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ARTICLE INFO  ABSTRACT 
 
 

High-biomass sorghum is a crop that has great potential as a source of biomass for energy 
generation, due to its high productivity, drought tolerance and for being mechanizable. Thus, 
culture is an alternative to vegetable biomass to be used in electric energy cogeneration processes. 
The objective of the work was to develop multivariate calibration models, using the near infrared 
spectroscopy, for analysis of gross calorific value, moisture, and ash content in high-sorghum 
biomass. At samples were analyzed by reference methods and the results associated with the near 
infrared spectrum of each sample. Then they were developed for each parameter, multivariate 
calibration models using the partial least square (PLS) algorithm. A high correlation was obtained 
between the values predicted by the model and the values obtained by reference method for all 
properties evaluated. Ratio of prediction to deviation (RPD) and range error ratio (RER) values, 
respectively, above 3 and 10, for all the models constructed, thus being considered adequate for 
carrying out quantitative analyzes of chemical composition in the qualification of the sorghum 
biomass as a source of raw material for energy cogeneration and optimization of biomass 
conversion technologies. 
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INTRODUCTION 
 
The biomass represents one of the most abundant and 
promising alternatives for raw materials based on clean and 
renewable energy sources. Direct combustion is the main 
technology applied for the production of heat and mechanical 
energy from biomass, with socioeconomic and environmental 
advantages, such as a reduction in the balance of emissions of 
products harmful to the environment (Burin et al., 2015). With 
high production of biomass, sorghum [Sorghum bicolor (L) 
Moench] has a great potential for burning in boilers of large or 
thermoelectric plants (May et al., 2014). The genotypes 
characterized as high-sorghum biomass have a good 
adaptability, reaching a height of 6.0 m in height and a fresh 
mass production of 120 t.ha-1 to 150 t.ha-1, with a growth cycle 
of 180 days. With the prospect of a 50% increase in the 
demand for electricity in Brazil until 2030 (Brazil, 2015), an 
increase in the demand for biomass is also expected to meet 
this growth. Currently, cogeneration plants in the sugar and 
alcohol sector are supplied with sugarcane bagasse during the 

 
harvest, which extends from April to December in the Center-
South region of Brazil. For the rest of the year, most plants are 
out of operation and there is no electricity production (Burin et 
al., 2015). In this scenario, the cultivation of biomass sorghum 
is an opportunity to minimize the effect of seasonality inherent 
to the cultivation of sugarcane, extending the operation of the 
plants during the off-season. In the identification of sorghum 
biomass genotypes with characteristics suitable for this energy 
conversion technology, there is a need to characterize the 
chemical composition of the biomass as described by 
Karampinis et al. 2012, Inherent properties of biomass are 
influenced by many factors including plant genetics, growing 
environment, harvesting method, storage, climatic conditions, 
and seasonal variations (Everard et al., 2012). Gross calorific 
value (GCV) of biofuel is one of the critical properties of 
interest of industry and it is directly influenced by its chemical 
composition. The gross calorific value of a fuel can be defined 
as the amount of fuel energy released in the form of heat 
during the complete combustion of a unit of mass of the 
analyzed fuel.  
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Moisture, and ash content are also important thermal 
properties to qualify the biomass. Llorente and Garcia cited by 
Everard et al., 2012 considering that gross calorific value and 
net calorific value mainly of various biomasses depend on ash 
and moisture content, (i.e. calorific values are inversely 
proportional to the ash and moisture content). Biomass is often 
valued on their moisture (M) content due to its influence on 
calorific value, combustion optimization, storage management 
and harvesting properties, (Wu et al 2011), and high M also 
increase transportation costs, drying costs as well. Ash content 
influences combustion efficiency increases disposal costs due 
to slagging, fouling, corrosion, agglomeration and may cause 
cleaning problems to burner and designing and operating 
systems (Everard et al., 2012, Sirisomboon et al., 2020). To 
know the quality of the biomass it’s necessary to realize the 
phyco-chemical characterization. Usually the characterization 
of the biomass is realized by conventional wet chemical 
analysis methods. These methods are accurate and credible but 
are also time-consuming, expensive, labor-intensive, and 
usually destructive (Pasquini, 2018). Thus, the prediction of 
thermal properties in a rapid, non-destructive manner would 
allow breeding program biomass to qualify and improve the 
high-sorghum biomass. In trading, gross calorific value, 
moisture, and ash content are important traits in the 
specification of biomass to set a price.  
 
