

ORIGINAL RESEARCH ARTICLE

PERFORMANCE ANALYSIS AND MONITORING OF COMPUTATIONAL RESOURCES WITH A
COMPARISON BETWEEN NODE.JS. AND AS PHP AND .NET CORE PLATFORMS

1Luiz Felipe Carvalho Libertino, 1Aldemir Carvalho Uchôa Neto, 1Bruno Pereira Gonçalves,
1Jean Mark Lobo de Oliveira, 1Rilmar Pereira Gomes and *,2 David Barbosa de Alencar

1Academic Department, University Center FAMETRO, Amazon-Brazil; 2Institute of Technology and Education

Galileo of Amazon (ITEGAM), Brazil

ARTICLE INFO ABSTRACT

This article aims to compare the performance of the Node.js development platform. with the PHP
and .Net Core platforms, in addition to demonstrating the internal workings of the Node.js
platform, which uses V8 engineering, the same used in the Google browser, to compile the
Javascript language, whose compilation time is translated into the machine language with the JIT
engine. Three applications were developed to compare the speed and operation of requests for
each of them, in addition to the time for each request and the total time spent. The survey showed
that the vast majority of respondents know and recommend the knowledge and use of Node.js, as
its ease and performance are quite high, in addition to the possibility of developing in a single
language, Javascript, both mobile devices, servers and Applications from the web.

Copyright © 2020, Luiz Felipe Carvalho Libertino et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Web development has been improving more and more with the
addition of new technologies. Everything about solving
problems of data consumption, production content, etc. Thus,
increasing the need for interaction between users with these
services on the web, without delay to receive your data. These
applications require a highly performative and fast processing
power, so that it gives the sensation of real-time interaction
between client and server. And more, it must exactly happen on
a massive scale, supporting hundreds to millions of customers.
created natively on .NET, Java, PHP, Ruby or Python
platforms present one thing in common: they stop processing
while using I/O on server. This shutdown is known as the
Blocking-Thread model. To resolve this issue, Node.js was
created in late 2009, Ryan Dahl with the help of of 14
employees developed this platform that has a model
innovative: totally non-blocking thread architecture. Node.js is
a powerful application platform to easily and quickly build
scalable network, and that uses the high performance open
source JavaScript engine from Google Chrome browser, the V8
engine, which is written in C++ (William Moraes, 2015).
Applications that use a lot of file processing and / or perform a
lot of I/O, adopting this type of architecture will result in good
performance in relation to the consumption of memory. With
the advantages of using Javascript as a programming language,

an untyped, multiplatform language, same language for
development web, backend and recently being interpreted
natively for mobile. Node.js deals single-thread only (single
thread per process), using an agent to listen and broadcast
events in the system with Event-Loop. Being a highly scalable
and low level thanks to the Javascript V8 engine, the same used
in Google Chrome browser. V8 is an extremely optimized
JavaScript engine that works like a JIT compiler (Just-In-Time)
- concept introduced by McCarthy (1960) - and turns high-
level code into machine code. Your advantages are: working in
real time, flexibility, lightness, team productivity, largest
repository in the world, innovation environment, asynchronous
and event-based. Its disadvantages are: having low object
orientation, weak typing, being new thus losing credibility for
bigger and heavier projects. For better understand how
technology can support thousands of connections and maintain
its high efficiency, we do a detailed study in this article on
Node.js and the optimization techniques exercised inside the
platform, in addition to some test’s comparative with other
programming languages.

Bibliographic Reference: Presenting the theoretical foundation
about materials, technologies, languages programming presented
in the development of the article.

Node.Js: Platform that allows you to run Javascript outside the
browser domain. Being one set of libraries that run on the V8

ISSN: 2230-9926

International Journal of Development Research
Vol. 10, Issue, 05, pp. 35539-35550, May, 2020

https://doi.org/10.37118/ijdr.18695.05.2020

Available online at http://www.journalijdr.com

Citation: Luiz Felipe Carvalho Libertino, Aldemir Carvalho Uchôa Neto, Bruno Pereira Gonçalves, Jean Mark Lobo de Oliveira, Rilmar Pereira
Gomes and David Barbosa de Alencar, 2020. “Performance analysis and monitoring of computational resources with a comparison between node.js. and
as php and .net core platforms”, International Journal of Development Research, 10, (05), xxxxxxxxxxxxxx.

 RESEARCH ARTICLE OPEN ACCESS

Article History:

Received 02nd February, 2020
Received in revised form 06th March, 2020
Accepted 28th April, 2020
Published online 25th May, 2020

Key Words:

Node.js; JavaScript; Non-blocking;
Event-Loop; V8.

*Corresponding author: David Barbosa de Alencar

engine, allowing you to run the JavaScript code on the server
(Ryan Dahl, 2009). The entire origin of the runtime (run time
execution) starts with the limited possibilities of the Apache
HTTP Server - the server of the most popular web at the time -
to handle many simultaneous connections. Node.js came to
combat this problem, with a type of non-blocking architecture,
because the Most codes were sequential, leading to an entire
process block or multiple execution stacks in the case of
multiple simultaneous connections.

