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INTRODUCTION

The thermodynamic properties of systems of the quantum fields theories are great interest. These systems are described in case of
equilibrium by the formalism of the imaginary time which Matsubara introduced. There are active algorithms for the numerical
investigation equilibrium problems. The formalism of the real time or Minkowski’s space which was introduced to the
perturbation theory by relationship with statistic of the non-equilibrium by Schwinger and others is a useful formalism for the
calculation of correlation functions depended on time. Treatment of non-equilibrium problems is very important [1-37]. From the
point of view of elementary particles physics, these problems must be exposed, a description of the heating of the early universe
(according to an available expositing phase) or a description of hadronic material under extreme conditions for studying the
experimental results for a short transition to a quark-Gluon-plasma-phase. The third problem is called the anomaly Baryon number
violation processes in the stander model. One, principally, can try to treat such problems by the analytical continuation to
imaginary time, but in the practice the return of the analytical continuation to real time in many cases, is rarely able to practice in a
special case that can not be done when approximations come for use in Euclidean formalism (that can rarely be avoided). The aim
of this work is to develop suitable algorithm to describe non-equilibrium processes. The physical background was built by the
heating of the early universe, and by a description collision of heavy ions at high energies. The algorithm that is to be developed is
based on a combination of the background fields method and one-loop-approximation. This method has been developed for the
pure gauge theory (without fermions) with the gauge group theory SU (3). As the effective potential can be calculated in
Mincowski’s space or in Euclidean-space, the Euclidean formalism was chosen because of plainness. This means that we have
calculated the effective potential at finite temperature on the asymmetric torus 3 B> Meanwhile (L) is the length of the torus in

all the three-space direction and £ is the length in the time direction.
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The gauge theory is considered on the torus in 1979 by the scientist G.T. Hooft, after that, Lusher [22-23], Van Baal [24-28],
J Kripfganz and C.Michael[29-30], have worked in this field. All these works deal with the glueball spectrum in a small or
medium size. Fremionic contributions were considered by J.Kripfganz, C.Michael and Van Baal. The pure gauge theory on the

asymmetric torus: L x IB was studied and discussed the finite temperature by Al- Chatouri, S.[17] . We followed [17] and [28]
when we have calculated the effective potential. That means we have used the one-loop-approximation.

RESEAARCH METHODOLOGY

e (Calculation of temperature contributions for the effective potential.

e The investigating about the quark — gluon — plasma phase and determination of the critical temperature Tcr.

The research method and its materials:

We have mentioned in the introduction that we took the developed numerical algorithm in the Dissertation [17] and the references
[22-29] which is based on a combination of the background fields method and one-loop-approximation for the pure gauge theory
with the group SU (3). We will follow the reference [17] in all steps.

The gauge theory:

Introduction

In this term, we will discuss the moving of the pure QCD. When the perturbation theory is employed on the QCD theory, it is
necessary to use the infra-red cut-off. It's a very kind way which one considers the theory on a torus with d dimensions and puts
extreme periodic conditions. These extreme conditions are not allowed to destroy the invariant of the gauge. The gauge potential is
periodic till the gauge transformations. We will use the non-local gauge invariant which is introduced in [28]. The modes are
divided into glueball and non-glueball. The integration of the non-glueball modes was done by the one-loop-approximation.

The one-loop —approximation

We will only derive from this passage the effective potential at a finite temperature.

The Division into glueball modes and non-glueball modes

We introduce the projector P:

1 , 2211

and function of gauge invariant y :
x=(=P)0,A, +i[PA,,A,1)+L" x P4, > (2.2.1.2)

with the definition:

B,=PA4,0,=(1-P)4, (22.1.3)
¥ 1s equivalent to :
Bgy = O,aﬂQﬂ +i[ Bﬂ,Qﬂ ]= 0. (2.2.1.4)

One can calculate Faddeev’s - Popov’s determinant to a standard method. Under the infinitesimal
gauge transformation.
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Q=explicA)
1s:
Sy=(-P){D,,(PAD,(A) +i[P(D,(4)), A,1}+L'0yPA+iL" x P[4y, A]l. (22.1.5)

D w (A) is the covariant derivative in this relation.

