL-10) is a 
cytokine with potent anti-inflammatory properties that plays a 
central role in limiting host immune response to pathogens, 
thereby preventing damage to the host and maintaining normal 
tissue homeostasis. Dysregulation of IL-10 is associated with 
enhanced immunopathology in response to infection as well as 
increased risk for development of many autoimmune diseases. 
Thus, a fundamental understanding of IL-10 gene expression is 
critical for our comprehension of disease progression and 
resolution of host inflammatory response (Lyerand Cheng, 
2012). However, there are no reports in the literature on the 
immunomodulatory role of IL-10 in the nephrotoxicity caused 
by AmB and CsA. Thus, in the present paper we have asked 
whether nephrotoxicity generated byAmB and CsA depends 
on the balance of cytokines IL-10 and TNF-αthrough the 
evaluation of DNA fragmentation and gene expression of these 
cytokines in renal cell lines. 
 

MATERIALS AND METHODS 
 

Drugs: AmB and CsAwere donated by Cristália (Produtos 
Químicos FarmacêuticosLtda- Itapira, SP, Brazil). A stock 
solution of 300 µg/mL of AmB in sterile buffer solution (PBS) 
was prepared and different volumes were added to the RPMI-
1640 (Sigma St. Louis, MO, USA) to generate five different 
concentrations: 2, 4, 6, 8 and 10 µg/mL. A stock solution of 
500 µM of CsA was prepared in PBS solution and different 

volumes were added to the RPMI-1640 medium to generate 
five different concentrations: 5, 10, 20, 25 and 30 µM. IL-10 
and TNF-α cytokines (Sigma St. Louis, MO, USA) was 
reconstituted in 5 mM Sodium Phosphate, pH 7.2 to a 
concentration of 1.0 mg/mL, fractionated and stored at -20 °C. 
The concentrated solution was diluted immediately prior to use 
and the cells were pretreated with 1.0 ng/mL (Yin et al., 2015) 
of IL-10 or TNF-ɑ for 30 minutes. 
 

Cell culture: The LLC-PK1 (passages 20 to 30) and MDCK 
cells (passages 30 to 40) were obtained from the Cell Bank at 
Federal University of Rio de Janeiro (UFRJ). These were 
cultivated in an RPMI-1640 culture medium (Sigma St. Louis, 
MO, USA) and supplemented with 10% (v/v) bovine fetal 
serum (Invitrogen Co Ltda, Carlsbad, CA, USA), 100 IU 
penicillin/mL, and 100µg streptomycin/mL (Sigma St. Louis, 
MO, USA). Cells were cultivated in 75 cm2 bottles and 
incubated at 37 °C humidified with 5% CO2. 
 

MTT assay: The MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] test was performed based on the 
studies from Mosmann (1983). The cells were placed on 96-
well plates in a concentration of 5.0 x 103 cells/well containing 
180 µL of medium and were then incubated with 20 µL of five 
different concentrations of the tested drugs for 24 hours at 37 
°C in humidified air supplemented with 5% CO2. Having 
completed these exposure times, the medium containing the 
drug was removed, 20 µL of MTT solution (5.0 mg/mL) was 
added, and the plates were incubated for one hour at 37 °C in 
humidified air supplemented with 5% CO2. The MTT solution 
was then removed, and 100 µL of DMSO was added to each 
well. The absorbance was read at 570 nm (Thermo Plate model 
TP-READER) and the results were expressed as a percentage 
of the viability present in treated cells compared to control 
cells. 
 

