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ARTICLE INFO  ABSTRACT 
 
 

In shallow waters, traditional bathymetric methods such as acoustic and LIDAR (Light Detection 
And Ranging) systems are accurate; however they are constrained by high operational costs, 
logistic difficulties and limited spatial coverage. Shallow water depth estimation using passive 
remote-sensing method is an attractive alternative as it provides a time- and cost-effective solution 
to water depths estimation. The paper highlights the application of incorporating satellite remote 
sensing techniques to extract bathymetry information from the freely downloadable Landsat-7 
ETM+ satellite images. This paper compares the two of the most commonly used methods, 
Stumpf and Lyzenga to estimate water column depth in Bandama estuary.The Lyzenga’s model 
achieved root mean square error (RMSE) of 1.91 m, while Stumpf’s model delivered RMSE of 
3.09 m. The absolute differences between known depths and estimated depths (MAE)was 1.44 m 
concerning Lyzenga’s model, whilst Stumpf’s model obtained MAE of 2.59 m.In general, the 
Lyzenga’s model is more robust than the Stumpf’s model in the study area. The geographical 
distributions of model residuals are mapped as a basis for comparing the performance of the 
bathymetric models. The map of model residuals revealed a tendency for negative residuals in 
shallower areas and positive residuals in deeper areas.  
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INTRODUCTION 
 

Accurate and updated bathymetries are crucial for planning 
near-shore structure activities such as engineering work, port 
management, pipeline laying, fishing, dredging operation, oil 
drilling, aquaculture, maritime defence, and it is also 
significantly important to determine the underwater 
topography and movement of sediments and to generate 
hydrographic charts for safe transportation. Furthermore, 
bathymetric information is important for driving predictive 
modelling which makes it possible for the proactive 
management of impacts on near-shore marine habitats 
(Bramante et al., 2013).The traditional bathymetric surveying 
of shallow sea water is frequently based on ship-borne echo 
sounding and airborne LIDAR which provide high accuracy 
bathymetry. However, the cost and logistical difficulties of 
obtaining nearshore bathymetry using these methods makes 
survey updates rare. In shallow water areas, ship borne 
sounding is performed by using a single or multi-beam echo 
sounder system which is only capable of determining the depth 

 
accurately but encountered high operational risk due to limited 
navigation space, the shallowness of the water, etc. Moreover 
shipborne sounding is time consuming operation. Regarding 
LIDAR, this technique is expensive operational cost for many 
applications, especially when updates of a bathymetric data set 
are required with any frequency (Minghelli-Roman et al., 
2009). Furthermore, some limitations associated with LIDAR 
are the time consuming, complex procedures, and limitation to 
relatively small areas due to the airborne nature (Figueiredo et 
al., 2015). The highly dynamic nature of near-shore regions 
leads to frequent changes in bathymetry that are required to be 
monitored at periodic intervals, hence, the survey should be 
carried out frequently. Ever since the 1970s, satellite remote 
sensing technology has been gradually adopted as an 
alternative tool to map the bathymetry of the ocean, because of 
its synoptic view, cost- and time-effectiveness and 
repeatability. The dynamic nature of the remote sensing makes 
it suitable to map bathymetry for studies of the fast-changing 
coastal environment (Zhang et al., 2008).Bathymetry retrieval 
using remote sensing technology is new topic and still less 
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explored in Cote d’Ivoire, particularly in the estuary of the 
River Bandama. This neashore coastal area presents seasonal 
shallows disrupting navigation of fishing boats. SDB can be 
used as an alternative to update the bathymetry data in order to 
regularly locate these shallows. This could be very helpful for 
fishing and nautical activities. Therefore, this present study is 
the first one which examines SDB approach to estimate the 
depth of turbid and shallow waters of the Bandama 
estuary.The objective of this paper is to evaluate the 
contribution of the visible and NIR (Near Infra-Red) bands of 
Landsat 7 ETM+ in the estimation of sea depths. Multi spectral 
and spatial image resolution was tested in estuary of River 
Bandama’s shallow and turbid waters by using the well-known 
and time-tested Lyzenga and Stumpf methods (Jawak et al, 
2015). To achieve this main objective, two specific goals have 
been considered, particularly : i) the assessment of the 
accuracy of each method using statistical indices (coefficient 
of determination (R2), Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE)) ; ii) Mapping model residuals, in order 
to locate the under- or over-prediction areas of the models. 
 

