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In this paper, alternatives in calculating double integrals will be used instead of the  direct difficult 
known methods. 
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INTRODUCTION 
 

In order to integrate  a function with more than one variable(( here two variables)) , we integrate  first with respect to one variable 
and treat the other  one as a constant, similar to the process of  partial differentiation of functions of several variables. 
 
We first look at some examples in double integrals of the form 
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Note  that the internal variable of integration may be a function of the external one, but the external one  must have constant limits. 

Example 1: Evaluate the double integral
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Example 2: Evaluate the double integral 
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Now  we have some definitions. 
 
Definition: The area of a closed, bounded plane region R is 
 

R

dA               (1) 

 

That is,  the double  integral when the  integrated function is ( , ) 1f x y  . 

 

Example 3: find  2 2: ( , ) : 25
R

dA R x y x y    . 

 

Solution: 5
R

d A A rea o f circle w ith ra d ius r and cen tered a t th e o rig ion   

So   
2(5) 25

R

dA    . 

 
If  f  is the area density of a thin plate covering a region R , then the double integral of   f  over R  gives the  mass  of  this  plate 
………………………(1) i.e 
 

 M = mass of  R = ( , )
R

f x y d A  . 

 
Similarly, the moment with respect to the x-axis can be calculated as 
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the moment with respect to the y-axis can be calculated as 
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Then we calculate the center of mass of  R via 
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Now, a special case of  integrals  will be calculated  in two ways, the traditional approach , and a new approach related to the 
center of mass. 
 

Example 4: find  2 2: ( , ) : ( 3 ) 1 0 0
R

y d A R x y x y     

 
Solution: We first use the traditional approach to find this integral, and after that the new method is used for the same purpose.  

The region R is the circular desk centered at (0, 3)   with radius 10r   , so the region R can be determined as  
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   , then we use integration by substitution as follows: 

 

Let  3 1 0 c o s 1 0 s iny d y d       ,   changing the limits of integration we have  
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2

2

2

2
2

2 ( 3 1 0 c o s ) 1 0 s i n . ( 1 0 s i n )

2 ( 3 1 0 c o s ) 1 0 ( s i n ) . ( 1 0 s i n )

2 0 0 ( 3 1 0 c o s ) s i n . s i n

2 0 0 ( 3 1 0 c o s ) s i n

d

d

d

d

















   

   

   

  

  

   

 

 









 

2
2 22 0 0 (3 s in 1 0 s in c o s ) d





    
……………(*) 

 

By using the identity 2 1 cos (2 )
sin

2 2


   in the first term and integral by substitution in the second term (*) becomes: 

 
2

2 2200 (3 sin 10 sin cos ) d




    
2

21 cos (2 )
200 (3( ) 10 sin cos )

2 2
d






      

23

3 3

1 sin (2 ) sin
200 3( ) 10 )

2 4 3

1 sin (4 ) sin (2 ) 1 sin ( ) sin ( )
200 3( (2 ) ) 10 ) (3( ( ) 10 )

2 4 3 2 4 3

3
200 3 0) 0) 0 0

2

3
200( ) 300 .............. . .

2
Q E D





 


   
 







 
    
  

 
      

 

 
      

 

 

 

 
We noticed the heavy work and difficulty in calculating the previous integral because of using the direct calculation for that 
integral. Next we will calculate it by means of the center of mass as follows: 
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In our example, we notice that ( , ) 1f x y  so the center of mass is the same as the center of the circle 

2 2( 3 ) 1 0 0x y    i.e the point ( , ) ( 0 , 3 ) , s o 3 .x y y
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Therefore  
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    but  
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d A    area of the desk with radius 1 0r  so 
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Example 5: find  2 2: ( , ) : 2 5 ( 5 ) 1 6 ( 2 ) 4 0 0
R

x d A R x y x y     . 

 

Solution: We first look at the nature of the region R : 
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which is the interior together with the boundary of an ellipse centered at (5, 2) , with  major axes length 2 2(5) 10a    and  

minor axes length 2 2(4) 8b   . So as we know, the area of this ellipse is a b ,  and in this case 

(5)(4) 20A ab     . Now, we go back to our problem. 

 
We note that   
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,  

but when ( , ) 1f x y  we have .
R R

x d A x d A


    . 

 

Because of  symmetry  on an ellipse, we have  the point (5 , 2 )  as the center of mass so 5x


 . Now, back to our  integral 

we get  

.
R R

x d A x d A


    =5(area of  the ellipse)= 5 5 ( 5 ) ( 4 ) 1 0 0A    . 

 
By looking at the two previous methods  in example 4, we can notice the difference between the  times  that each one took , so it is 
preferable to use the second method, as we did in example 5. Finally, many of   integrals can be treated as the previous one, in 
which time will be minimized as much as possible.   
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