To cover this demand, a faster and efficient method was 
developed alternative to reference methods, which uses 
infrared spectroscopy (NIR) associated with the development 
of multivariate calibration models. This approach has been 
widely used to determine its potential to predict qualitative and 
quantitative attributes in the food (Pasquini, 2018), the 
feedstock’s composition (Fagan et al., 2011) and suitable for 
real-time monitoring of important parameters in alcoholic 
fermentations (Nascimento et al., 2017) saving time and 
money with no loss precision or accuracy relative to the 
calibration methods (Fagan et al., 2011). 
 
The use of an NIR spectroscopy model for classifying biomass 
quality was recently investigated by Fagan et al. (2011), who 
developed models based on near infrared (NIR) spectroscopy 
to predict GCV, moisture, ash, and carbon content. The results 
of moisture and HHV value models were suitable for use in 
any application, the carbon and ash prediction models were 
fair and could be used in a screening application. Zhang et al. 
(2017) built an NIR model to determine high heating value 
(HHV) and elemental components of sorghum biomass using 
the 75 samples in the calibration set. HHV and carbon content 
models had excellent prediction accuracy, whereas hydrogen, 
nitrogen, sulfur, and oxygen models could provide reliable 
predictions. In our previous studies, NIR spectroscopy based 
on PLS method has been used to predict cellulose, 
hemicellulose, lignin and theoretical ethanol yield in sorghum 
biomass (Guimaraes et al., 2014), sucrose, glucose and 
fructose in sweet sorghum juice (Simeone et al., 2017) and 
allow us to a cost-effective high-throught put phenotyping of 
genetic diversity in sorghum germplasm growth in Brazil. As 
NIR spectroscopy is applied to the study of grasses in biofuels 
research, it should be explored as a rapid method to determine 
calorific value, moisture, and ash. The objective of this work 
was to develop a multivariate calibration model using near-
infrared spectroscopy to determine the gross calorific value 
(GCV), moisture (M), and ash (A) content in high biomass 
sorghum to collaborate with breeders and genetic studies to 
improve the thermal properties and optimization of biomass 

conversion technologies of sorghum biomass as bioenergetic 
culture.  
 

MATERIALS AND METHODS 
 
Preparation of samples: The experiment was conducted in the 
field experimental area of Embrapa Maize and Sorghum, in 
Sete Lagoas (19°28’ 57”S, 44°15’08”W), and Nova 
Porteirinha (15º47' 00''S, 43º18'00'' W) MG, Brazil, using 
cultivars of Embrapa’s sorghum breeding program. The 812 
samples of high-sorghum biomass were grown in different soil 
and climatic conditions and were harvested at different growth 
stages. The samples were collected at dough stage e maturation 
stage during 2015, 2016 and 2017. Fertilizer management 
weed and pest control, and other agricultural practices were 
performed as recommended for sorghum cultivation following 
May et al. 2014. The samples were dried at 65 ° C in an air 
circulation oven LS102 / 960 (Solab, Piracicaba, Brazil) and 
then ground in a Whiley knife mill up to 1 mm granulometry.  
 
Physico-chemical analysis: Moisture content was measured 
according to the standard ASTM E1756-08 method. The high-
biomass sorghum samples were dried using a hot-air oven 102-
250 model (American Lab, Piracicaba, Brazil) at 105 ºC until a 
constant weight was observed. Gross calorific value was 
obtained in a calorimeter C2000 (Werke GmbH and Co. KG, 
Staufen, Germany). Approximately 1.00 g of each pelleted 
sample was put into an adiabatic bomb calorimeter and burned 
to ash. Ash content was measured at 550 ºC by burning 
samples to a constant weight in a muffle furnace GP-2000G-M 
(GP Cientifica, Belo Horizonte, Brazil). The analyzes were 
performed in duplicates. 
 