When we divide A into PAand A" = (1 — P)A we will find:
Sax=0-P) [ D,(PND, (AN ~|Pl4,.A" ], 4, ]

+iaopA+2XP[A09A, 1+ [z, PA ]

(2.2.1.6)
The operator M is:
MA =D, (PAD,(A) +|4,,P|4,,A ]]. @2.17)
It can express Faddeev-popov’s determinant:
A()=(| DQS(z*) (22.18)
A(4) = [D'yD'y dndT] exp( % [rrr M W)+ Tr(170n + 277 x P[4,,w ). (2.2.1.9)

8o

¥/ and l,7 are the space sections of the ghost-fields,

the sign’ on D means that P Y = P W = (0. While 7] and ﬁ are constant to the space, it can be explicitly integrated.

These integrations about 7] and ﬁ deliver a constant. This identity (2.2.1.8) can be generalized:

A(A4™)[DQS(y - E) .,

]

(2.2.1.10)

IDE exp[ggj.Tr(Ez)

Q
Meanwhile, € is known throughout X 0 = E and’ means that PE = 0. When we put this in the sum of the states, we
conclude that:

[D4,D'y D’t//exp{lzj(;Tr(F#zu (A)+Tr(E*) - 2Tr(My) | (2.2.1.11)
8o

Z= xo(y—E)

[DE exp(%J.Tr(Ez )
8o
After doing the integrations about E we conclude the expression of Z:

Z=[D4, D’«/fD’wexp{lz J (iMFju (A)+Tr(z*) = 2Tr(GMy) | (22112)
&o

From (2.2.1.2), (2.2.1.3) and(2.2.1.4) we find :
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0,B,=0.
This leads to:

x=D,B)Q,.
We put this in (2.2.1.12):
Z=[DB, D' Q,D'yD'7 exp . j Tr( L(B+O))+ Tr((D (B)Qﬂ)z)—

2Tr(;7Du (B)D,,(B+ Oy )-21(|0 Q,» wJple )

one can simply derive effective Lagrange function for B.

Z = [ DB, exp(| dzL,;(B)) = | DB, exp(S,;).
This means:

Sep = |7 Ly (B)=10g[ D', D'yD'y exp( j dr[d*xL(B,Q.y. 7))
Meanwhile, L(B ) Q, v, 17) will take the following form:

_ 1
L(B,Q.y 7)) =Tr (S(F, (B + 0)>+(D,(B)0,)" -
29D, (B)D , (B +Q)y = 2[Q,.w P[0 ,.7] ).
When we develop [F,, (B + Q)]2 till the second grade of Q, we get:
[ 1 (B4 Q) = [ Tr(E (BY +TH(©Q,,,0,) - TH(D,,0,)°).

So, it is:

W,,0, =—DX(B)Q, - 2i[F,..0,]

When we put this in L(B ) Q, v, 1,7) and take terms till the second grade of Q , W/ and l,7 we get:

_ 1 _
L(B.Q.y7) = Tr(S Fu (B)) + Tr(Q, 7, 0,) = 2Tr (7D, (B)y)
From (2.2.1.17) and (2.2.1. 20), we get:

j drLy; (B)=—log[ D' Q,D'yD' 7 expl - j dr | d3x<rr<% F2,(B) + Tr(Q,,,0,) - 2Tr(yD;,(B)y))].
00 73

(2.2.1.13)

(2.2.1.14)

(2.2.1.15).

(2.2.1.16)

(2.2.1.17)

(2.2.1.18)

(2.2.1.19)

(2.2.1.20)

(2.2.1.21)

Integrations on l//, ) Q are Gauss integrations and supply a determinant. After that, we get the expression of the effective

potential:
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z det'(-D?(B))
- _ H

J.dr Veﬁ(l) = —log| . ]- (2.2.1.22)
0 -

(det'W,, (B))?
The index (1) is to one-loop-approximation, so D 1 (B ) is inverse ghost-propagator and:
W, (B)= —5WD2 (B) — 2iadF; (B). (22.1.23)
the propagation of the inverse vector propagator. CldE] (B ) is E (B )in the adjoint representation which is known in the
appendix C.