Effects of AmB and CsA on TNF-α and IL-10 production in 
renal cell lines: IL-10 and TNF-α levels in cell culture 
supernatants were performed in triplicate using commercially 
available high-sensitivity enzyme-linked immunosorbent assay 
kit (Enzo Life Sciences, Inc, Plymouth Meeting, USA) 
according to the manufacturer’s instructions. LLC-PK1 and 
MDCK cells were plated at 5.0 x 105 cells/well into 24-well 
plates. Twenty-four hours after cells were treated with AmB 
(4.0 μg/mL) and CsA (5.0μM). After 24 h, supernatants cells 
were obtained by centrifugation 1500 rpm, 10 min., and were 
stored at -80 °C. The sensitivities of each ELISA kit were 3.75 
and 8.43 pg/mL for IL-10 and TNF-α respectively. To study 
the involvement in the IL-10 in TNF-α production, LLC-PK1 
and MDCK cells were pretreated for 30 min with IL-10 (1.0 
ng/mL) followed by LPS (1.0 ng/mL) and after 24 h TNF-α 
was quantified. 
 

Sub-diploid DNA content determination: A flow-cytometric 
DNA fragmentation assay was employed as a quantitative 
measure of cell death (Nicoletti et al., 1991). Twenty-four 
hours after treatment with AmB (4.0 μg/mL) and cyclosporin 
(5.0 μM), the cells were collected by centrifugation, lysed with 
300 μL of a hypotonic solution containing 0.5% Triton X-100 
and 50 μg/mL propidium iodide (PI, Invitrogen, USA). Cells 
were incubated at 4°C for 1h and analyzed in a FACScan flow 
cytometer (Becton Dickinson, Germany) for shifts in PI 
fluorescence that was indicative of nuclei with hypodiploid 
DNA content. Sub-diploid DNA content and cell viability 
were measured after 24 h to assess the cellular responses in the 
presence of the AmB and CsA. To study the involvement of 
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IL-10 and TNF-α in AmB and CsA induced cell death, LLC
PK1 and MDCK cells were pretreated for 30 minutes with IL
10 or TNF-α(1.0 ng/mL) followed by AmB (4.0 µg/mL) and 
CsA (5.0 µM) treatment. Sub-diploid DNA content and cell 
viability were measured after 24 h to assess the cellular 
responses in the presence of the IL-10 or TNF
 

Gene expression using RT-PCR: Total mRNA was extracted 
from 1.0 x 106 of the renal cell lines using Trizol reagent 
according to the protocol provided by the manufacturer and 
resuspended in 30μL of RNase-free water. The concentration 
and purity of mRNA was estimated by A260 / A280 ratio in 
spectrophotometer. A total of 1μg of mRNA was converted to 
cDNA using an oligo (dT) and a High-Capacity DNA Reverse 
Transcription kit following manufacturer's recommendations. 
Real-time PCR was performed using a Power SYBR® Green 
PCR Master Mix reagent with a final volume of 12 μL. The 
reaction included 0.1 μg of cDNA and 0.5 μL of each primer 
(reverse and forward, 10μM). Primers used were as follows: 
IL-10 sense primer 5'-ATGCCCCAAGCTGAGAACCAAGA
CCCA-Y (nt 323 - 349), IL-10 anti-sense primer 5'
TCTCAAGGGGCTGGGTCAGCTATCCCA
(Vieira et al., 1991), TNF-α sense primer 5'
AGAGGGAAGAGTTCCCCAGGGAC-Y (nt 310 
TNF-α anti sense primer 5'-TGAGTCGGTCACCCTT
CTCCAG-Y (nt 782 - 760) (Pennica et al
sense primer 5'-GTGGGGCGCCCCAGGCACCA
20), β-actin anti sense primer 5'-GTCCTTAATGTCACGC
ACGATTTC-3' (nt 548 - 530) (Alonso et al
mRNA was isolated from cells using Trizol reagent according 
to the manufacturer's procedure (Life TM
Scientific, Waltham, MA) using the cell lines. Concent
of extracted mRNA was calculated using a nanodrop 
spectrophotometer (Thermo Fisher Scientific). Reverse 
transcription was carried out with the IllustraTM Ready
GoTM Beads kit using 100 ng of mRNA and oligodT based on 
manufacturer's protocol (GE Healthcare, Chicago, IL). 
Relative expression level of the genes transcripts was 
compared to GAPDH as a housekeeping gene. PCR was 
performed on the Applied Biosystems Step One
PCR System at 50ºC for 2 min, 95ºC for 10 min, followed by 
40 cycles at 95ºC for 15 s and 60ºC for 1 min.
 