Near infrared spectra data calibration and validation: The 
spectra of the high-biomass sorghum samples were obtained in 
FT-NIR spectrometry equipment, model NIRFlex 500 (Buchi 
Labortechnik, Flawil, Switzerland) in triplicate, in the region 
of 4,000 to 10,000 cm-1, with a resolution of 4 cm-1 and 32 
steps per spectrum. To correct the scattering effects of light 
and baseline shifts, spectra were pre-processed using the 
standard normal variation - SNV and Savitzky-Golay first 
derivative. Standard normal variate is a pre-treatment used 
quite often in near infrared to remove the scatter. It is applied 
to every spectrum individually. The average and standard 
deviation of all the data points for that spectrum is calculated. 
Every data point of the spectra is subtracted from the mean and 
divided by the standard deviation (Mikola et al., 2020; Bi et 
al., 2016). The Savitzky–Golay first derivative (1st) is a 
polynomial derivative filter. The method used a smoothing of 
the spectra prior to calculating the derivative to decrease the 
detrimental effect on the signal-to-noise ratio than 
conventional finite-difference derivatives would have (Lee, 
Liong, & Jemain, 2018). The data were also centered on 
average. The Kennard-Stone algorithm (Kennard; Stone, 1969) 
for the selection of the sample set to be used in the 
development of the calibration model (2/3 of samples) and 
validation (1/3 of samples). 
 
The gross calorific value, moisture, and ash were obtained by 
reference methods and were associated with the mean of NIR 
spectra of each sample. Then, they were developed for each 
constituent of the biomass the multivariate calibration models 
using the partial least square (PLS) algorithm. All PLS models 
were constructed with cross-validation by the full method. In 
this method one sample was removed systematically from the 
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data set, then a PLS model was constructed with the remaining 
samples to predict the value of the Y-variable for the removed 
sample. This process continued until each sample had been 
excluded from the data set and used for validation. External 
validation of the PLS model for the prediction of gross 
calorific energy value was carried out with another sample set 
of sorghum biomass not included in model development. For 
all model development, The Unscrambler® software version 
10.5.1, (CAMO Software Inc., Oslo, Norway) was used. 
Statistical indicators (ASTM International, 2012) used to 
assess performance and validation of the models were: square 
root of the mean calibration error (RMSEC), square root of the 
mean cross-validation error (RMSECV), square root of the 
mean error of prediction  (RMSEP) and R2 (coefficient of 
determination) for the calibration and validation set. Spectral 
outliers were determined by the analysis of the F-residuals 
versus leverage statistics represent three different kinds of 
outliers. The residual statistics on the ordinate axis describe the 
sample distance to model, whereas the leverage describes how 
well the sample is described by the model. The high residual 
variance may be due to non-important regions of a spectrum, 
for instance. Samples with high leverages have a stronger 
influence on the model than other samples; they may or may 
not be outliers, but they are influential.  
 
Accuracy of the generated PLS models was attested by 
trueness and precision studies. The model's predictive ability 
was assessed with the dimensionless parameters ratio of 
prediction to deviation (RPD) defined in Eq. (1) and range 
error ratio (RER) defined in Eq. (2). RPD values above 2.5 
indicate that Model discriminates between minors and the 
highest values of the responses and RER values above 10 are 
indications of good prediction accuracy. (Williams and Norris, 
2001; Calegari et al., 2020).  

 
RPD = SDval/RMSEP                                    equation 1 
 
RER = (Ymax – Ymin)/RMSEP                         equation 2 
 

RESULTS AND DISCUSSION 
 

The characteristics of the calibration and validation sets for the 
GCV, moisture, and ash content in high-sorghum biomass are 
shown in Table 1. Analyzing the values of the mean and 
standard deviation, made possible to detect the wide variability 
among high-sorghum biomass samples. The raw spectra of the 
812 samples are presented at figure 1. The spectral regions for 
which dominant peaks were found between 7200 and 6600, 
6000 and 5500, 5400 and 4600 and 4600 and 4000 cm-1 can be 
attributed to O–H stretch first overtone, C–H stretch first 
overtone, O–H combination bands and C–H combination band 
regions, respectively (Workman Jr. and Weyer, 2008). The 
peaks of the raw spectra were like sweet sorghum (Guimarães 
et al., 2014). Among the pretreatments applied before 
calibration, a procedure that presented a good performance in 
the elimination of the multiplicative light scattering effect was 
the second derivative Savitzy-Golay (SG-2), with 11 points on 
the right and on the left for the obtain the best model for the 
gross calorific value. For moisture and ash content the standard 
normal variate (SNV) followed by first derivative Savitzy-
Golay (SG-1), with 9 points on the right and on the left, were 
applied to the spectra to obtain the best calibration model.  
Latent variables (LVs) can be used to reduce the 
dimensionality of data, and the optimal number of latent 
variables (LVs) was determined by the lowest value of  

 
 

Figure 1. Raw spectra of the high-sorghum biomass samples 
obtained in the range of 10,000 to 4,000 cm−1. 