Javascript: High-level interpreted scripting language (Brendan
Eich, 1995). Javascript was created exclusively to meet Marc
Andreessen's idea of having “language glue” between HTML
and web designers, which must be easy to use to assemble
components like images and plug-ins, so that the code was
written directly in the markup of the web page.

Google Forms: Free service to create online forms, created by
Google in 2008. The user can produce multiple-choice surveys,
ask discursive questions, request numerical scale assessments,
among other options. The tool is ideal for who needs to request
feedback on something, organize event registrations,
invitations or ask for ratings.

Visual Studio Code: Source code editor developed by
Microsoft in 2015 for Windows, Linux and macOS. Includes
debugging support, built-in Git control, syntax highlighting,
smart code completion, snippets and code refactoring.
Supporting numerous programming languages and a set of
features that may or may not be available for the given
language.

PHP: PHP is a programming language that was created in
1994, source code was released in 1995 as a CGI problem pack
created by Rasmus Lerdorf, with name (Personal Home Page
Tools), we are currently at version 7.4.2, PHP issued by
developers to build dynamic websites, is often used more on
the server side, it can be used as application integration, in the
development part it streamlines processes, is known language
and one of the most used because it is easy to learn, to handle,
as is compatible with all operating systems, makes your cost
less.

.Net Core: The .Net Core was primarily developed by
Microsoft and released under the license MIT, launched in
2016, is currently 3.1, version 5 is scheduled for
November2020, .Net Core is a free and open source framework
for Windows systems, Linux and macOS, is a successor to the
.Net Framework, basically it’s a leaner version, is fully
supported in C # and F # and partially Visual Basic .Net.
s
Threads: The thread is a subsystem being a way for a process
to split into two or more tasks, these tasks can be performed
simultaneously to perform more program quickly, during the
rapid change of thread, apparently it is like that each one was
running in parallel, in node.js, it was never a better option for
heavy CPU computing, and because of that it is difficult to use
in machine learning, AI and data Science projects.

Callback: Callback is nothing more than a piece of executable
code that is passed as a parameter or method, the method is
expected to execute the code at some point, the execution of
the segment can be immediate as in a synchronous callback, or
in another moment, as an asynchronous callback, it is very
common in Javascript on the client side and server (Node.js),

call-back are supported in different languages, but are
implemented with subroutines, expressions, blocks of code.

MATERIALS AND METHODS

Javascript: Programming language used for the application, we
use its syntax in the examples along with the application in
Node.js;

Visual Studio Code: we use the text editor to create the source
code of the applications: Node.js, PHP and .Net Core.Node.js -
platform where the algorithms will run on the server side along
with JavaScript, being able to see the way it acts in the
systems, and observing the improvement of responses and
performance compared to other competitors;

Google Forms: We use the platform to create the 105
questionnaires, are both multiple choice and dichotomous,
questions are closed and can only be choose one of them, we
share via WhatsApp and E-mail to the programmers from
Brazil.

METHODOLOGY: To obtain knowledge and develop
research, we use bibliographic research, in which we select
books and articles that on the Node.js platform and Javascript
developed on the server side. News focused on the operation of
the V8 engine to interpret Javascript code, advantages of using
the Javascript programming language on the server side, your
single-threaded event-oriented I / O model, non-blocking and
asynchronous. Was descriptive research was used in order to
expose the frequency with which Node.js structure and
function, aiming at its identification, registration, factors or
variables that associate with the case. Quantitative research
was also used, applying a questionnaire of 10 closed,
dichotomous and multiple choice questions, using the Google
Forms platform, applied with programmers, in communities of
development on the social network Facebook.

RESULTS AND DISCUSSION

Web systems created natively on .NET, Java, PHP, Ruby or
Python have one thing in common: they stop processing while
use an I / O on the server. This shutdown is known as a
blocking model (Blocking-Thread). In a web system we can
observe it in a broad and functional way. Considering that each
process is a request made by the user. As the application
progresses, new users’ access, generating new requests to the
server. For each request it is created a new thread, to proceed
it. Generating a demand for resources computational (such as
RAM). Since these resources are limited, threads will not be
created infinitely, and reaching that limit, new requests they
will have to wait for the dispersion of these allocated resources
to be treated. A blocking system queues calls and then
processes them, one by one, not allowing multiple processing.
While a call is being processed, others are idle, maintaining a
queue of requests waiting for a period of time. This is a classic
architecture, existing in countless systems and that has a
unproductive design.With the increase in requests in the
system, the frequency of bottlenecks will be greater, expanding
the need to update the server hardware. But as updating the
machines is very complicated, the ideal would be to look for
new technologies, making good use of existing hardware and
making the most of the power current processor, not keeping
you waiting when tasks like blocking. To resolve this issue,

35540 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

Node.js was created in late 2009, Ryan Dahl with initial help
from 14 employees developed this platform that has a model
innovative: totally non-blocking architecture. The start of the
runtime starts with the limited capabilities of the Apache HTTP
Server - the web server most famous at the time - to handle
many simultaneous connections. In addition, Dahl criticized
the way of writing the code, which was sequential, this could
cause an entire process block or multiple execution stacks in
case of multiple connections simultaneous.