Statistical analysis: All results were analyzed by ANOVA and 
Tukey post-test using GraphPad Prism version 5.00 for 
windows (San Diego, CA). p<0.05 was considered to indicate 
statistical significance.  
 

RESULTS 
 

Cytotoxic effects of AmB and CsAon cell lines
CsA proved to be cytotoxic for LLC-PK1 and MDCK cells. 
Significant reduction in cell viability could be observed in 
concentrations ≥ 4.0 µg/mL (AmB) and ≥ 5 µM (CsA) using 
MTT test in both cell lines (Figure 1). 
 

Effect of AmB and CsA on the production of IL
TNF-α: The results showed that AmB decreased IL
production in LLC-PK1 cells (46%) and MDCK cells (34%), 
as did CsA: LLC-PK1 (30%) and MDCK (61%) (Figure 2). 
These decreases were statistically significant (p <0.05).
However, when cells were exposed to LPS, AmB and CsA, 
and then incubated with IL-10, there was a significant (p 
<0.05) reduction in TNF-α production when compared to the 
LPS-treated group alone (gold standard of TNF
by cells) (Figure 3). 
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Figure 1. Cytotoxicity of cell lines exposed to amphotericin B and 
cyclosporine. The cultures were evaluated by MTT assay after 4 h 
of exposition to drugs. The average absorbance of each 
amphotericin B and cyclosporine concentration was 
the control group (cells not exposed to the drug) and for this 
100% viability was considered. For each time of incubation: n=5, 
and for each concentration 6 repetitions. *p< 0.05 and **p< 0.01 
when compared with control group.
 

DNA fragmentation induced by AmB and CsA
in the percentage of dead cells occurred 24 hours after 
treatment with AmB and CsA. These cells population consists 
of a sub-diploid DNA content that is indicative of DNA 
fragmentation and cell death. This alteration c
in LLC-PK1 and MDCK cell lines. The quantitative analysis 
of DNA fragmentation in two lineages is demonstrated in 
Figure 4. AmB caused 35.9% cell death in LLC
19% in MDCK cells, while CsA caused 9% cell death in LLC
PK1 cells and 16% in MDCK cells. When the cells were pre
treated with TNF-α and subsequently with the drugs there was 
a significant increase in DNA fragmentation compared to cells 
treated with the drugs alone. In LLC
of cell death was 57.25% for AmB and 37% for CsA. In 
MDCK cells the percentage of cell death was 36% for AmB 
and 29% for CsA. However, after cells were pretreated with 
IL-10 (Figure 5), there was a significant reduction in drug
induced DNA fragmentation. LLC
death after AmB treatment and 2.4% cell death after 
incubation with CsAIn MDCK cells the percentage of death 
was 10.3% for AmB and 5.25% for CsA, and these reductions 
were significant when compared to the groups treated only 
with the aforementioned drugs.
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Figure 2. Effect of amphotericin B and cyclosporine on the 
production of IL-10 and TNF-α. IL-10 and TNF
culture supernatants were performed in triplicate using a 
commercially available high-sensitivity enzyme
immunosorbent assay kit (Enzo Life Sciences, Inc, Plymouth 
Meeting, USA) according to the manufacturer’s instruc
values represent the mean ± standard deviation (SD) of the 
results of six independent experiments performed in sextuplicate. 
*p<0,05 when compared with the respective control
 

LPS, AmB and CsA increased TNF-α production by renal 
cells. In LLC-PK1 the increase was 530%, 304% and 283%, 
respectively. In MDCK cells these increases were 407%, 165% 
and 506%, respectively 
 

 