STUDY AREA AND METHODOLOGY 
 
Study area: The bathymetric models were applied to 
Bandama estuary in Grand-Lahou (Côte d'Ivoire). It is located 
in the eastern side of Grand-Lahou lagoon, between 4°26 N 
and 5°20 N latitudes and 4° 20 W and 5°20 W longitudes. The 
Bandama estuary presents three channels separated by shoals 
emerging in period of low water level or by small islands 
(Figure 1). These channels and shallows are covered by fine 
and medium sands (Abé et al., 1993). Topographic surveys 
(Wognin et al. (2008), Abé et al. (1993), Hauhouot and 
N’douffou, 2009) etc.) show significant migration of the river 
mouth from East to West accompanied by severe near-shore 
coastal erosion. Tides in the area are semi-diurnal, with 
average ranges of 0.6 m and 1.4 m for neap and spring tides, 
respectively. The mean sea level is 0.78 m. Wave energy is 
moderate with an annual offshore significant wave height (Hs) 
which fluctuates between 1.28 and 1.65 m and a range of 9.4 à 
10.6 s for peak period (Tp). 
 

The multispectral imagery and bathymetric data: The 
bathymetric models were calibrated using echo sounding data. 
The survey of the bottom was accomplished through 59807 
measurements of depths (from 0 m to 19 m). The depth 
soundings are in meters and are referenced to UTM (zone 30) 
system and WGS84. The bathymetric data were subset into 
two separate calibration and validation datasets, 
eachcomprising half of the survey points, using thesubset 
features tool in ArcGIS 10.5 (Geostatistical Analyst Tools), 
which randomly assigns points to either of the data subsets. 
For this study blue (B1), green (B2), red (B3) and NIR (B4) 
bands of Landsat 7 satellite imagery are used. The image was 
acquired on 6th January, 2011 at 10:27:27.76 (UTC Time) 
with spatial resolution of 30m. The reason for applying blue, 
green and red band in the coastal environment is that radiance 
in the blue band (450 – 515 nm) decreases more rapidly with 
depth than radiance in the green band (525 – 605 nm) and red 
band (630 – 690 nm). Generally, light at wavelengths above 
700 nm has a very low transmittance in sea water. Therefore 
water appears dark and the land appears bright. For this reason, 
the NIR band (750 – 900 nm) is used for distinguishing water 
from land. Landsat imagery was selected because it is freely 
available and all imageries are referenced to WGS84. 
 

 
 

Figure 1. False color composite (R: 4, G: 3, B: 2) of location of 
Bandama river estuary. R: 4, G: 3, B: 2 shows a color composite 

image from three bands (blue, green and infra-red bands) 

 
Processing software: ENVI version 5.1 image processing 
software from ITT Solutions was used for the pre-processing 
(radiance conversion, atmospheric correction, tidal correction, 
water separation) of the ETM+ imagery. ArcMap software 
version 10.5 with the support of 3D Analyst Tool was the main 
software used for the processing stage. R version 3.4.3 (R Core 
Team, 2017) was the supporting software utilised for accuracy 
analysis and statistical exploration. 
 

METHODOLOGY 
 
This section outlines the processes being adopted in this study 
to derive nearshore bathymetry from the remotely sensed 
satellite imagery. They included radiance conversion, 
atmospheric correction, tidal correction, water separation and 
the implementation of bathymetry inversion models. In this 
paper we ignore the possible effects of sunlight, ETM+ image 
of the study area is clear of sunlight.  
 