2 _ 12 . 2

D* =0" +2iadB;0, — (adB;) (2.2.1.24)

So, adBi is the vector potential B ; in the adjoint representation.

In the momentum representation , it confirms :

D? =-K* -2adB,K; - (adB;)’. (22.1.25)

The equation (2.2.1. 22) is written as :

h 1

_[ d V) = —log det'(—Dz (B))+ Elog det’Ww (B) (2.2.1.26)
0

Development with the grades of B

In order to calculate both the determinants , we have to use the following identity:

log det(A + C)=Trlog(A+C)=Trlog A+ Trlog(l+CA™)

" (2.2.2.1)
=TrlogA-> D Tr((CA™H™).
n=l1
In order to calculate (_ l log det W,u (B)) ,(2.2.2.1) is written as :
2 14
1 ‘ 1 1 1y 1 152
Elogdet (4+0) = 5Tr10gA+5Tr(CA )_ZTV((CA )7)+
STHCA'Y) = THCA™Y).
(2.2.2.2)
Meanwhile, it is:
2
A= —5W8 (2.2.2.3)

And:
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C =-6,,(2iadB;0; — (adB,;)") — 2iadF;(B). (22.2.4)

a
This means that we are calculating the determinant till the forth grade of B ; - We introduce Fourier transformations:

Z Z S exp[ik(x — x’)]

) -2

A =4 (X)) =

CA™ (x,x") =

B )d+1z > e"p[’k(xx] [ZadBk +(adB, )’ )5, - 2iadF, (B)]

(2.2.2.5)
Now, we calculate the trace on space — time:

S IR N PRI D S (TR

207 ) ! f 70 kg o+ k|

1 . _ 1 ., U+ d Ik, .
4Tr (CA )2) (2”)d+].[d X & ey (k02+/€2)2
Tr((adBi)(adBj))Jr Lrd ! 3 Tr((aa’Bl.)2 X

bk R
(0as ) )+ 1 ((aar , (3)F)
(k§+k )
%Tr[(CA )3) o )d+1f e 2(1+d) d x

ko k¢o d (k§+‘l€‘2)3

Ir ((adB I-)2 (adB ; )2 )

_ ki, k ki k
—éTr((CA —1)4)= L [axY Y a(d 4 1)
~2
(27[) ko k#0 (ko +‘k‘ j
Tr (adB ;adB ;adB , adB ,)- (*)

We use the same identity to calculate the other determinants
—log det'(—Dz): log det’ (4'+C")=Tr log(A'+C")=Tr log A’
-y c Tr((C’A"l)f)

n=1 n

=—Trlog A"+ Tr(C'A'_1)+ %T;{(C’A"l)z)
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1 -V -1\*
—ETF (C'A' J +ZTI” (C'A' ] . (2.2.2.6)

It is by this:
A =-¢*
C'=2iadB ; + (adB , )2

_ While calculating the
DI G =¥ Daas ke, + (aas ).

@2z )d+l ko k=0 k2+\1€\

trace on space. time, we get the following equations:

-Trlcu)- _(znl)dﬂjddHXZ 2. : 5 Tr((aas )}

ko k0 k§+‘k‘

-1
c'4” (x',x")=

1 ( rqgr—1 2) 1 d+1 2K1k1
—TIr | \C'4 = d xz E X
2 ( ) (2ﬂ)d+lj . iz )

=~
iS
o
VR
bl
S
+
bl
Ne———
|38

1 1
2 (kg N sz

I g1 ): 1 g4+ 4
3Tr((CA )3 r J x; iz0 d

7r ((adB , YadB ,))+

Tr ((adB ; )2 (adB j )2 )

iTr((C%'—l)“):ldHIddﬂxz > M

xTr(adB,adB adB,adB,).
(27) ko k#0 [ko +‘k‘ j

We put (*) in (2.2.2.5) and (**) in (2.2.2.6) , then we get the following equations :

%log det'W V(B) = %log det(4+C)
1+d

d+1 1
2 (2 )d+lj Z

)
ko k=0 k2 + \k\

X

Tr((adBl-)2 )— o Idd”xz Z [
(27Z) ko k=0
(1+d )k, k (1+d )k

Ty ((adB )( dB ))