Figure 3. Modulating effect of IL-10 cytokine on the production 
of TNF-α generated by LPS, amphotericin B and cyclosporine.
TNF-α levels in cell culture supernatants were performed in 
triplicate using a commercially available high-
linked immunosorbent assay kit (Enzo Life Sciences, Inc, 
Plymouth Meeting, USA) according to the manufacturer’s 
instructions.The values represent the mean ± standard deviation 
(SD) of the results of six independent experiments performed in 
sextuplicate. ##p<0.01 when compared with the negative control 
and **p<0.01 when compared with LPS.   
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Figure 4. Effect of the treatment with TNF
fragmentation induced by amphotericin B (AmB) and 
cyclosporine (CsA). The cells were placed at the density of 1.0 x 
104 cells/well in a 24-well plate and were treated with AmB 4.0 
µg/mL and CsA5.0 µM in triplica
analyzed after staining with propidium iodide (PI). A flow
cytometric assay was employed as a quantitative measure of cell 
death. Results are expressed as percentage of events from a total 
of 5.000 events. Results represent mean 
from three independent experiments. * and # mean significantly 
different from control or group treated with AmB or CsA 
(p<0.05), respectively.**p<0.01 
control. 
 
Effect of treatment with IL-10 on kidney
induced by AmBand CsA: Gene expression in renal cells was 
analyzed by real-time reverse
reaction (RT-PCR) (Figure 6). The results indicated that 
AmBand CsA reduced IL-10 mRNA expression (Figure 6A) 
and increased TNF-α mRNA expression (Figure 6B). When 
cells were treated with LPS, AmBand CsA this increase 
occurred, however when cells were pre
subsequently with LPS, AmB and CsA, there was a significant 
reduction in TNF-α mRNA expression, whi
immunomodulatory role of IL
nephrotoxicity. 
 

DISCUSSION 
 
According to Figure 1, the renal toxicity caused by AmB and 
CsA is concentration-dependent. Many studies show that AmB 
causes lesions on renal cells when used in co
5 to 20 µg/mL (Yano et al., 2009), which is consistent with our 
study’s findings, given that AmB, when applied in the range 
from 4 to 10 µg/mL, caused a significant loss of cell viability. 
Hence, one can infer that AmB promotes changes in
mitochondrial metabolism, considering that the MTT evaluates 
the integrity of this organelle. It has been reported that 
nephrotoxicity appears after treatment with high
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(1.5 mg/Kg/day), indicating that the plasma concentration is 
estimated to be approximately 4.0 µg/mL (Gates and Pinney, 
1993). Therapeutic concentrations of CsA range from 0.1 to 
1.6 µM (Hauser et al., 1998; Kovarik et al., 2003).

 

 

Figure 5. Effect of the treatment with IL
fragmentation induced by amphotericin B (AmB) and 
cyclosporine (CsA). The cells were placed at the density of 1.0 x 
104 cells/well in a 24-well plate and were treated with AmB 4.0 
µg/mL and CsA 5.0 µM in triplicates. DNA fragmentation was 
analyzed after staining with propidium iodide (PI). A flow
cytometric assay was employed as a quantitative measure of cell 
death. Results are expressed as percentage of events from a total 
of 5.000 events. Results represent mean + SD of triplicates (n=3) 
from three independent experiments. * and # mean significantly 
different from control or group treated with AmB or CsA 
(p<0.05), respectively.**p<0.01 significantly different from 
control 
 