Node.js is a powerful platform for applications, to build easily
and scalable network applications quickly and using the open
source JavaScript engine high-performance Google Chrome
browser, the V8 engine, which is written in C ++ (William
Moraes, 2015). Applications that use a lot of file processing
and / or performs a lot of I / O, adopting this type of
architecture will result in good performance in memory
consumption, making the processing capacity of servers. With
the advantages of using Javascript as a programming language,
an untyped, multiplatform language, same language for
development web, backend and recently being interpreted
natively for mobile. The fundamental feature that differentiates
Node.js from other technologies, such as PHP, Java, C #, is the
fact that its execution is single-thread. In short, just one thread
is responsible for executing the application's Javascript code, as
in the other languages the execution is multi-thread. As
explained earlier, in the blocking model, the requisitions
created generate a new thread to handle it, however, within
each one, the waiting time of the response is not used, leaving
this part of the CPU idle, locked to other actions, so for each
new thread consuming computational resources, reaching at a
time when resources run out and they are idle for completion of
a request, see Figure 1.

In Node.js, only one thread is responsible for handling
requests. This thread is called an Event Loop, taking this name
because each request is treated as an event. It is running
waiting for new events to be dealt with, and for each request, a
new event is created, see Figure 2. This means that the
operations of input and output (eg database access and reading
system files) are asynchronous and do not block the thread.
Such events appear exclusively in this queue when they are
broadcast during emissions of events in the application (Caio
Pereira, 2013). The Event Emitter, is the module responsible
for issuing events, and most Node.js libraries inherit from this
its functionality to broadcast and listen to events. When a
defined code emits an event, it is sent to the event queue so that
the Event Loop execute and then return your result in a
callback. A callback is a listener, a function passed by
parameter to another function, to be executed after a certain
event. Javascript is completely asynchronous and Node.js takes
full advantage of this. While the Event Loop handles an I / O
operation for a system thread asynchronously and progresses
by handling other requests that arise in its stack of events, the
threads of the traditional model await the completion of
operations I/O, consuming computational resources throughout
this waiting period. Although Node.js is single-threaded, its
architecture facilitates a greater number of competing requests
are handled in comparison to the traditional model, which is
restricted due to high computational consumption due to the
formation and continuity of threads to each request.Node.js has
the advantage of not suffering from deadlocks, simply because
work in single-thread.

Comparisons: Node.js, PHP and .Net Core are popular
platforms for websites, APIs and others types of web content.
Obviously, they have similarities, but their differences
outweigh these affinities.

Types of application: Here we will see where each case is most
used, where the programmer finds more ease to develop an
application, solution, system, API, etc.

Fig. 1: Blocking Model (Source: Opus-Software)

Fig. 2: How the Event Loop works (Source: Authors, (2020).

Fig. 3: Comparison of blocking and non-blocking models
(Source: Opus-Software)

Node.js: Node.js has very common use cases in: Real Time
Applications-One of its usability is in chat applications.
Demanding very little processing and usually consists of
transferring messages from one to another; Scalable
Environments-With its non-blocking architecture, it is totally
suitable for applications with a large number of concurrent
connections, due to the potential for support this demand
compared to other traditional servers; Layer of Server Entry -
Doing little data processing and just passing forward requests,
communicating with backend services, such as (Files, etc.);

35541 International Journal of Development Research, Vol. 10, Issue, 05, pp, 35539-35550, May, 2020

Mocks and Prototypes - Easy creation of APIs and backend
services with agility, thus being able to simulate the
communication with an external service, for example; API with
NoSQL behind - Because NoSQL is based on JSON
(JavaScript Object Notation), your communication with
Node.js, is very automatic. Not being necessary to do data
conversions, for example, because the same objects stored in
the database can be used in the front-end without the lack of no
type of treatment or conversion; Others - Can be used for
systems of the type IoT (Internet of Things), game server,
recently Desktops applications.

.Net Core: .Net Core has quite common applications in: Web
UI and Web APIs - For having enough resources that helps in
the construction of this type of application, with ease in
integrate with client-side tools; Building IoT apps - Easy
integration, features and robust; Automated systems -
Applications that require to be run from time to time. Because
.net core can be compiled into an windows or Linux, thus
integrating with operating system tools; Desktop Systems - As
part of Microsoft, your tools come standard in their libraries,
thus facilitating the construction of this type of system, in
addition to accessible integration with the SQL Server
database.

PHP: PHP has common use in: Full Web Development - with
its ease of integrate with the web, database and server. The
integration of the system as a whole is simplified; CMS-
Content Management System - These are systems that help
manage content, such as: blogs, forums, online stores. Because
of community there are several ready-made structures on the
web, leaving the developer to make changes to use. Facilitating
the construction of this type of site, the most currently used is
the famous WordPress.

