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ARTICLE INFO  ABSTRACT 
 
 

We have defined the non-abelian pure gauge theory SU (3) on a torus. Fourier modes are discrete 
throughout this definition.  For enough small size, we have treated the non-glue ball modes as a 
perturbation of zero modes. Infra-red singularity is not appearing throughout the discrete 
momentums. The temperature depending contributions of the effective potential of the non-
abelian glueball gauge fields are continuously calculated by us, for the first time on an 
asymmetric torus 3L , till the fourth grade of gauge fields. So, L is the length of the torus in 

space direction and  is the length in time direction (the inverse of temperature). The Phase 

transition is indicated by the coefficient  2   instead of the coupling constant g. The critical 

temperature is 
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 K 

 

 
 

 
Copyright © 2019, Dr. Salman Al- Chatouri. This is an open access article distributed under the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 
 
 

 
 

INTRODUCTION 
 
The thermodynamic properties of systems of the quantum fields theories are great interest. These systems are described in case of 
equilibrium by the formalism of the imaginary time which Matsubara introduced. There are active algorithms for the numerical 
investigation equilibrium problems. The formalism of the real time or Minkowski’s space which was introduced to the 
perturbation theory by relationship with statistic of the non-equilibrium by Schwinger and others is a useful formalism for the 
calculation of correlation functions depended on time.  Treatment of non-equilibrium problems is very important [1-37]. From the 
point of view of elementary particles physics, these problems must be exposed, a description of the heating of the early universe 
(according to an available expositing phase) or a description of hadronic material under extreme conditions for studying the 
experimental results for a short transition to a quark-Gluon-plasma-phase. The third problem is called the anomaly Baryon number 
violation processes in the stander model. One, principally, can try to treat such problems by the analytical continuation to 
imaginary time, but in the practice the return of the analytical continuation to real time in many cases, is rarely able to practice in a 
special case that can not be done when approximations come for use in Euclidean formalism (that can rarely be avoided). The aim 
of this work is to develop suitable algorithm to describe non-equilibrium processes. The physical background was built by the 
heating of the early universe, and by a description collision of heavy ions at high energies. The algorithm that is to be developed is 
based on a combination of the background fields method and one-loop-approximation. This method has been developed for the 
pure gauge theory (without fermions) with the gauge group theory SU (3). As the effective potential can be calculated in 
Mincowski’s space or in Euclidean-space, the Euclidean formalism was chosen because of plainness. This means that we have 
calculated the effective potential at finite temperature on the asymmetric torus 3L  , Meanwhile (L) is the length of the torus in 

all the three-space direction and  is the length in the time direction.  
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The gauge theory is considered on the torus in 1979 by the scientist G.T. Hooft, after that, Lusher [22-23], Van Baal [24-28], 
J.Kripfganz and C.Michael[29-30], have worked in this field. All these works deal with the glueball spectrum in a small or 
medium size. Fremionic contributions were considered by J.Kripfganz, C.Michael and Van Baal. The pure gauge theory on the 

asymmetric torus: 3L was studied and discussed the finite temperature by Al- Chatouri, S.[17] . We followed [17] and [28] 

when we have calculated the effective potential. That means we have used the one-loop-approximation. 
 

RESEAARCH METHODOLOGY 
 
 Calculation of temperature contributions for the effective potential. 

 The investigating about the quark – gluon – plasma phase and determination of the critical temperature .crT  

 
The research method and its materials: 
 
We have mentioned in the introduction that we took the developed numerical algorithm in the Dissertation [17] and the references 
[22-29] which is based on a combination of the background fields method and one-loop-approximation for the pure gauge theory 
with the group SU (3). We will follow the reference [17] in all steps. 
 
The gauge theory: 
 
Introduction 
 
In this term, we will discuss the moving of the pure QCD. When the perturbation theory is employed on the QCD theory, it is 
necessary to use the infra-red cut-off. It's a very kind way which one considers the theory on a torus with d dimensions and puts 
extreme periodic conditions. These extreme conditions are not allowed to destroy the invariant of the gauge. The gauge potential is 
periodic till the gauge transformations. We will use the non-local gauge invariant which is introduced in [28]. The modes are 
divided into glueball and non-glueball. The integration of the non-glueball modes was done by the one-loop-approximation. 
 