Atmospheric Correction: For the present paper, atmospheric 
corrections were performed using the Dark Object Subtraction 
(DOS) method. DOS assumes that dark objects or pixel (e.g., 
deep water and shadows) have near-zero-percent reflectance. 
Thus, the signal recorded by the sensor from these features 
includes a substantial component of atmospheric scattering, 
which must be removed (Chavez, 1988). The atmospherically 
corrected pixel value Rac is then: 
 

��� = �� − ��� 

 
Where Ri is the initial pixel value and Rdp the dark pixel value. 
 
Water Separatio 
 
Before estimating nearshore bathymetry it is important to 
separate land from water. For this purpose, NIR band is used 
due to the appearance of water in dark and land in bright 
(Figure 2a). The land/water threshold value is obtained by 
drawing a linethat crosses from land (bright areas) into the 
water (dark areas). The values above 0.10 represent land 
whereas low values below 0.10 represent water (Figure 2b). 
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The obtained threshold value of 0.10 is used to separate land 
from water.  
 

 
 

Figure 2. Transect (a) and Threshold value (b) to separate the 
land from water 

 
Bathymetry Inversion Models: Several methods have been 
developed to derive bathymetry data from satellite images. 
This study adopted the two (2) of the most commonly used 
methods, Stumpf and Lyzenga to estimate water column depth 
in Bandama estuary. Both models apply the fundamental 
principle of Beer-Lambert Law. According to this principle, 
light is attenuated exponentially with depth in the water 
column. This principle is explained mathematically as follows: 
 

�(�) = �(0)���(−2��) 
 

K is the attenuation coefficient and z is the depth, L(z) is 
downward irradiance at z m depth and L(0): downward 
irradiance at just below the water surface. Lyzenga (1978) 
showed that the relationship of observed reflectance (or 
radiance) to depth and bottom albedo could be described as: 
 

�� = (�� − ��)���(−��) + �� 

 
Where R∞ is the water column reflectance, if the water is 
optically deep, Ab is the bottom albedo, z is the depth, and g is 
a function of the diffuse attenuation coefficients for both 
downwelling and upwelling light.  
 
Lyzenga Model: This model was introduced by Lyzenga 
(1978) and developed through a series of Lyzenga’s findings 
(Doxani et al., 2012). Lyzenga described the relationship 
between an observed reflectance Rw and the corresponding 
water depth z and bottom reflectance Ab as it is expressed in 
equation 3. Equation 3 can be rearranged to describe the depth 
in terms of the reflectance’s and the albedo as  
 
� = ���[��(�� − ��) − ��(�� − ��)] 
 

� = �� + ���� + ���� 

 

Where �� = ��[��(��) − ��(��)] 

�� = ��������� − ������� 

 

��(��) : observed reflectance for band λi after atmospheric 
correction. 

��(��) : column reflectance of optically deep water for band 
λi. 
 

a0, ai... aj = coefficients determined through multiple 
regression using known depths and the corresponding 
reflectances, they are considered to be constant coefficients 
over the entire scene. The algorithm can be expressed for n 
bands as: 

� = �� + � ����[��(��) − ��(��)]

�

���

 

 

n is the number of bands, in this study, the blue band (B1), 
green band (B2), red (B3) and NIR band (B4) of Landsat 7 
ETM+ have been used to apply linear band models. 
 
Stumpf Model: Stumpf et al. (2003) proposed an 
alternativemodel to overcome the drawbacks of changing 
substrate albedo in deriving bathymetry information (Jawak et 
al., 2015). The algorithm assumes that the effects of substrate 
albedo are minimized using two bands to derive the depth. 
Low-absorption bands will have reflectance values that 
decrease with depth more slowly than high-absorption bands. 
Thus, the ratio of a low absorption band to a high absorption 
band should display a linear increase with depth when both are 
log-transformed. Equation 7 below demonstrates the Stumpf’s 
algorithm: 
 

� = ��

����(���)�

����(���)�
− �� 

 

Where m1 is a tunable constant defining the slope of the 
relationship between the ratio and depth, m0is an offset for 
zero depth (Z = 0). LLO and LHI are observed radiance of low-
absorption and high-absorption bands respectively, n is a large 
constant used to ensure positive logarithm values under any 
condition and that the ratio will produce a linear response with 
depth (Stumpf et al., 2003). In this present work, thevalue of n 
was set to 1000. Stumpf et al. (2003) showed that the model is 
insensitive to threefold changes in the value of n (n varying 
from 500 to 1,500). 
 