Conclusion on application types: Node.js, PHP and .NET
Core are widely used to handle web requests. Being executed
by a server and handling calls that are routed by then. Being
able to use them to display static content, dynamic web pages,
real-time web applications and data requests. However, Node.js
and .Net Core, both can be used for embedded systems, IoT,
Desktops and games. Like this having wide usability for
application developments. Node.js is a very popular alternative
when it comes to serving web sockets - the initial
implementation is the socket.io library. However, PHP has
sockets available since 2003, using the Ratchet library,
however its architecture blocking, does not meet the demand
well. In another way, the .NET Core has SignalR for socket
procedures, since .Net Core 1.1, which was launched in 2016,
helping a lot the development of programmers in the C #
language, with results satisfactory to the demand for
requisitions.

Fig. 4: Module Count by Package Manager (Source: Module Counts)

Extensibility: These technologies can be extended to meet the
needs of each programmer. Being able to fork the source code,
change it and compile it to extend. There are add-ons and
package managers for both platforms.

Node.js: NPM (Node Package Manager) is the package
manager for Node.js and is also the largest software repository
in the world, as seen in Figure 4. Making theNode.js platform a
potential to be applied in any situation and implementation as
appropriate. One of the most popular packages is called
Express.js Thus providing an enormous amount with reusable
code packages and probably that integration you need with
another system or database that have already been
implemented. However, this number is totally outside the curve
of the others. Managers of other languages, is justified by the
fact that the class that develops with JavaScript, loves to create
a package for him to wrap another package, whose objective is
call a function that you have natively on the platform.

.Net Core: .Net Core was produced by a series of independent
components and interfaces and with well-defined
particularities. Native components generate an interface or
inherit from abstract classes. It is possible to change the main
components or extend its procedures by others of its own
implementation.

• You can use the standard implementation of the
component, as is. (Sufficient in most cases);

• It is possible to derive a subclass of the standard
implementation to adjust your behavior.

• Replace the component entirely with a new
implementation of abstract basic interface or class.

Having the Nugget package as a package manager, with a
stable and respectable, meeting the needs of each developer.

PHP: PHP has two popular package managers: PEAR and
Packgist. Having more time of existence, having the
community more time to create means for solutions. So,
resolving programmer issues from the beginning of language.
With 80% of internet applications created in PHP, a myth has
been created about it, like the “PHP curse”. Because of its easy
implementation for the development, made it possible for
anyone to publish a web system. These systems due to
amateurism, often lacked validations, responsiveness or good
HTML rendering. So, creating the myth about language be bad,
bad, not robust, etc. Because of every 10 projects carried out in
PHP, 3 of them were of quality. There is a very good English
proverb which is “One man's trash is another man's treasure ”,
which means that trash for some can be a treasure for other, in
summary these 3 successful projects were enough to help
implementations of other applications, helping the community
to grow and conquer the web.

Conclusion on extensibility: Both platforms mentioned in this
article, have excellent extensibility, theNode.js community just
growing and growing, stable PHP community and .Net
Moderate core, but a little more closed, opening gradually.
They all have excellent documentation, videos, blogs for
learning. All these being open-source platforms, with open
source, enabling the creation of extensions, libraries, tools, etc.

Performance - advantages and disadvantages: We mention
performance here, knowing it is a loaded topic. After all, the
final performance of an application depends on many factors

35542 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

such as: Programming; the environment; the performance of
dependencies such as databases and usage affecting the
performance. Like Node.js, PHP and .Net Core are generally
not used as similarly, it will be difficult to compare
performance directly.

Node.js: Node.js will normally be used to handle requests for
API, web applications that use a lot of I / O, video streaming,
real-time applications, so it’s usually just a thin layer between a
web client and a database. You should definitely not use Node.
js for CPU intensive operations, using it for heavy computing
will nullify almost all of its advantages as it performs only on a
single thread. Where it really is used is in building applications
scalable and fast networks, due to the ability to support a large
number of simultaneous connections with high throughput,
equivalent to high scalability. This fact is because the requests
are not continuous but asynchronous, making the execution
very fast and perfect for a high number of requisitions. Using
the event scheduling model, thus not blocking the executions
while waiting for an I/O So not losing performance or
consuming lot of hardware resources. Allowing web
developers to program with a JavaScript is the only language,
without needing another one for the development backend.
Having the disadvantages of being new compared to other
platforms, thus not passing confidence to larger projects. Its
asynchronous aspect cans bea complicator, for an application
with a lot of coding.

.Net Core: Used extensively in building APIs that consume
databases relational, web applications, IoT applications, real-
time applications. Because of your test-driven architecture,
high performance, native dependency injection, code openness
and focus on the community are huge differentials that help
with growth of his popularity. Taking advantage of
asynchronous resources, with the creation of threads (multi-
threading) for each request, while maintaining low
consumption computational process, quickly processing the
requested requests, thus leaving the application not block able
for a low time. Vast APIs natively on the platform, with
complement of APIs developed by the community. The
disadvantages to this platform are: The difficulty for beginners
to enter this world, because their implementation is verbose
and often strenuous; Medium and / or closed community;
Labor market below, most vacancies are for senior developers.