Jiang and Acosta (1993) also reported that due to its high 
lipophilicity, CsA mainly accumulates in the kidneys, with 
concentration levels reaching as much as 50 times that found 
in blood plasma. Therefore, the present study opted for the use 
of 4.0 µg/mL of AmB and 5.0 µM concentration of CsA in 
studies that evaluate immunomodulation involvement in 
nephrotoxicity. Inflammation plays a central role in the 
pathogenesis of drug induced kidney injury. CsA induces 
deranged renal functions and altered renal morphology through 
multiple mechanisms including hypoxia, generation of 
oxidative stress, inflammation (Chander et al
al., 2011; França et al., 2014a) and expression of various 
inflammatory cytokines (Walker and Endre, 2008).
mediated through the expression of cytokines upon activation 
of TLRs located on the renal parenchymal and 
tubulointerstitial cells (Chai et al., 2013). 
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drugs, thereby preventing damage to the host and maintaining 
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monocytes/macrophages (Sedor, 1992; Sedor et al., 1993). 
TNF-α reduces renal blood flow and glomerular filtration rate 
by acting as a vasoconstrictor and can cause natriuresis by 
inhibiting renal epithelial sodium channel activity (Shahid et 
al., 2008; Shahid et al., 2010; Majid, 2011). TNF-
α participates in the process of renal injury by recruiting and 
activating inflammatory cells (Egido et al., 1993). However, 
besides the production of proinflammatory cytokines, it is 
possible for an anti-inflammatory response to contain the 
inflammation and limit cellular destruction. A key cytokine 
that appears to restore the balance between proinflammatory 
and anti-inflammatory cytokines is IL-10 (Wang et al., 1995), 
which is a potent immunoregulatory cytokine produced by 
macrophages, T cells, B cells, epithelial cells, and mast cells. 
IL-10 has been shown to exert a protective effect against 
inflammation (Bean et al., 1993; Gérard et al., 1993) due to 
generalized downregulation of proinflammatory cytokines 
such as IL-1, TNF-α and IL-6 (Fiorentino et al., 1991). 
Though, the regulation of IL-10 in tubular cells (LLC-PK1 and 
MDCK) is not clearly described. 
 
Our results showed that IL-10 was able to modulate the 
production of TNF-α in the proposed challenges: LPS, AmB 
and CsA. In all stimuli IL-10 was able to exert an anti-
inflammatory stimulus, reducing (p<0.01) TNF-α production 
(Figure 3). Generally, a combination of physiologic and 
biochemical events contributes to the susceptibility of the 
kidney to several distinct classes of nephrotoxicity. Compared 
with other organs, the kidney is uniquely susceptible to 
chemical toxicity, partially because of its disproportionately 
high blood flow (25% of cardiac output), and due to its 
complexity, both anatomically and functionally. Kidneys also 
play an instrumental role in regulating overall blood pressure. 
Urine is the principal route by which most toxicants are 
excreted. As a result, the kidney concentrates toxicants in the 
filtrate, transports toxicants across the tubular cells and bio-
activates certain toxicants. All these attributes make kidneys 
extremely vulnerable to a variety of adverse effects. A very 
recent study (Wirestam et al., 2017) suggests that CsA can also 
damage renal tubular cells by indirect mechanisms, inducing 
the production of osteopontin, which promotes inflammation 
that injures renal cells. The mechanism of renal damage has 
been the focal point of intense investigation for many years. 
Several studies advocate that inflammation, oxidative stress 
injury and apoptosis undoubtedly participate in 
renalimpairment (França et al., 2014a). Among these 
pathological changes, instigation of an inflammatory cascade 
is the most important issue, which is mediated by nuclear 
factor-κB (NF-κB) signal transduction pathway. Activation of 
NF-κB promotes proinflammatory cytokines and enzymes, 
including TNF-α, interleukins, nitric oxide (NO) and inducible 
nitric oxide synthase (iNOS), which may eventually cause 
renal damage (Kumar et al., 2017). Now it is well established 
that apoptosis is biochemically characterized by orderly DNA 
fragmentation, and morphologically characterized by 
sequential phases of chromatin margination and condensation, 
cell disintegration without an inflammatory response and 
phagocytosis by surrounding cells (Ray et al., 1996; Ray, 
1999; Savilleand Fadok, 2000). Apoptosis has been observed 
in a wide variety of tissues, such as the liver (Ray et al., 1996; 
Ray, 1999), kidney (Strika et al., 1998; Hickey et al., 2001), 
heart (Sam et al., 2000) and intestine (Martin et al., 
2000).Similarly, apoptosis being induced by a variety of drugs 
and chemicals in several tissues has also been demonstrated 
(Ray, 1999). Propidium iodide (PI) is widely used in the study 