 

 
 

Figure 2. Scatter plot of predicted versus measured values for calibration 
set and validation set of high-sorghum biomass: a) gross calorific value 

(kJ.kg-1), b) moisture content (%), c) ash content (%) 

 

 
 

Figure 3. Regression coefficients plots of PLS models using high-
sorghum biomass for a) gross calorific value, b) moisture content, 

M (%), c) ash content, A (%) 
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predicted residual error sum of squares (PRESS), (Haaland and 
Thomas,1988). Consequently, the calibration optimal models 
were selected to high R2, and low RMSEC, RMSECV, 
RMSEP and bias (ASTM International, 2012). The statistical 
parameters obtained for the sample sets used for the 
development of the model’s multivariate calibration and 
external validation for sorghum biomass samples are presented 
in Table 2. A high correlation (R2) was obtained between the 
values predicted by the model and the values obtained by the 
reference method for both samples of the calibration set 
(RMSEC) as well as for the validation set (RMSEP) to gross 
calorific value (Figure 2a), moisture (Figure 2b), and ash 
(Figure 2c). Accuracy of the generated PLS models was 
attested by trueness and precision studies. Trueness of 
multivariate methods is evaluated by RMSEC, RMSECV and 
RMSEP. Low calibration and prediction errors of the GCV, 
moisture, and ash contents (RMSEC 0.16, 0.28 and 0.41%, 
RMSEP 0.19, 0.27 and 0.43%, respectively). The precision 
was only estimated at the level of repeatability by estimating 
relative standard deviations (RSD) for triplicates of three 
sorghum samples with low, medium, and high GCV, moisture, 
and ash contents. RSD varied 0.2, 0.1, 0.2% for GCV; 0.2, 0.1, 
0.1 % for moisture; 0.3, 0.2, 0.2% for ash, respectively. These 
values can be compared with the expected values issued from 
the Horwitz equation (Horwitz, 1982) and acceptable RSD (< 
4%) were obtained. The determination coefficient (R2) 
obtained for the set of calibration samples was 0.9, showing a 
good correlation between the values predicted by the model 
multivariate developed and the values obtained by the 
reference methods. RPD and RER ratio relates SEP to variance 
and range in the original reference data, taking into 
consideration that RPD should ideally be at least 2.5 and the 
RER at least 10.0. Williams and Sobering (1996) indicated that 
the RPD value of 3 or more was recommended. All models in 
Table 2 presented RPD above 3 and RER above 10 and may be 
used to screen high-sorghum biomass genotypes. 

 
The GCV model in this study was compared to those in earlier 
studies reporting on 100 accessions of sorghum (R2= 0.85, 
RMSEP=0.11 MJ.kg-1, and RPD 2.62), (Zhang et al., 2017), 
and Miscanthus (R2= 0.97 and RMSEP 0.33 MJ.kg-1, and RPD 
= 4.54), Everard et al., 2012. The regression coefficient shows 
the wave number, and absorption would have a strong 
influence on the model if its regression coefficient was at that 
high wave number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lignocellulose in biomass impacts on its GCV and the 
regression coefficient of the model is associated with 
vibrational band of molecules in lignin, hemicellulose, and 
cellulose. Spectral regions (Figure 3a) between 5800-5400 cm-

1 and 4600-4000 cm-1 are related, respectively, to the first 
overtone of C-H stretching, and C-H+C-H and C-H+C-C 
combination bands. O-H stretching and deformation of ROH at 
7052 and 4944 cm-1, respectively, attributed to vibrations of 
the molecules of water and sugars present in the biomass. Two 
main peaks for the M model (Figure 3b) were 6028 cm-1 
corresponding to the O-H combination of H2O, and 5776 cm-1 
and 4476 cm-1relating to the first overtone of C-H stretching of 
CH2. O-H stretching and deformation of ROH at 7052 and 
4944 cm-1, respectively and C=O stretching (second overtone) 
of -CO2H, CONH, and CONH (5260, 5200, and 4920 cm-

1),(Workman Jr, 2008). For M, the prediction of M in biomass 
had a good performance. It was based principally on the 
presence of O-H bonds in structures, for example cellulose, 
hydroxyl groups and water.  
 
As previously shown by Sirisomboon et al., 2020 the 
performance of the ash model resulted in good predictions that 
could be applied toward quality assurance. However, the ash 
model was a good predictor and be able to predict indirectly, 
since ash is inorganic, it was not an NIR absorber. Ash and 
moisture content impact the quality of combustion, showing a 
negative correlation with GCV like observed by Everard et al., 
2012 and Gillespie et al., 2015.  
 