The one-loop –approximation 
 
We will only derive from this passage the effective potential at a finite temperature.  
 
The Division into glueball modes and non-glueball modes 
 
We introduce the projector P: 
 

 33

1
T

A
L

PA 
,  (2.2.1.1) 

 

and function of gauge invariant : 

0
1]),[)(1( PALAPAiAP  

  ,                                                                                      (2.2.1.2) 

with the definition: 

 

 APQPAB )1(,      (2.2.1.3) 

 

  is equivalent to : 

 

   0,,0   QBiQB .          (2.2.1.4) 

 

One can calculate Faddeev’s - Popov’s determinant to a standard method. Under the infinitesimal 
gauge transformation.  
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  iexp  

is: 

].,[]}),)(([)()(){1( 0
1

0
1   APiLPLAADPiADPADP    (2.2.1.5) 

 

D  (A) is the covariant derivative in this relation. 

 

When we divide   into  and   P1 we will find: 
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 (2.2.1.6) 
 
The operator M is: 
 

   ,,)()(  APAADPADM   .     (2.2.1.7) 

 
It can express Faddeev-popov’s determinant: 
 


 1))(()( DA     (2.2.1.8) 

   ddDDA)(
2
0

1
exp(

g
 (Tr  )  .)),( 00  AP

L

i
Tr                        (2.2.1.9) 

 

  and  are the space sections of the ghost-fields,   

 

the sign / on D means that 0  . While  and     are constant to the space, it can be explicitly integrated.  

These integrations about  and  deliver a constant.  This identity (2.2.1.8) can be generalized: 
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    (2.2.1.10) 

 

Meanwhile,  is known throughout 0X  and / means that   0 . When we put this in the sum of the states, we 
conclude that: 


)(

))(
1

exp(

)(2)())((
2

1
(

1
exp

2

2

22

2
0 E

ETr
g

ED

TrETrAFTr
g

DDDA

Z

o













 

 


 
      (2.2.1.11) 

 

After doing the integrations about   we conclude the expression of Z: 
 

.))(2)()((
2

1
(

1
exp 22

2
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   TrTrAFTr

g
DDDAZ          (2.2.1.12) 

 
From (2.2.1.2) , (2.2.1.3) and(2.2.1.4) we find : 

28600                                      International Journal of Development Research, Vol. 09, Issue, 07, pp. 28598-28618, July, 2019 
 



0 B  .       (2.2.1.13) 

 
This leads to: 
 

 QBD )(  .                      (2.2.1.14) 

 
We put this in (2.2.1.12): 
 

      



  

2

2
0 2

11
exp   QBDTrQBFTr

g
DDQDDBZ

           ,,22 QpQTrQBDBDTr                                                                 (2.2.1.15). 

 
one can simply derive effective Lagrange function for B. 
 

   )exp())(exp( effeff SDBBLdDBZ   .                        (2.2.1.16) 

 
This means: 

    )),,,(
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exp(1)( 3

2
0




QBxLdd
g

DDQDogBLdS effeff         (2.2.1.17) 

 

Meanwhile,   ,,,QBL  will take the following form: 
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  (2.2.1.18) 

 

When we develop   2][ QBF  till the second grade of Q, we get: 

 

  .)))(()())((
2

1
())((

2

1 222
   QDTrQWQTrBFTrQBFTr ij

 (2.2.1.19)   

 
So, it is: 
 

  QFiQBDQW ,2)(2   .  

 

When we put this in   ,,,QBL  and take terms till the second grade of ,Q and    we get: 

 

))((2)())(
2

1
(),,,( 22   BDTrQWQTrBFTrQBL     (2.2.1.20) 

 
From (2.2.1.17) and (2.2.1. 20), we get: 
 

.))])((2)())(
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1
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1
exp[1)(

0

223

2
00 3
  







T

eff BDTrQWQTrBFTrxdd
g

DDQDogBLd
         (2.2.1.21) 

Integrations on Q,,  are Gauss integrations and supply a determinant. After that, we get the expression of the effective 

potential: 
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1 ]
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BW

BD
ogVd eff   .  (2.2.1.22) 

 

The index (1) is to one-loop-approximation, so  BD  is inverse ghost-propagator and: 

 

)(2)()( 2 BiadFBDBW ij   ,  (2.2.1.23) 

 

the propagation of the inverse vector propagator.  BadFij  is  BFij in the  adjoint representation  which is known in the 

appendix C. 
 