PHP: Acting strongly in web development, due to its ease to
construction, publication and database integration. Incredible
language fora beginner who wants to enter the development
world, with a strong friendly community to assist them. With
the disadvantage of not executing the CPU level, as it runs
through the Zend VM, but the community has already wait for
the PHP 8.0 update that will already come with JIT - Just in
Time implementation. Another disadvantage is that the
community itself does not want to migrate to the latest
updates.80% of the internet developed in PHP, is basically
51% using PHP5.5 and some 40% with the current PHP 7.4,
with an incompatibility between versions, leaving a low
standardization, for the development of the same, as for
example, a command that works in one version and doesn't
work in another. This version of PHP 5.5 has even been
discontinued, without new security updates including, making
data browsing dangerous, the creator of PHP itself -
RasmusLerdorf asks to stop using that version and use the
latest ones.

Conclusion on performance-advantages and disadvantages:
In order to act, each platform contemplates its requested need,
such as example Node.js, create a scalable application that has
many requests simultaneous, it is a good request, creation of
APIs with object database NoSQL and or real-time systems
like chat and games, Node.js is an excellent requested. Just like
PHP is a great demand for those who want to develop
web rendering HTML directly from the server, such as blogs,
e-commerce. Increasing your SEO (Search Engine
Optimization), which translates is approximately like this
“Search engine optimization”, improving digital marketing,
reaching good rankings on the results pages. .Net Core follows
the same demand, creating API, Web UI Applications, easily
deployed on servers, the same you can create IoT applications.
So, it depends on the need and the workforce of the developer,
if you are going to work with relational banks and APIs, or live
chat, games, etc. Depending on the demand these platforms
supply the need. However, all programming has its limitations,
just as PHP is limited to Web Systems orNode.js does not work
with heavy CPU or .Net Core processing with difficult
deployment to servers other than Windows. To avoid
comparing apples with oranges, we have to consider many
factors. It may not even be worth the effort. After all, your
environment behaves differently from any benchmark. The best
way to understand performance is to monitor it with something.
That way, you can maintain your Node.js application. or PHP
or .Net Core running under circumstances where performance
really counts.

Comparing platform performance: We developed the same
application for the runtime comparison, performance, memory
expenditure, synchronicity. This application consumes an
APIexternal, which generates data about the characters,
planets, races, etc. These data will be shown on the Windows
PowerShell console for viewing. Concerning the fictional
cinematic universe of George Lucas, the Star Wars saga. Was
developed also on the .Net Core platform, an application for
monitoring performance in the CPU of the machine used, to
monitor the applications developed for this test, that generated
the executables, unfortunately PHP does not generate an
executable, the same being from outside for CPU monitoring.

Characteristics of the environment: We execute the requests
from our Windows machine, which executes the monitoring
application, being is running and monitoring CPU resources.
We understand that application performance is affected by
competition for resources machine and also internet bandwidth,
due to requests to external APIs.All applications have been
used recent versions of the platforms, the applications are
console type, thus facilitating the implementation and
publication in the system.

The framework versions used were as follows:

• .Net Core 3.1.0
• Node.js 13.5.0
• Axios ^ 0.19.2
• PHP 7.3.9
• ReactPHP
• Visual Studio Code

The machine resources used are as follows:
• Windows machine;
• Processor: Intel® Core (TM) i7-2600 CPU @ 3.40GHz

3.40 GHz
• Memory: 16.0 GB
• Disk: 500 GB
• Operating System: Windows 10 Pro

35543 International Journal of Development Research, Vol. 10, Issue, 05, pp, 35539-35550, May, 2020

Application and Results: In summary, applications were
developed to receive external data from the API, created a list
of functions to store the requests sent, each one having a timed
time and the value of the data returned, observing the
oscillation between them, at the end of executing all the
requests, it will show how long it took to run the program as a
whole.

Development with Node.js

Fig. 5: Application with Node.js. Source: Authors, (2020).

Figure 5 represents the source code of the API consumer
application in Node.js, composed of 3 functions:

1. to populate Array () - Whose objective is to populate an

Array with Promises of requests to the external API, it has
an internal repetition structure from 0 to 88 for populate the
array and passing the index + 1 as if it were the ID for each
request, after finalizing the repetition structure returns this
array with promises.

2. seekPeople (id) - Objective is to execute a Promisse,
making a request via Axios library for the external Star
Wars API, receiving as parameter one id to search for the
character with the referring id, in addition to timing the start
of the request at the end of it and returns the data about the
character.

3. Main () - It is the main function that times your start of
execution until the end of the last promise processed, using
the native Promises’ function to execute the array returned
from the populateArray () function that internally calls the
function seekPeople in their repetition structure.