Mapping Model Residuals: Model residuals were mapped as 
a simple way to visually examine the spatial distribution of the 
performance of bathymetric estimations. A point shapefile was 
produced to depict the model residuals in their geographical 
location at each site. This shapefile was then interpolated to a 
continuous raster surface using a kigring algorithm. Kriging 
was selected because it has emerged as an optimal spatial 
interpolation method for mapping point values of residuals in 
model predictions (Kyriakidis et al., 2001). The resultant layer 
was then used as a visualization tool for examining the spatial 
distribution of error associated with the bathymetric 
estimations. 
 

RESULTS AND DISCUSSION 
 

RESULTS 
 
Model training 
 
The visible and NIR bands of ETM+ image and 29904 bottom 
depth points of the training data set were used to calibrate the 
bathymetric inversion models. A preliminary test was 
performed in order to evaluate the significance of visible and 
NIR bands of ETM+ in Stumpf et al. and Lyzenga models. 
Different band ratios were tested to select low-absorption and 
high-absorption bands, agreement with ratio of blue band (B1, 
low-absorption band) to NIR band (B4, high-absorption band) 
of ETM+ having greater correlation with depth than the more 
conventional blue–green ratio (B1/B2) (Table 1).  
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Table 1. Coefficient of determination (R2) to select low-absorption 
and high-absorption bands 

 
Band Ratio B1/B2 B1/B3 B1/B4 

R2 0.06 0.15 0.56 

 
The three visible wavelength bands (blue, green and red) and 
the NIR band of ETM+ were used to train Lyzenga's 
algorithm. Thereafter, the four bands were removed 
successively in order to determine the significance of each 
band in Lyzenga’s model. Successive removal of blue, green 
and red band resulted in slight decrease in accuracy (R2 = 
0.9091, R2 = 0.9045 and  R2 = 0.9003 for the removal of blue 
band, green band and red band respectively, where R2 is the 
coefficient of determination between the true measured water 
depth value and the corresponding pixel of log-transformed 
radiance values). The removal of the NIR band resulted in 
significant decrease in accuracy of the model (R2 value 
decreased from 0.91 to R2 = 0.6989). The parameters of 
Stumpf and Lyzenga algorithms are displayed in Table 2. 
 

Table 2. Parameters used with the two physically based 
models, as defined in Equations (6), (7) 

 

Parameters 

 a0 a1 a2 a3 a4 m0 m1 
Lyzenga -29.29 0.52 -1.41 -1.73 -5.06   
Stumpf      -172.54 159.054 

 

Validation 
 
The assessment of accuracy is made by comparing the SDB 
with 29903 bottom depth points of the validation dataset. The 
accuracy of each model is assessed using two simple statistical 
parameters along with the coefficient of determination R2, root 
mean square error (RMSE) and mean absolute error (MAE). 
The coefficient determination between the model-predicted 
depths and the reference bottom depths is 0.77 and 0.90 for 
Stumpf’s model and Lyzenga’s model respectively. Regarding 
the statistical analysis, Lyzenga’s model obtains RMSE of 1.91 
metres while Stumpf et al.’s model delivers RMSE of 3.09 
metres. The absolute difference between known depths and 
estimated depths (MAE) is equals to 1.44 meters for Lyzenga’s 
model, whilst the MAE obtains by Stumpf’s model is 2.59 
meters.Analysis of the statistical parameters indicates that the 
Lyzenga model is more accurate than the Stumpf model. This 
results in a high value of the coefficient of determination and 
low values of RMSE and MAE obtained by the Lyzenga 
model compared to those obtained by the Stumpf model. This 
could be explained by the number of spectral bands (4 bands 
including blue, green, red and PIR) used in the Lyzenga 
model. Indeed, in theory the number of significantly different 
bottom types and water masses that this algorithm takes into 
account is directly proportional to the number of bands used in 
order to produce more accurate results over heterogeneous 
waters. The SDB maps (Figure 3a and Figure 3b) suggested 
that Stumpf’s model underestimates depth in deeper areas 
whereas Lyzenga’s model overestimates depth in deeper areas.  
 