_.2A2X
(ko +\k\ ) 4(k02+k j
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7 ((adB , Y (aaB |V )+ ! g
(kg +[F| j

J’dd+lzz(

( )d+1 ko k=20
o k=0
20+0) s ) )
(k3 + i)
kikik,

e TR )(ko )

Tr (adBiadBjadBk adB, )+ o(B 6 ) . (2.2.2.7)

7r ((adF , (B)))]+

—log det’ (— 2( )):—log det’( '+ C')

= d+1jdd+lzz 7 %

ko k¢0k0 + ‘k

Tr ((adBl- )2 )

Lo 2Kk g (adB)adB )+
(27 )d+lj Kzokz;aa{(kngz)z T o[y

1
2 2
Tr((adB;)"(adB,) ) ]m)clﬂx
J4+, ‘_"2 Tr((ad3~)2(adB )2) + ! X
Z 1}'¢6d(k§ ‘];‘2)3 J r)"!
Ak;k ikk,
J-dd+1 Zi’”Tr(adBf adBj X

ko k20 (kZ + \k\ )

adB, adB,)+o(B®).
(2.2.2.8)

when we put (2.2.2.7) and (2.2.2.8) in (2.2.1.27) , then we get — for the effective potential — the following expression

2

1 d-1
o= |aq“ 1-d)x
Y Qn)* j xH 2 ; e il 7= ; kz(:) (kg +

_2)2

Tr((adB,)*) + (”)dl ZZ 1r((adr, () )-

e,

+ |k

)
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d—1 1 2(d —1) |
4 L2 2Ty o s |
Ky K0 (kz —>j K0K¢0(k0+‘k‘)
0o T

k
Tr((adB )*(adB , * )-2(d —1)x

K,K KgK,

Tr (adBi adB ; adB g adB é)

AP
Ko K=0 (k( +\k\ )
(2.2.2.9)

The case of the vanish temperature

The sum Z is considered integration on K 0 - After doing the integration on K , the effective potential of one-loop-
Ko
approximate will take the following expression:

PO a2
1 1 b DC
— a a , - abc
Ve.ff(l)_?/l Bl Bl +4(g2(L)+72](f Bl BJ]

anc g 4 d apce : g s s
+7,8" B¢ Bl-b B]C. Bf +7.5" Bf Bl.b Bf Bl-d (2.2.3.1)
Meanwhile, the coefficients are

Ljdf’x 3(ar—1)2Z 1

ST 4 &R
(2.2.3.2)
1 d’+17d +6 1
=—|d%| -
V2 (27z)d j . 8d 1;) ‘12‘3
(2.2.3.3)
— 1 d —(d_l) 77 >l 27,2
7= oay [a x_W;ﬁ K| [(6— d)|K| ~15dk’k; ﬂ
(2.2.3.4)
5(d -1) o (k! - 3k7K2)
Va=— Z 7 :
16 K#0 ‘k
(2.2.3.5)
This conclusion accords to the reference [28].
The case of the non- vanish temperature From (2.2.2.9) results :
V=7 B® B +i(gzl(L)+7£J(f”’” B! BJC.J
(2.24.1)

! abc s . ) Ad ’ abc s . . s
+78™ B B) B} B} +r.5" B{ B} B{ B
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So, the coefficients:

. 1 o | 3@ -1) 1 (2.2.4.2)
1 - d + 1 d — |2
! Qz ) J x{ 2 ZK: szk(f+\k\ '

2

30 -4 ¥

K K:o(koz +

k

2)3
rim g late - By 5 S0,

N
Ko K0 2
0 ko +

k

sy H 0243

K, K:tO(k +‘k j

K|’ (2.2.4.4)

y = Id,, 3(01—1)Zz 1 . 3(1—al)zz

Ky K#0 {k(f . ;ZJZ d Ky K#0 (kz ‘k‘ )3
4 272
R VIR ECE) ) e
(27z)" ra 2
kg + |k
(2.24.5)

d
One can calculate these coefficients by the helping of the heat kernel. Up from now, we will omit Id X because this

integration delivers only the constant LU’ . The definition of the kernels g, and &, , which appear in the calculation is that one

can find in the appendix A. We will divide the coefficients into: related to heat parts and others are not so. By this, we can write

veﬂ(l) as:
_ 170 T
Ver() =Veg +Vey
0 . T . L
So, Veﬁ’ ( 1) is the unrelated to heat part and Veﬁf (1) is the one which is related to heat.
From (2.2.4.2) , (B.7) and (B. 8) we result to :

y 2 3(1-d) o
7 = 2/3Ld1“ _[ +% [at g, gg8" . (2.2.4.6)
0

Then, we put (A. 12) in(2.2.4.6):