Development with .Net Core: The application developed in
.Net Core was divided into two connected classes, being
CharacterRepository and Program (main class), the class
CharacterRepository serves as an entry, to start requests and
handle them. While the main class starts and shows the data
output. The class in figure 6, starts with the constructor
instantiating the native HTTP Client Class, which will do the
connection to the external API. There is also a Get Personagem
Async method that receives in its parameters the id of the
requested character, this function uses the async / await
mechanics of .Net Core leaving calls asynchronous. To do this
differently from the mechanics of Node.js V8, the calls async /
await in .Net Core separates the process into tasks, creating the
so-called mult-threading, for each request is a thread within the
system, thus consuming computational resources but running
with performance and speed. In figure 7 right at the beginning
instance the CharacterRepository class, to use this unique

method, right after an instance of the platform’s native class,
called Stopwatch, which times, as soon as started. Soon after
another native Task class that calls its function WhenAll which
aims to perform several simultaneous tasks, in its parameter we
call the function, PovoarArray, whose purpose is to create a
task list with repetition control. Used async / await to wait for
the completion of all tasks and not close the program directly,
without even finishing them. Other lines are the stopwatch and
screen exit.

Fig. 6: Character Repository Class (Source: Authors, (2020).

Fig. 7: Main Class. Source: Authors, (2020).

Development with PHP: The application starts according to
figure 8, with the http function, whose objective is performing
a repetition control to request the external API, timing each
calling and showing the generated data. A library was used to
compose the called API, library called ReactPHP, whose
objective is to leave requests asynchronous, but it does not
have a function that performs several requests and the wait. In
figure 9, time the beginning of the http function until its end, in
the continuation of the script more data output.

Execution time result: The following figure 10 shows the
results of each application request in Node.js and .Net Core, in
figure 10 the initial request time result for API of Star Wars, it
is observed that Node.js started 1 second earlier to return your
first request, bringing the returns asynchronously, we can see
that the each return does not follow an order, as if it were lined
up, but rather asynchronous. Even his initial return was ID - 71,
then 54, 41, 11 ... N. You can note that before the first return
we have a message “Final main line”, as the one shown on the
console says, this message is at the end of the main () function
in Node.js figure 5 line 20 of the image. "But how? If all

35544 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

requests to the API have not been finalized and is this message
at the end of the function?”.

Fig. 8: HTTP Function (Source: Authors, (2020).

Fig. 9: Execution of the function and rest of the script
Source: Authors, (2020).

Thanks to its engineering and event methodology, Node.js can
continue a function, even if it is not finished, because the Event
Loop monitors each function that has a “callback” to the
famous Callback, so long as a function is not finished, he
continues reading his Call Stack and the pending function stays
in the Callback Stack, after the function is finished, he places
his callback in CallStack. The .Net Core started 1 second late,
as explained in the application code of the .Net, it natively has
the functions of async / await, a means similar to that of
Node.js, however .Net works with mult-thread, leaving the
application asynchronous, as we can see in the result, the data
returns came without ordering, ending by time. Even though
they started late, their requests ended almost the same instant,
causing some lines to return at the same time on the console
screen, returning some data outside the context of your ID.
This fact happens, due to the application process to split each
request as if it were a task, that is, requesting a thread for each
call, when two tasks end together at the at the same time, or in
a matter of a few thousandths, the data end up together.
Analyzing the first exits from .Net there were 23 returns in less
than 1 second, while in Node.js the first outputs were 10
returns, however some return oscillations happened in .Net,
like, from one request to another it took about 4 seconds and
then continued to increasingly follow the timing. At the end of
the Node.js line, you ended your requests with thousandths to
least, see figure 11.

In comparison in the PHP application, the results according to
figure 12, the beginning of calls, happen in ascending order, on
average 1.5 seconds out of 88 created calls, however it is
blocking, locking the system, waiting for the completion of
each, therefore returning in order, leaving the rest of the system
idle. At the end of the test, see figure 13, until it ended all the
calls it took almost 3 minutes, but observing each request, it
took on average to finish 1.5 seconds, which compared to the
other apps, is quite a high-speed request completion. However,
blocking the rest of the system.

Fig. 10: Result between Node.js and .Net Core. Source:
Authors, (2020).

Fig. 11: Final result between Node.js and .Net Core. Source:
Authors, (2020).

Monitoring application: The resource monitoring application,
from the Node.js and .Net Core applications, was built with the
.Net Core platform, it has excellent libraries for processing
diagnostics, control, status, etc. The algorithm starts a process,
through the executable of each application and monitors each
processing, memory consumption and time spent running until
its completion. Showing the final result of peak memory spent
and sum of memory virtual spend. Remembering that it was
not possible to generate an executable in PHP, then the even
stayed out of resource monitoring.