The Figure 3a and Figure 3b also show that Lyzenga’s and 
Stumpf’s models deliver negative values of depth in very 
shallow areas, with a large range of negative values (0 m to -7 
m) obtained by Stumpf’s model compared to those obtained by 
Lyzenga’s model (0 m to -3 m). These very shallow areas are 
characterized by suspended sediments which can cause the 
discrepancies between in-situ and derived depth values. The 

negative values of depth show that both Lyzenga’s and 
Stumpf’s models fail to derive bathymetry in the very shallow 
and turbid waters of the estuary. Bathymetric maps produced 
by the models are displayed in Figure 3.  
 

 

 
 

Figure 3. Bathymetric maps derived from ETM+ image: 
(a) Lyzenga’s model; (b) Stumpf’s model. 

 
The spatial distribution of residuals also shows that Lyzenga's 
model appeared to perform better because its residuals were 
constrained around a narrower range of values (-5 to 7 m) 
(Figure 4a) compared to those of Stumpf’s model (-7 to 10 m) 
(Figure 4b). A detailed investigation using theresidual depth 
map (Figure 4b) indicates that spatial heterogeneity was not 
effectively addressed by Stumpf’s model. The residuals would 
be randomly distributed in space if both Lyzenga and Stumpf 
inversion models were robust to the bottom type variation. The 
residual map of Stumpf’s model displays more distinctive 
geographical structure. In shallower regions, negative residuals 
tend to be located nearby each other and form several clusters 
in space. This involves that Stumpf’s model overestimates the 
water depth in shallow areas. The positive residuals form 
clusters in deeper areas where the model underestimates the 
water depth. Concerning Lyzenga’s model, the residuals are 
randomly distributed in space (Figure 4a).  
 
Nonetheless, the Figure 4a displays a spatial distribution of 
residuals which is relatively unstructured with little discernible 
pattern of underestimate or overestimate of depth across 
shallower and deeper zones. The spatial clustering of positive 
and negative residuals suggests that the model is inclined to 
overestimate the water depth for some bottom types and to 
underestimate the water depth for other bottom types. 
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DISCUSSION 
 