222 )(2 iii adBiadBD     (2.2.1.24) 

 

So, iadB  is the vector potential iB  in the adjoint representation. 

 
In the momentum representation , it confirms : 
 

222 )(2 iii adBKadBKD  .   (2.2.1.25) 

 
The equation (2.2.1. 22) is written as : 
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     (2.2.1.26) 

 
Development with the grades of B 
 
In order to calculate both the determinants , we have to use the following identity: 
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In order to calculate  
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1  , (2.2.2.1) is written as : 
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   (2.2.2.2) 
Meanwhile, it is: 
 

2 A    (2.2.2.3) 

And: 
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)(2))(2( 2 BiadFadBiadBC ijiii   . (2.2.2.4) 

This means that we are calculating the determinant till the forth grade of 
a
iB . We introduce Fourier transformations: 
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 (2.2.2.5) 
Now, we calculate the trace on space – time: 
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We use the same identity to calculate the other determinants 
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It is by this: 
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While calculating the 

trace on space. time, we get the following equations: 
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We put (*) in (2.2.2.5) and (**) in (2.2.2.6) , then we get the following equations : 
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    (2.2.2.8) 
 
when we put (2.2.2.7) and (2.2.2.8) in (2.2.1.27) , then we get – for the effective potential – the following expression 
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The case of the vanish temperature 
 

The sum 
0K

is considered integration on 0K   . After doing the integration on 0
K  , the effective potential of one-loop-

approximate will take the following expression: 
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Meanwhile, the coefficients are 
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This conclusion accords to the reference [28].  
 
The case of the non- vanish temperature From (2.2.2.9) results : 
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So, the coefficients: 
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One can calculate these coefficients by the helping of the heat kernel. Up from now, we will omit xd d
  because this 

integration delivers only the constant
3L  . The definition of the kernels 1

g  and 2
g  , which appear in the calculation is that one 

can find in the appendix A. We will divide the coefficients into: related to heat parts and others are not so. By this, we can write 

)1(effv  as: 
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At the end, 1 becomes into two parts: one is related to heat   01  T and other which is not related to heat
1 : 
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From (2.2.4.3) , (B.7) and (B.8) results : 
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We put, after that, (A.12) in (2.2.4.10) and find: 
 

   

 

   

 
.

4
exp

2

14

1
4

exp
1

2

23

4

14

1
2

1

2

23

1
22

1

2
0

2

2

3

0

2
1

2
0

2

0

2

1

1
22

2

3

0

2
2

1

0

2

0

0


















 









































































d

n
d

d

n
d

d

d

d

d

ggn
t

tdt
L

d

d

d

gn
t

tdt
L

d

ggtdt
L

d

d

d

gtdt
L

d














 

   (2.2.4.11) 
 
This means: 
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and: 
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The divergence that occurs for d3 in 2  is summarized by considering the divergence which arises at the normalization, this 

means: 
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The related to heat part  02  T  reads: 
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When we put (B.7), (B.8) and (B. 9) in (2.2.4.4) we get the following expression of 3 : 
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We put, after that (A. 12) in (2.2.4.17). 3  , at that time, is divided into two parts: 
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and: 
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We similarly calculate 4  . First put (B.10) in (2.2.4.5), we get   then: 
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Then, we put (A,12) in (2.2.4.21) , So , 4  is divided into two parts:  
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RESULTS AND DISSCUUSSION  
 

The minimum of the classical potential is acceptable when the eight fields of gauge 
a
iB  are parallel in the eight degree of 

freedom (SU (3)- indices). This is what one calls toron-valley. We make this valley parameter throughout the length iB of these 

eight parallel gauge fields. 
The effective potential of toron is devoted to the homogenous gauge fields through this combination. 
 

a
i

a
i nBB       (2.3.1) 

 

 That is 1. aa nn  . 