Monitoring result: For monitoring the application in Node.js,
see figure 14 on the left, started using a 3-megabyte memory
paging, right after that, we observed that it started consuming

35545 International Journal of Development Research, Vol. 10, Issue, 05, pp, 35539-35550, May, 2020

42 megabytes of physical memory, with a time process time 4
milliseconds and memory paging at 30 megabytes. Keeping
this average consumption. Upon completion, see figure 15 on
the left side the data generated are:

• Peak physical memory used - 48.00MB
• Peak memory paging used - 35.00MB
• Peak virtual memory used - 4432.00MB

In the monitoring for the .Net Core application, see figure 14
on the right, started with all statuses 0, in the second call we
have a consumption of 35 megabytes, using 14 millisecond
processor time and paging memory of 21 megabytes. Having
an average consumption of: 50.87 MB of physical memory and
34.00MB of memory paging. Upon completion, see figure 15
on the right side the data generated are:

• Peak physical memory used - 60.00MB
• Peak memory paging used - 43.00MB
• Peak virtual memory used - 2102004.00MB

Fig. 12: PHP Result (Source: Authors, (2020).

Fig. 13: Final PHP Result (Source: Authors, (2020).

The question “Do you know node.js?”, Got 321 answers, we
can verify that node.js is not an unknown technology and the
vast majority of professionals in the field programmers know
it.

Fig. 14: Result of the initial monitoring. Source: Authors, (2020).

Fig. 15: Result of final monitoring. Source: Authors, (2020).
4.4 Search on node.js

Fig. 16: Question graph 1. Source: Authors, (2020).

Fig. 17: Question graph 2. Source: Authors, (2020).

35546 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

Question “Do you work with Front-end, Back-end or mobile”,
got 320 responses, with this question we can verify which
functions the programmers are specialized, we found that more
than 50% of programmers work as a full-stack, if Javascript,
programmers can be full-stack with just a single language,
whose Node.js works on the server side, the client side works a
lot with current Javascript frameworks, in addition to the
possibility to program for mobile devices.

Fig. 18: Question graph 3. Source: Authors, (2020).

The question “Where did you learn / hear Node.js
(Javascript)?”, We note that the Most programmers who want
to learn about the technology have taken courses and 26% of
them obtain knowledge at work.

Fig. 19: Question graph 4. Source: Authors, (2020).

The question “What reason did you learn about node.js?”,
Obtained 321 of the votes, that most professionals obtained the
knowledge for the reason of learning a new technology, and
only 29% of them were for work reasons.

Fig. 20: Question graph 5. Source: Authors, (2020).

The question “Was there any difficulty in learning node.js?”,
We obtained 321 answers, we can verify that for the learning of
this technology, the medium difficulty, having to know other
technologies like Javascript, paradigm functional, etc. 25%
reported that learning was easy, a fact due to reuse of language,
which is widely used on the client side.

Fig. 21: Question graph 6. Source: Authors, (2020).

The question “Node.js has already been used in some
development project your / work?”, we get 321 responses, we
can see that most have already used the node.js in some
project, being small to the big company. Only 25% used.

Fig. 22: Question graph 7. Source: Authors, (2020).

35547 International Journal of Development Research, Vol. 10, Issue, 05, pp, 35539-35550, May, 2020

The question “Why did you use node.js in development?”,
Obtained 321 responses, it was observed that 37% selected all
options, and more than 25% per story technology productivity.

Fig. 23: Question graph 8. Source: Authors, (2020).

The question “Was there any difficulty in implementing
node.js (Javascript)?”, obtained 321 responses, we found that
the majority did not have any difficulty in implementation,
25% already had some difficulty.

Fig. 24: Question graph 9. Source: Authors, (2020).

The question “Node.js met your need, as at work, personal
project and etc? ”, got 321 responses, we can see that node.js
meets the need proposal to the programmer, a small part claims
that it did not meet the need.

Fig. 25: Question graph 10. Source: Authors, (2020).

The question “Does Node.js have any issues where it can
improve?”, Obtained 321 answers, we can watch node.js
has many issues to improve, few do not know, and small.

Fig. 26: Question graph 11. Source: Authors, (2020).

The question “Would you recommend node.js to another
developer?”, Obtained 321 answers, we note that most
programmers recommend node.js for other programmers, a
small part says no.

Fig. 27: Question graph 12. Source: Authors, (2020).

The question “How do you see node.js being used in the job
market?”, Had 320 answers, we can see that in the job market
node.js has a good result, a small part sees it as regular, and a
very small part as bad and indifferent.

Fig. 28: Question graph 13. Source: Authors, (2020).

The question “In the labor market, knowledge about node.js is
a differential for programmers? ”, had 321 responses, we can
verify that having knowledge about node.js is a differentiator
for programmers, and a small part says no.

35548 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

Fig. 29: Question graph 14. Source: Authors, (2020).

The question “What other node.js (Javascript) competitor for
web development who can overcome it?”, got 321 responses,
we can verify that the competitor who can overcome, according
to respondents is Python, followed by PHP.

Fig. 30: Question graph 15. Source: Authors, (2020).

The question “Node.js can dominate development with Web,
IoT, Real-Time, Games, etc?”, Got 321 responses, we can see
that half of the programmers think that node.js can dominate,
more than 33% think not and more than 7% indifferent.