The regression coefficient main peaks for the ash content 
model (Figure 3c) were at 7120 cm-1 relating to the second 
overtone of C-H of aromatic molecules, and 5960 cm-1 which 
were related to the first overtone of C-H stretching vibration of 
CH2. An NIR technique for prediction GCV, moisture, and ash 
content of the high-biomass sorghum could be an alternative 
method for pricing biomass, thus NIR technique can be applied 
real time and on-line characterization of the biomass for solid 
biofuels as pellets, cogeneration or direct burning  (Everard et 
al., 2012). The overall results show that the studies in biomass 
sorghum breeding, the NIR technique can be quickly and 
nondestructively and determine whether the samples have 
higher thermal quality, obtain a distribution map of different 
varieties of sorghum and the constituents ratio in the samples. 
 
 

Table 1. Statistics of the high-sorghum biomass physical-chemical properties used in the calibration and validation sets. 
 

Properties Calibration Validation 
 Min Max Mean SD± No. Min Max Mean SD± No. SE± 
GCV (KJ.kg-1) 15.52 18.11 16.69 0.51 552 15.83 17.65 16.74 0.51 260 0.17 
Moisture (%) 91.80 95.55 93.22 0.83 234 92.19 95.54 93.22 0.77 109 0.40 
Ash (%) 1.84 9.16 3.95 1.56 206 1.85 7.63 4.09 1.59 102 0.35 

Min — minimum value, Max — maximum value, SD — standard deviation, SE — standard error of analysis, No — number of samples, GCV: 
gross calorific value. 

 
Table 2. Results of PLS regression models for the gross calorific value, moisture, and ash content, (%) for the calibration and 

validation sets of high-biomass sorghum 
 

Properties Calibration Validation 
 N LV R2

cal RMSEC/RMSECV N R2
val RMSEP RPD RER bias 

GCV KJ.kg-1 552 6 0.88 0.16/0.16 260 0.86 0.19 3.23 11.38 0 
Moisture % 234 1 0.93 0.27/0.28 109 0.87 0.27 3.5 15.22 0 
Ash % 206 7 0.94 0.36/0.41 102 0.93 0.43 3.44 13.65 0.006 

GCV: gross calorific value, N: sample set, LV: latent variable, R2 cal: coefficient of determination of calibration set, RMSEC: root mean squared error of 
calibration, R2val:  coefficient of determination of external prediction set, RMSEP: root mean squared error of prediction, and RPD: ratio of prediction to 
deviation, RER: range error ratio. 
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Conclusion 
 
The use of NIR spectroscopy associated with multivariate 
calibration methods enabled the development of a fast and 
nondestructive method for analyzing the levels gross calorific 
value, moisture, and ash content in high-sorghum biomass. 
The sample set was broad, representing at least 308 cultivars 
with different growth stages. It is expected that the use of these 
models in the analysis routines will make the research into the 
biomass sorghum breeding program for bioenergy. 
 
Acknowledgments 
 
The authors are grateful to Brazilian National Bank for 
Economic and Social Development (BNDES) process number 
3013/2014,National Science and Technology Development 
Council (CNPq) for providing student fellowships, National 
Institute of Sciences and Technologies Advanced Analytics 
(INCTAA), proc. nº.: CNPq 465768/2014-8  and Brazilian 
Agricultural Research Corporation (Embrapa). 
 

REFERENCES 
 
ASTM International. 2012. Standard practices for infrared 

multivariate quantitative analysis. West Conshohocken, 
ASTM. E1655.  

Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J.,Zhou, G. 
2016. A local pre-processing method for near-infrared 
spectra, combined with spectralsegmentation and standard 
normal variate transformation. Analytica Chimica Acta, v. 
909, pp.30–40. 

Brasil. Ministério de Minas e Energia. 2015. Plano Nacional 
de Energia 2030 / Ministério de Minas e Energia; 
colaboração Empresa de Pesquisa Energética. Brasília: 
MME: EPE. 

Burin, e. K.,  Buranello, L.,  Lo Giudice, P; Vogel, T; Görner, 
K., Bazzo, E. 2015. Boosting power output of a sugarcane 
bagasse cogeneration plant usingparabolic trough collectors 
in a feedwater heating scheme. AppliedEnergy, v. 154,pp. 
232-241. 

Calegari, M.A.,  Ayres, B.B.,  Tonial, L.M.S.,  Alencar, S.M.,  
Oldoni, T.L.C. 2020. Fourier transform near infrared 
spectroscopy as a tool for predicting antioxidant activity of 
própolis. Journal of King Saud University – Science v. 
32,pp. 784–790. 

