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ARTICLE INFO  ABSTRACT 
 
 

Phosphorus (P) is a macronutrient that performs functions in several physiological processes, 
becoming essential for the proper growth and development of plants. P limiting conditions, causes 
several damages, since it affects the cell homeostasis, promoting reductions in the photosynthetic 
rate, in respiration, and consequently can cause reductions in the production of cultures. This 
review shows the advances in the understanding of the physiological mechanisms of plants to 
increase the efficiency in the absorption of P under limiting conditions. The study was based on a 
bibliographic review, through the analysis of databases in scientific articles in public and private, 
national and international institutions. The searches were carried out on scientific bases such as: 
Pubmed, NCBI, SciELO and Google Scholar. The results show that under P limiting conditions, 
plants have different physiological mechanisms to increase the efficiency in the absorption and 
use of P. Among the observed mechanisms have changes anatomical root morpho, exudation of 
organic acids, use of high affinity transporters, as well as association with mycorrhizae.  The 
knowledge of such advances allows genetic improvement programs, to target more efficient 
genotypes in the absorption and use of P under limiting conditions. 
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INTRODUCTION 
 
The plants are often exposed to various environmental stress, 
including drought, soil acidity, extreme temperatures, mineral nutrient 
deficiency or toxicity (Mohammad et al., 2017), which affect their 
proper growth and development, consequently reflecting on the 
productivity of agricultural crops. Around 60% of arable land in the 
world has deficiencies or toxicity problems of mineral nutrients. In 
this context, the availability is compromised by various factors, such 
as the pH of the soil, the presence of cation, microbial activity 
(Fageria et al., 2008), associated with improper handling in the 
planting areas. Thus, increasing the efficiency of nutrient use, 
considering all macronutrients (N,P,K,Ca,Mg,S) and micro nutrients 
(Cl, Fe, B, Mn, Zn, Cu, Mo and Ni) is a challenge for agriculture 
(René et al., 2017; Dimkpa e Bindraban, 2016; Bindraban et al., 
2015; Uchida, 2000). Phosphorus (P) represents about 0.2% of the dry 
weight of plants. Through various chemical reactions P is 
incorporated into organic compounds in plants, which include nucleic 
acids (DNA and RNA), phosphoproteins, phospholipids, sugar 
phosphates, enzymes and compounds rich in energy, such 
asadenosine triphosphate (ATP). In addition, P modulates several 
cellular functions in signal transduction pathways (Czarnecki et al., 
2013). However, the main source of P for plants is inorganic 
phosphate (Pi), characterized by its low availability and mobility 
(Schachtman et al., 1998). Approximately 80% (on average) of 
phosphate fertilizers applied cannot be explored by plants (Bayle et 
al., 2011), due to adsorption to Fe oxides/hydroxides, Al hydroxides,  

 
 

as well as Ca carbonate surfaces; resulting in the formation of Fe-
phosphates, Al-phosphates and Ca-phosphates, respectively (Balemi e 
Negisho, 2012). Interestingly, plant species or even genotypes of the 
same species exhibit plasticity in the development of responses to 
changes the environmental conditions, which are complex and 
involve numerous physiological, molecular and cellular adaptations 
(Lopez-Bucio et al., 2003). In this context, the term efficiency refers 
to the ability of plant species to absorb and use nutrients or even to 
relate the productivity of crops according to the unit of the nutrient 
applied to the soil in the form of fertilizer (Fageria e Baligar, 2005). 
Efficiency mechanisms for the use of P in plants include absorption 
efficiency (the ability of a plant to absorb more P under limiting 
conditions), utilization efficiency (the ability of a plant to produce a 
higher yield of dry matter per unit Absorbed P) (Balemi e Negisho, 
2012), and the translocation efficiency (the P partition in the roots and 
in the aerial part) (Wang et al., 2010). In view of the aspects 
mentioned above, this review aims to present the understanding of 
physiological mechanisms of plants to increase the efficiency of P 
absorption under limiting conditions. 
 

METODOLOGY  
 
This study is carried out by bibliographic review, in the period from 
1981 to 2019, developed through scientific articles in public and 
private national and international institutions. The research were 
carried out on scientific bases such as: Pubmed, NCBI, SciELO and 
Google Scholar. The articles were selected using the following 
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descriptors: "phosphorus deficiency", "adaptation mechanisms"; 
“Morphoradicular responses”. 
 