CONCLUSION

The platform is very flexible, making it easy to implement
standards, object-oriented and function-oriented programming.
Easy to implement tests, little code writing, for great
functionality. With the advantage of integrate more teams that
work with the server side and the client side, because using a
single language for the development of the system, now also
with development of mobile device applications, as there are
libraries that use Javascript for this type of development, as the
mobile device interprets Javascript natively. However, not
everything is flowers, with the growth of the system developed
inNode.js platform, increases the difficulty of understanding,
due to its engineering such as: Event Loop operation, Callback
handling, and asynchronism, weak typing. Because of this,
developers have no confidence for a complete development and
recommends it to other developers.

It was collected that the vast majority of those surveyed, know
or use Node.js to development, some think Node.js has a lot to
improve as a platform of development. A large number would
recommend it, to others programmers, because its ease for
those who already use Javascript, for client-side development
with dynamic sites, greatly facilitates migration of these types
of developers. The vast majority of respondents consider
themselves to be full-stack developers, justifying the large
number of people who know or use Node.js, because who
knows the Javascript language, can use it so much in the
development for the server side, as well as the client side and
now with development for mobile devices, with Javascript

frameworks. It was observed, for those surveyed that the major
competitors for the platform, are: 1st place Python, becoming
very popular due to science programming data, artificial
intelligence, automations and big data. It is a major competitor
of platform; in 2nd place comes PHP, due to its popularity for
building-commerce sites and web development in general, with
a major contribution to the web world. In terms of who can
dominate the web, the vast majority of respondents believe that
the platform can dominate development in general, due to
JavaScript, that can be interpreted on any device.

In monitoring we noticed that Node.js compared to other
platforms, has a performance for fast input and output, in
addition to remaining asynchronous, making requests
according to the Event Loop call stack, but without wait for the
calls to end, placing them on hold in the Callback stack,
completed will be on hold on the call stack. In computational
resources, Node.js used little, compared to .Net Core it used
resources a little more, but significant if compared to larger
applications, maintaining execution speed compared to Node.js
We conclude that Node.js has a lot to evolve and that it is
going down the road sure to be a very popular development
platform. With a great community that tends to grow more and
more and strengthen the development of platform with
feedbacks and suggestions. Knowledge of the programming
language JavaScript, helps the migration of frontend
developers, to become fullstack,which means a developer who
works so much with the business rule, the logic of
programming, as for the interface for the end customer, in
addition to interfaces for devices providing advantages for this
type of professional in the job market, since the integration for
teams that know this language is natural.

Acknowledgements

To God for having given health and strength to overcome
diversity and difficulties. This university, its faculty, direction
and administration that provided the window that today I see a
superior horizon, to our supervisor Prof. Bruno Pereira
Gonçalves, for the support, for his corrections and incentives.
To members of our family, for the love, encouragement and
unconditional support, and to all who directly or indirectly they
were part of my training, thank you very much.

REFERENCES

[1] Delfino, P., Node.js: entenda o que é e como funciona

essa tecnologia, e-TiNet. Consultado em fevereiro 19,
2020 em: https://e-tinet.com/linux/node-js/.

[2] Duarte, L. Node.js para iniciantes (pp. 6-9). Umbler.
[3] Introductionto Node.js, Node.js. Disponível em:

https://nodejs.dev/introduction-to-nodejsf.
[4] Lenon, Node.js – O que é, como funciona e quais as

vantagens, Opus Software. Consultado em fevereiro 20,
2020 em: https://www.opus-software.com. br/node-js/.

[5] Maccune, R. R., Node.js paradigms and benchmarks.
UniversityofNotreDame. C. Disponível em:
https://pdfs.semanticscholar.org/301b/45bb8e795f83774c
920b942c0dba7e290b53.pdf.

[6] Moares, W. B. (2015). Construindo aplicações com
nodejs. São Paulo: Novatec.

[7] Pereira, C. R. (2014). Node.js: Aplicações web real-time
com Node.js. São Paulo: Casa do código.

[8] Pereira, C. R. (2016). Construindo APIs Rest com Node.js
(pp.1-11). São Paulo: Casa do código.

35549 International Journal of Development Research, Vol. 10, Issue, 05, pp, 35539-35550, May, 2020

[9] Powers, S. (2017). Aprendendo node: usando javascript
no servidor. São Paulo: Novatec.

[10] Rubens, J. (2017). Primeiros passos com Node.js. São
Paulo: Casa do código.

[11] Stefano, B. Como melhorar a performance de aplicações
Node.js utilizando o módulo cluster, InfoQ. Consultado
em fevereiro 19, 2020 em: https://www.infoq.com/br/
articles/nodejs-utilizando-modulo-de-cluster/.

[12] Hota, A. K. Prabhu, D. M. (2014) Node.js: Lightweiht,
Event driven I/O web development. Informatics.nic.in.
Disponível em: https://informatics.nic.in/uploads/pdfs/
26b47a73_node.js.pdf. Acessadoemfevereiro 20, 2020.

35550 Luiz Felipe Carvalho Libertino et al., Performance analysis and monitoring of computational resources with A comparison
between node.JS. and as php and .net core platforms