(d—l){ L[,Id{rz ;J’\/’L’ Zglexr)(—ﬁfn )}(gz -D :l

+3(1—d)(—1){+ ﬂlLdez t(\/f—”t7+%t7i exp(—%né)gé Xgé”]

0 ny=1

(2.2.4.7)
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At the end, },becomes into two parts: one is related to heat ]/1' (T * O) and other which is not related to heat y, :

7 =7+7(T=#0) . 2249
So, it is:
g —m— ;5_ SRR+ jdz: g o1) + 2 Tdt t%g’ 5

v P fL ZA

1 .
’ _ 3 -3 ’ 2 3
]/1 (tiO)——\/; 3 J.dtt 2 h_4”2 '('). dt t h hZ h2 +WX

dttfh(g§—1)+\/;L3;[dt o g, g’

| — 8

(2.2.4.9)
From (2.2.4.3) , (B.7) and (B.8) results :

, = (d+23)7% ‘ 40-d)X-d)F , » b an (2.2.4.10)
= "=/ 1] 1) 21— d )
V2 ZﬂLd 1"(2)! t tgl(gZ ) dﬁLdl"(3) I it g &, &>

We put, after that, (A.12) in (2.2.4.10) and find:

, d + 23 1 R >
72:_(+ )[ Ldj'dtﬂ(gg_l}_
40-4d) -a 3 L
d _4«/7z_Ld£d”2g2ggl}_
(d+23){ 1 T
0

2

4(1—d)_ -d T %” _ﬂz 2 rd-1
7 72\/”_ Ld.([dtt g‘ilexp 47 n, |lg,g, .

(2.2.4.11)

This means:

Vi=y,+75(T#0), (2.2.4.12)

that:
(d+23) 41-d)

1
=- dlt -1 —
& 2 {2\/_ Ld-[ ) } d
-d % 2
—— x|dtt? gl g™
[4\/; % { 82 8> }
and:

y;(T;tO):—(dJ;% [\/_ % Idtﬂ;lexp(——noj(g 1)}

_4(1—d)

dtt2 exp ZJg' gt .
d [szdI };1 ( ny (82 &2

The divergence that occurs for d>3 in J, is summarized by considering the divergence which arises at the normalization, this
means:

(2.2.4.13)

(2.2.4.14)




28609

Dr. Salman Al- Chatouri et al. (qcd)t is very good for quark — gluon - plasma

S PPy e

+3
= 4
£+

1

4872 167x°

@r)

e e2ning - 13
: 2

0 17 2 o0
NCHE _!:dttz(g;—l) =

\ 13
D' Gr )Zj'dtt (s -1)|+ MW

g5 &5+

5~ log (47)

The related to heat part 7 (T # 0) reads:

7 =0)=-

d
{ 2(4;r)%1£

7(d+23)[

2

hgigi™) }

r 1
(d+23) 2 Idttz hh" lidjdt (20 _MX
2 @) o VoLt d
Z 1 d Z _ds1
dt t 2 hh! - el KA L
(47I)TO

“ L _ El
el s )| GO (s

When we put (B.7), (B.8) and (B. 9) in (2.2.4.4) we get the following expression of }/5:

, 3(d

-1)

Y =~

8

[di e g gt gd
0

L’ ﬁr

- s

Idt tg(gd —1)+ —3(2;2_((;)‘1) x

Ldﬂr@ Idtt 28,85

We put, after that (A. 12) in (2.2.4.17). 75 , at that time, is divided into two parts:

vy =4y (T£0)

By this, it is:

V==

_3h;2h2 -

1(gz?—l)— °

3 07, -
——— | dt t2
8«/7[ r J. Nz L

) 3 o0 3

2 3 >

dtt* gl gl ———— dtt2 —t?
;|- 828> 5 /_L3',|- gz &+ /—

and:
(d-1) S

yi (T#0 - drt? hh dtt*h

3 ( ) B (47[)0121 J. \/;Ldl[

I dl d+l
3d-1) — J'dtt 22 ppd -2 jdzz > hhghd!
d 2(47[)2 0 47[70

3(d 1) a-n[ 3 3
_(8 )\/_L jdttzh l)}—(d)[\/;dejdttzhgzggl

(2.2.4.15)

(2.2.4.16)

(2.2.4.17)

(2.2.4.18)

(2.2.4.19)
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3 d 1 r _d+l
~2(d-1 —Mj'dtt“hh" —x[dtt > hijh
2 2(47)2 0 ( )3 o
3d-D¢ G e e _3d=DT S o s
- - dit > hh? ke —— dtt2hg’ g
] S
(2.2.4.20)
We similarly calculate ), . First put (B.10) in (2.2.4.5), we get then:
' (d_l) T 3 " d-1 )
=———|dtt -3 . (2.2.4.21)
Va 74 ﬂF(4)£ gl(gz 8> g & )
Then, we put (A,12) in (2.2.4.21) , So, }, is divided into two parts:
! !
Ve =y +v, (T#0). (2.2.4.22)
Itis, so:
J‘ _d+3 ( )
Vi=-— dtt 2 h{7(h) h, —3h)
48Ld (2.2.4.23)
6Ld\/_'[dtt gi(grg, -385)
(T #0)= - jdt ¢ dfh" 2y by - 305°)
V4 32 L 2 (2.2.4.24)

6\/> Id”zhg (g1g,-3237).

RESULTS AND DISSCUUSSION

a
The minimum of the classical potential is acceptable when the eight fields of gauge B ; are parallel in the eight degree of

freedom (SU (3)- indices). This is what one calls toron-valley. We make this valley parameter throughout the length B ; of these

eight parallel gauge fields.
The effective potential of toron is devoted to the homogenous gauge fields through this combination.

B! =B; n“ (2.3.1)

That is na.na :1 .

The coefficients ¥, ,75 ,J; ,74 are numerically calculated for different values of temperature. Meanwhile, the coefficients
V1sVs »V3 Y4 are independent of torus-length L. In order to calculate | ,7; ,7; ,7, we take L= 1. When calculating
]é and }/3' , one can prove that the integrations for ﬂ > 0.1 are very small. So, we need to take the integrations only in
the range 0 <7 <1, The numeral results of the coefficients VisVs Vs s Va are given in

table (1). One can see that }/1’ R }/é R ]/; are degreased by increasing the temperature, while 7/; is increased by the increasing of

temperature. We have the effective potential of Toron:
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V)= () 1 Sl 58 + 7S5 (5)

vir (B)=7(BY +60(i+7) (B) ;SPdstsi-60  (232)

It is drawn in figure (1). The drawn potential of Toron is sloping with temperature. This means that the valley becomes deeper
with the increasing of the temperature. In order to be able, discuss the behavior of the gauge theory, we have to know the behavior

of the effective potential or the behavior of the gauge fields with temperature. For that, we consider the second derivative of the
effective potential:

v 1

eff(1) —2y Y 12372 plpl | £345)2 p3p3 | 36T\2 p3p3
SEan Y g B U B () BB
fm)zBfBj +(f345)2B;tB;1 +(f367)zB./6‘B./6‘]+27; [SabSSBiaBib +S33ch;B;i +
SPUBIBY 4 s B + 5N BUBY + 5O BYBE |+ 4y s BLBL + 5V BSBY +

a3c3 pa pb a33d pa pd 3bc3 pb pc 3b3d pb pd
SO BB +5 M BIB! +5V° BB +5V BB

(2.3.3)

From that, we draw:

azveﬁ"(l)(Blz)
0 B0B; |,
B3 =

=2y + 7y, (Blz)Z + 3y, (Blz)Z (2.3.4)

in figure (2). Meanwhile:

i 1 _bylogl-2log(A,,, L ) (2.3.5)
2bylogA,, L) 4billog(A,, L P

g*(L)

is the coupling constant which is defined throughout the minimum subtraction of dimension — normalization [23]. Constants

b 0> bl have the following values:

22 2 136 4
by = —(47[) b, = —(47r) . (2.3.6)
0 hd|
3 3
Figure (2) shows that the bend is decreasing by the increasing of temperature. For the low temperature, the valley from the inside
L
is narrower than it is from the outside. This is confirmed till about Z = — = 2.4 . 2.3.7)
c
L 1 2
Pe = Ew = e =0.4166666667 f =2.1116666667 Gev

The critical temperature 7. = ﬂL =0.4735595896 Gev=5.6827150752 x 1012 K

c

This result identified the result in [17.33].

For 2.4 <Z ; the inside of the valley becomes wider than its outside. Qualitatively, the change in the valley-configuration
indicates the phase-transition which was investigated in [31-33]. The coefficient 7; in table (1) also indicates this phase-

transition.
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Appendix A: The heat kernels: First, we will define the heat kernels:
2
> 2
T 2
gt)= > exp —t(?j g (1)

w 2
gz(t): Z cXp _{277[) n’ (A.2)

o 2
g:;,(t,Bl'): Z cXp —l{%n‘f‘Bij (A3)
£3(1,0)=g5(t)= £,(0) (A4)

One can derive the properties of &7 , 5 and g 3 for t is small by the helping of Possion-resummation:

i exp(— m* A+ 2nm4S): ﬁexp(ﬂsz) iexp(— 7Ad'n? — 2i7ms).

(A.5)
We easily find of that:
o0 2
81 (t) = %%Zw exp(— ﬁ—tn(?] (A.6)
L 2 L,
0 e S o L
At . t A7)
g:(t,B;)= L icos(nBiL)exp - —2n2 + L
NE 4¢ Jart
(A.8)
From (A,8) for the heat kernel & 3 » we get these following relations:
g;(t.-B;)=g5(t.B;)
g5(t, B, +27)=g;(t,B;).
This concludes to:
&(8,)= 3 €, ()eos(nB,)
n=0 (A9)

The Cn (t ) can be stated from (A,8):
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1
Co=—7—
O Jam
2.2 (A.11)
Cn(t)z%expL—L;Z J;nZl.
7t

One can , by the helping of hl (Z/l) and h2 (I/l) ,write &7 and o

g1(f):%hl(u) (A12)

2, (1) = %hz (u) i

Meanwhile, U, hl (M) and h2 (l/l) are defined like this:

(A.14)

0 L2
h(u)= > exp —7n2 u . (A.15)

/1 has the following form:

0 2
h (u)= Zexp(—%ng Ju : (A.16)

ng =1

At t —> 0, one can use (A.6) and (A.7) which are written like this

2
g = \/% 1+ O(GXP(— ﬁ_tn (A.17)

g, = L 1+0 | exp _£ (A.18)
P Jant 4 ) )| |

But, for { —> 00 one can use (A.1) and (A.2) which are written like the following:

2 ?
&1 =1+0 cXp _t(— (A.19)
ﬂj

27\
g, =1+0| exp| — t(fj (A.20)
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Now, we will calculate the derivatives of g, to t >0

L _3 L _é /]
)= t 2 hylu)- t 2 hy (u (A.21)
N N
L L’ A
12 -3 2 -4 -5 12
= t” hyu)+——t " hh, +——t " h(u
i) 4(472_) 2( ) (472_) 272 (472_) 2 ( )
(A.22)
5 7 9
3 L -2, 3L -5 L -
Fo== t 2 h + ———1t 2 h +—t 2 K}
) 4 4m 2(“) m 2 (u) m 2 (u)
(A23)
(gé’gz —3g'22 )= 3L t_g h22(u)+ 3L t_% hé(u)+7L t_thg(u) X
4 Jar Nar Nar
1 2 2 2
L - L 3 2 L™ 4 LT s
— h -3 h — hyh — h
[mt 2(’“‘)J L@m)t v v M (”)}
L2 - " !
(A.24)

Appendix B: calculation of sums of the discrete momentums on the torus, one can write for Bosons:

B
L

2
Ky :_ﬁ”o

p
x5 3

this concludes to:

1

1 1

d+lzz s = ZZ

4 d & & s
(2”) ko k (kg +1€2)2 PL ny n [(27[}2”2 +(27Z'j2n2]2
0

B

(B,2)
Now, we will rewrite these coefficients as integration on the heat kernels. First, we calculate the following integration:

s 2
o © 2 2
g = > J.dt 12 exp —t(?ﬁj ng (B.3)

np=—9% ()

0 5_1
jdttZ
0
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o s -1 © s -1 00 272. 2 - 5
[die? g =[dit? exp(-t) Y (—j nd| . (B.4)
0 0 }10:—00 ﬂ
This concludes to:
i 1 = ! [t f2_181 (B.5)
—, 2\ Fm 0
(272') 2 2
— | ng
p

Meanwhile, it is:

(j jdt tz_lexp( ) ®.6)

(B.3), (B.4) and (B.5) conclude to:

N

1 1 1 1 < 5 1
ﬁz _za = 7 fdf t2 g, (t)gs (1),
(27) ko k=0 2\, PLT S0
(koz + |k ) 2
(B.7)
After that, one easily finds that these following relations are really active:
1 | B
d+lzz s prd Idttz gi(g3 - 1)
2z)"" & iz . -2Y, PLT [ S0
(ko + |k ) 2
(B.8)
ki BRSO S
ynvin) I S [at 12 g,g5¢5
(27 ) ko k=0 _2N,  BL S0
i 2 2 r
kg +‘k‘ 2
(B.9)
k12k22 1 1 T 2 12 d-2
yanvin) I i [ar 12 ¢85S
(27 ) ko k=0 _2\, PL S0
2 2 I
kg +‘k‘ 2
(B.10)

1 k14 _ 1 1 Ood 5 -1 12 _d-2
(27z)d+1 ; EZ#:() s _ﬂLd P £ tt 8182 82
VU (k) F(zj

(B.11)
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1 kd —3k2k? 1 1% =1 "o
L o L LS N Y VS S PR
(27[) kok;«tO(kz 15'2)2 BL F(S)

+

0

~3g2g¢?).

(B.12)
Appendix C: Group theories relations: Lie — Algebra SU (3) consists of all complex 3X3 matrixes X with:
+
x =-x,Tr (x):O. (C.1)
. . a
The base, for such matrixes, is T s a=1,23 ... 8.
2{6{
T*=—, (C2)
2
these A“ are the Gell — Mann- matrixes:
Al=l1 0 o},A*=|i 0 o0, 2=l0 -1 0l,2°=]|0 0 o], (€3)
O 0 O 0 0 0 0 0 1 0 0
0 0 —i 0 0 O 0 0 0 | 1 0 0
A=]0 0 0 [,A=]0 0 ,AT=10 0 —-i[,A"=—=|0 1 0
- NG
i 0 0 0 0 0 i 0 0 0 -2
a
The matrixes T fulfill:
1
T (77" )= - T (C4)
The structure constant is defined throughout:
[Ta,Tb] :l:]('abCTC (C.5)
When X is an element of Lie — Algebra SU (3), it is after that:
x=xT% . (C.6)
In the adjoint representation, it is:
(adx)®” =if “" x© . (C.7)
In the following notes, we will point some of the adjoint representation rules:
ladx, ady|= ad|x, y] (C8)
Tr(adx ady)=—6Tr(xy) (C.9)

Tr (adB , adB ,)=3B/B/ (C.10)
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Tr(adB,adB,adB ,adB )= S"* B* B’ B¢ B + % F/(B)F (B) (C.11)

7r([adB, ,adB | |adB, ,adB ])= -3F (B)F, (B) (C.12)

o, (5)F )= (5 () e

Tr(adBiadBjadBkang): SadeBianB,fo (C.14)

Meanwhile, it is:

Sabcd :3(dabedcde+dacedbde+dadedbce )+2(§ab5cd +5a05bd +§ad5bc) (C.15)
12 3

F; (B)=i3,.8,] (C10)

and:

adF, (B)=iladB,,adB, | (C.17)
F/(B)= f“B!BS . C.18)

Note: some of the relations are only applied when B j s constant.
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