RESULTS AND DISCUSSION 
 
The three-dimensional configuration of the root system of the plants 
is of great importance to improve the efficiency of acquisition and use 
of nutrients in the soil, and thus enhancing the crop yields (Li et al., 
2015). The evolutionary consequences of the decline in the 
availability of phosphorus (P) in soils, resulted over time in an 
extremely diverse set of plant species with root adaptations (reduction 
in primary root growth, development of lateral roots, formation of 
root hair) aiming to acquire P and use it internally in an efficient 
manner (Vejchasarn et al., 2016; Muller et al., 2015; Cancellier et al., 
2012; Abel, 2011; Lambers et al., 2006). Research suggests that P 
would be perceived locally and act as a signal for the control of the 
root system and lateral root formation (Niu et al., 2012; Péret et al., 
2011; Sousa et al., 2010). Grossman e Rice (2012) found in barley 
plants that the proportion of root weight is higher at low levels of 
phosphorus fertilization. According to Gruber et al. (2013) a P 
deficiency (50 μ M P) promotes a decrease in primary root length in 
plants of Arabidopsis thaliana, which was accompanied by an 
increase in the density of lateral roots of the first order.Lopez-Bucio 
et al. (2003), studying plants of Arabidopsis thaliana cultivated under 
P deficiency conditions, found increases in gene expression for P 
carriers in membranes, associated with high concentrations of auxin 
in their meristems. 
 
Several mechanisms are necessary to activate the root architecture in 
response to the P change, which depend on changes in various growth 
regulating factors, such as levels of auxins, ethylene, cytokinins, nitric 
oxide, abscisic acid, as well as a performance of several genes, 
consequently allowing plants to adapt to P deficiency conditions (Niu 
et al., 2013). Plants have developed other mechanisms for better 
efficiency in the absorption of P, for example, we have the exudation 
of low molecular weight organic acids, the release of protons, the 
activation of enzymes such as phosphatases and phytases, the 
association of mycorrhizae, as well as activation of high affinity P 
carriers (Balemi e Negisho, 2012). Egle et al. (2003) studying 
Lupinus cultivars found increases in the rate of citrate exudation 
around 67% for L. albus, 37% for L. angustifolius and 72% for L. 
luteus in conditions of P deficiency. In rice plants, malic acid was the 
most prevalent organic acid present in the root exudates, when 
subjected to concentrations of 10.3 to 89.5 μmol plant -1 d -1 of P 
(Bhattacharyya et al., 2013). Machado e Furlani (2004) studying the 
activity of the acid phosphatases enzyme in the growth of maize 
genotypes, verified that the genotypic variability must be known and 
considered before the use of the enzyme activity as an indicator of 
adaptation and efficiency of the use of P under conditions limiting. 
Studies by Ramesh et al. (2011) demonstrate that in soybean plants 
activities of phosphates varied according to availability of P in the 
soil.The plants are able to selectively select Pi (inorganic 
phosphorus), selective transport of compounds through cells is 
mediated by membrane transporters specific (Rausch e Bucher, 
2002). Plants have specialized transportation at the root/soil interface 
for the extraction of Pi, from solutions with micromolar 
concentrations, as well as other mechanisms to transport Pi through 
the membranes between intracellular compartments (Balemi e 
Negisho, 2012; Nussaume et al., 2011;). All dicotyledonous and 
monocotyledonous plant Pi carriers have been grouped into four sub-
families, PHT1 to PHT4, which are located mainly in the plasma 
membrane, chloroplasts, mitochondria, and Golgi apparatus. For 
example, in rice, 13 genes were isolated in the Pht1 family and eight 
members were functionally characterized among them, OsPT1, 
OsPT6, OsPT9 and OsPT10, which are highly expressed in roots and 
responsible for the absorption of Pi (Ye et al., 2015). Another 
mechanism used by plants to improve efficiency in the use of P is 
through the use of P-independent enzymes in the glycolytic pathways 
(Balemi e Negisho, 2012). However, it is important to destac that 
there is a threshold between the availability of P and the amount 
remaining in the soil, this nutrient can be lost and can pollute aquatic 
ecosystems, instigating ecological issues such as eutrophi-cation, 

consequently making it an expensive and ecologically unviable 
practice. Therefore, research on Pi nutrition in plants should take into 
account changes in agricultural practices that would be economically 
and environmentally beneficial (Kisko et al., 2018), and that consider 
species characteristics or even genotypes within the same species that 
use and absorb P efficiently. 
 
Conclusions 
 
This work has shown that phosphorus (P) is indispensable for proper 
growth and development of plants. In this way, adequate levels of P 
in the soil are necessary to maintain the cellular homeostasis of the 
plants, and consequently for them to demonstrate their full genetic 
potential.  Within this perspective, the knowledge explained is 
important for genetic improvement programmes, obtain genotypes 
that are more efficient in absorbing and using the phosphorus 
available in the soil. 
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