Several studies (Jagalingam et al. 2015, Zhang et al. 
2008,Stumpf et al. 2003, Evagorou et al. 2019, etc.) use band 
ratio of blue (low-absorption band) to green (high-absorption 
band) to implement Stumpf et al model in relatively clear 
water. However, in the turbid waters of Bandama estuary a 
band ratio of blue band (low-absorption band) to a band with a 
wavelength greater than those of the green band like red or 
NIR band(high-absorption band) have greater correlation with 
depth than the blue-green ratio. These results corroborate those 
obtained by Bramante et al. (2014) in Singapore’s shallow 
turbid waters which found that ratios of the World view-2 
satellitecoastal blue band (low-absorption band) to its yellow 
band (high-absorption band) having greater correlation with 
depth than the more conventional blue-green ratio.Therefore, 
the band ratio B1/B4 was selected to implement Stumpf et al 
model.Concerning Lyzenga’s model, the adjunction of NIR 
band to the three visible bands of ETM+ resulted in significant 
increase in accuracy of the model (R2 value increased from 
0.69 to R2 =0.91). According toHala et al. (2017) the NIR 
band affect Lyzenga’s model for better estimation of depth 
values in coastal shallow waters. From all this, it follows that 
the NIR band of ETM+ is crucial for deriving bathymetry in 
shallow and turbid waters. In general, Lyzenga et al and 
Stumpf et al models, successfully produced decent results(R2  
is 0.77 and 0.90 for Stumpf’s model and Lyzenga’s model 
respectively) in this turbid waters region. These two 
algorithms are found to be superior to accurately determine the 
shallow depth in highly turbid waters(Jawak et al, 2015). 
Stumpf model has less number of empirical coefficients which 
makes the method simple to use and more stable over broad 
geographic areas.However, Lyzenga linear band model 
employs two or more bands, which allows to take to account 
different bottom types and water masses in heterogeneous 
environment like in the estuary of Bandama. This particularity 
of Lyzenga model makes it provide better results than Stumpf 
model in the study area. The underestimation and 
overestimation problem could be tied to water quality across 
the study area. Indeed, the acquisition date of the images 
coincides with the great dry season in Bandama estuary. The 
phytoplankton tend to proliferate during this season (Komoé et 
al, 2009).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vertical distribution of phytoplankton could cause 
variance in attenuation coefficients with depth (Bramante et al, 
2013). This vertical stratification of phytoplankton could lead 
to some discrepancies in light attenuation with depth in the 
water column. Thus, the two physics-based models could 
deliver some biases when deriving depth. This could explain 
the bias towards overestimation that seems present in the 
Stumpf and Lyzenga models in shallower areas and the 
underestimation bias in deeper areas. Moreover, the Bandama 
River discharges cause high suspended sediment 
concentrations in the estuary. Water turbidity caused by 
suspended sediment limits the penetration of light. In these 
instances, the number of photons detected by the sensor that 
have interacted with the seafloor will become negligibly small. 
At this point, there will be no information for the estimation of 
bathymetry (Hamylton et al., 2015). The negative values of 
depth delivers by Stumpf’s model in shallow areas could be 
due to the disadvantage of the atmospheric correction used in 
this study (dark pixel subtraction). A drawback appears in 
cases where the bottom reflectance is lower than the dark pixel 
value, for instance when the bottom is covered with sea grass, 
the difference in equation (1) becomes negative. Consequently 
equation (6) and equation (7) cannot be satisfied as the natural 
logarithm of a negative quantity is not defined. The resulting 
signal is negative, resulting in an imaginary value when log-
transformed (Bramante et al., 2013). This explains negative 
values of depth encountered in shallow areas when applying 
Stumpf’s algorithm. In the aforesaid circumstances, Lyzenga’s 
algorithm fails to derive bottom depth in certains locations of 
the study area. 

 
Conclusion 
 
This study examines usability of satellite derived bathymetry 
in estuary of Bandama’s shallow and turbid waters. 
Throughout this experiment,a comparison ofLyzenga and 
Stumpf models reveals that Lyzenga et al. model provides the 
best performance of the two models. Although the Lyzenga’s 
model appeared to perform better than the Stumpf’s model, 
both were subject to the same depth limitations, which are 
likely governed by the water quality and bottom type. 
Globally, Lyzenga et al and Stumpf et al models produced 
reasonably good depth estimates in these shallow coastal 

 
 

Figure 4. Mapsofthespatial distribution of residuals: (a) Lyzenga’s model; (b) Stumpf’s model 
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waters. The NIR band proved to be most effective for deriving 
bathymetry in shallow and turbid waters of Bandama estuary. 
Spatial error demonstrated that the mapping of model residuals 
is a useful tool for the exploration of error in bathymetry 
estimation models. This study considers as a part of a larger 
effort to evaluate various cost effective, relatively accurate and 
practical bathymetry survey methods. Also, by stacking 
Landsat 7 imagery time series with historical data, it is 
possible to distinguish the seabed topography. 
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