of cell death, as it does not penetrate through the cell 
membrane, thus differentiating among normal cells of 
apoptotic and necrotic cells. A characteristic of the cells in the 
early stages of apoptosis is the maintenance of the integrity of 
the membrane and the ability to exclude dyes, such as PI 
(Aubry et al., 1999). Late phases of apoptosis are commonly 
accompanied by an increased permeability of the cell 
membrane, which allows for an intake of PI within the cells 
(Hashimoto et al., 2003). Renal cells are capable of producing 
intrinsic survival factors such as IGF-1, cyclooxygenase-2-
derived prostaglandins, and eicosanoids, which can facilitate 
recovery from or even prevent toxic injury. It is conceivable 
that different cell types require different mediators to undergo 
apoptosis or to survive toxic injury (Varlam et al., 2001).  

 
LLC-PK1 cells presented a higher percentage of cell death 
(DNA fragmentation), showing themselves to be more 
sensitive to the toxic effects of AmB.CsA also induces 
nephrotoxicity by directly inducing tubular cell apoptosis. 
Indeed, renal biopsy specimens from patients with CsA 
nephrotoxicity always exhibit apoptosis (Rao et al., 2007). In 
addition, CsA is directly toxic to LLC-PK1 and MDCK renal 
tubular cells and this effect associates with DNA synthesis 
inhibition and the induction of apoptosis that is mediated by 
the Fas antigen-ligand system (Kim et al., 2000). The 
increased fragmentation of DNA observed in flow-cytometry 
can be interpreted as cell death (Nicoletti et al., 1991). 
Therefore, it can be concluded that AmB and CsA caused cell 
death in the two studied cells lines, and these can be found in 
the late stages of apoptosis/necrosis (Figure 4). Our results also 
showed that TNF-α was able to potentiate the action of AmB 
and CsA in generating DNA fragmentation in the two strains 
studied (Figure 4). Other results showed that IL-10 was able to 
decrease the fragmentation of DNA generated by both AmB 
andCsA significantly (Figure 5). Another observation is that its 
inhibitory action was more pronounced in LLC-PK1 than in 
MDCK cells (Figure 5A).   
 
According toLyer and Cheng (2012), the impaired IL-10 
expression or signaling can enhances clearance of pathogens 
during an acute infection, but also exaggerates inflammatory 
response, resulting in exacerbated immunopathology and 
tissue damage. Our results showed that both AmB and CsA 
were able to inhibit IL-10 mRNA expression significantly 
(Figure 6A). Other results showed that LPS enhances TNF-α 
mRNA expression and that TNF-α mRNA significantly 
decreased in the presence of IL-10 (Figure 5B). We observed 
this same profile in response to incubation with AmB and 
CsA, in which both drugs increased the expression of TNF-α 
mRNA and IL-10 decreased this expression (Figure 6B). Thus, 
IL-10 can reduce the effects generated by nephrotoxicity 
caused by AmBand CsA by reducing the production of TNF-α. 
IL-10 production can inhibit proinflammatory response to a 
number of pathogens, including Plasmodium spp, 
Leishmaniaspp, T. cruzi, Mycobacterium and Lymphocytic 
choriomeningitis virus, to the extent that pathogens can escape 
immune control, resulting in either fulminant and rapidly fatal 
or chronic nonhealing infections (Lyer and Cheng, 2012). Our 
results suggest that therapeutic strategies that induce an 
increase in IL-10 gene expression may be an alternative to 
decrease the nephrotoxicity caused by AmBand CsA, as 
demonstrated by IL-10 that modulated the production and gene 
expression of the TNF-α mRNA, reducing DNA fragmentation 
induced by the drugs. 
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