 

The coefficients 4321 ,,,    are numerically calculated for different values of temperature. Meanwhile, the coefficients 

4321 ,,,    are independent of torus-length L. In order to calculate 4321 ,,,    we take L= 1. When calculating 

2   and 3   , one can prove that the integrations for 1.0   are very small. So, we need to take the integrations only in 

the range 10  t .  The numeral results of the coefficients  4321 ,,,     are given in  

table (1). One can see that  421 ,,    are degreased by increasing the temperature, while 3  is increased by the increasing of 

temperature. We have the effective potential of Toron: 
 

28610                                      International Journal of Development Research, Vol. 09, Issue, 07, pp. 28598-28618, July, 2019 
 



        414

4

13

2

1111 BabcdBabcdBBV cdabcdabTor
eff SS     

 

          2.3.260;60
4

143

2

1111  cdabTor
eff

abcdBBBV S   

 
It is drawn in figure (1). The drawn potential of Toron is sloping with temperature. This means that the valley becomes deeper 
with the increasing of the temperature. In order to be able, discuss the behavior of the gauge theory, we have to know the behavior 
of the effective potential or the behavior of the gauge fields with temperature. For that, we consider the second derivative of the 
effective potential: 
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From that, we draw: 
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in figure (2). Meanwhile: 
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is the coupling constant which is defined throughout the minimum subtraction of dimension – normalization [23]. Constants 

10 ,bb  have the following values: 

 

   41
2

0 4
3

136
,4

3

22
  bb .                           (2.3.6) 

 
Figure (2) shows that the bend is decreasing by the increasing of temperature. For the low temperature, the valley from the inside 

is narrower than it is from the outside. This is confirmed till about  4.2
c

L
Z


 .  (2.3.7) 

11116666667.24166666667.0
4.2

1

4.2
 Gevf

L
C  

The critical temperature  4735595896.0
1


c

CT


 Gev = 10
12

6827150752.5  K 

This result identified the result in [17.33]. 
  
 
For   2.4 < Z   ; the inside of the valley becomes wider than its outside. Qualitatively, the change in the valley-configuration 

indicates the phase-transition which was investigated in [31-33]. The coefficient  2   in table (1) also indicates this phase-

transition. 
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Appendix A: The heat kernels: First, we will define the heat kernels: 
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One can derive the properties of 21 , gg and 3g  for t is small by the helping of Possion-resummation: 
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From (A,8) for the heat kernel  3g  , we get these following   relations: 
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This concludes to: 
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The  tCn can be stated from (A,8): 
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One can , by the helping of  uh1  and  uh2  , write 1g and 2g : 
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Meanwhile,  uhu 1,  and  uh2  are defined like this: 
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At 0t , one can use (A.6) and (A.7) which are written like this 
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But, for t  one can use (A.1) and (A.2) which are written like the following: 
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Now, we will calculate the derivatives of  2
g  to 0t  : 
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Appendix B: calculation of sums of the discrete momentums on the torus, one can write for Bosons: 
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this concludes to: 
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Now, we will rewrite these coefficients as integration on the heat kernels. First, we calculate the following integration: 
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Meanwhile, it is: 
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After that, one easily finds that these following relations are really active: 
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Appendix C: Group theories relations: Lie – Algebra  3SU consists of all complex 3×3 matrixes xwith: 

 

  .0,  xTrxx    (C.1) 

 

The base, for such matrixes, is 
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these a  are the Gell – Mann- matrixes: 
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The matrixes 
aT fulfill: 

 

  ab
ba TTTr 

2

1
 .    (C.4)  

 
The structure constant is defined throughout: 
 

  CabCba TifTT ,     (C.5) 

 

When x  is an element of Lie – Algebra  3SU , it is after that: 

 

aaTxx    .   (C.6) 
 
In the adjoint representation, it is: 
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In the following notes, we will point some of the adjoint representation rules: 
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Note: some of the relations are only applied when iB  is constant. 
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