Chen, H., Song, Q., Tang, G., Feng, Q., Lin, L. 2013. The 
combined optimization of Savitzky-Golay smoothing and 
multiplicative scatter correction for FT-NIR PLS models. 
ISRN Spectroscopy, pp. 1–9.  

Fagan, C.C.,  Everard, C.D., McDonnell, K.P.2011. Prediction 
of moisture, calorific value, ash and carbon content of two 
dedicated bioenergy crops using near-infrared 
spectroscopy. Bioresource Technology,v. 102, pp. 5200–
5206. 

Gillespie, G.D.,   Everard, C.D.,    McDonnell, K.P. 2015. 
Prediction of biomass pellet quality indices using near 
infrared spectroscopy. Energy,v. 80, pp. 582-588. 

Guimarães, C.C.,  Simeone, M.L.F.,  Parrella, R.A.C.,  Sena, 
M.M.2014. Use of NIRS topredict composition and 
bioethanol yield from cell wall structural componentsof 
sweet sorghum biomass, Microchemical Journal, v.117, 
pp.194-201. 

Haaland, D.M.,  Thomas, E.V. 1988. Partial least-squares 
methods for spectral analyses. Relation to other 
quantitative calibration methods and the extraction of 

qualitative information. Analytical Chemistry, v. 60, n. 11, 
pp. 1193-1202. 

Horwitz, W. 1982. Evaluation of analytical methods used for 
regulation of foods and drug, Analitical Chemistry, 54, pp. 
67A-76A. 

Karampinis, E., Kourkoumpas, D., Grammelis, P., Kakaras, E. 
2015. New power production options for biomass and 
cogeneration. WIREs Energy Environmental. v. 4, p. 471–
485. 

Kennard, R.W., Stone, L.A. 1969. Computer aided design of 
experiments.Technometrics, v. 11, n.1, pp.137-148. 

Lee, L.C., Liong, C.Y., Jemain, A.A. 2018. Effects of data pre-
processing methods on classification of ATR-FTIR spectra 
of pen inks using partial least squares-discriminant analysis 
PLS-DA. Chemometrics and Intelligent Laboratory 
Systems, 182, 90–100.  

Llorente, M.J.F., Garcia J.E.C. 2008. Suitability of thermo-
chemical corrections for determining gross calorific value 
in biomass. Thermochimica Acta v. 4681e2, pp.101-107. 

May, A., R.A.C. Parrella, C.M.B. Damasceno, M.L.F. 
Simeone. 2014. Sorgo como matéria-prima para produção 
de bioenergia: etanol e cogeração. Informe Agropecuário, 
v.35, p.14-20. 

Mikola, E.,  Geösel, A.,  Stefanovits-Bányai, E.,  Fodor, 
M.2020. Quantitative determination of macro components 
and classification of some cultivated mushrooms using 
nearinfrared spectroscopy. Journal of Food Processing and 
Preservation, v. 44 pp. e14540. 

Nascimento, R.J.A.,  Macedo, G.R.,   Santos, E.S.,  Oliveira,  
J.A. 2017. Real time and in situ near-infrared spectroscopy 
NIRS for quantitative monitoring of biomass, glucose, 
ethanol and glycerine concentrations in na alcoholic 
fermentation. Brazilian Journalof ChemicalEngineering, v. 
34, n. 02, pp. 459 – 468. 

Pasquini C. 2018. Near infrared spectroscopy: A mature 
analytical technique with new perspectives - A review. 
Analytical Chimica Acta.v.5, n.1026, p. 8-36. 

Simeone, M.L.F.,  Parrella, R.A.C.,  Schaffert, R.E., 
 Damasceno, C.M.B.,  Leal, M.C. B.,  Pasquini, C. 
2017. Near infrared spectroscopy determination of sucrose, 
glucose and fructose in sweet sorghum 
juice. Microchemical Journal, v. 134, pp. 125-130. 

Sirisomboon, P., Funke, A.,     Posom, J. 2020. Improvement 
of proximate data and calorific value assessment of 
bamboo through near infrared wood chips acquisition. 
Renewable Energy,v. 147, pp. 1921-1931. 

Williams, P., Norris, K. 2001. Near Infrared Technology in the 
Agricultural and Food Industries, Near-infrared technology 
in the agricultural and food industries, second edition. 

Williams, P.C.,  Sobering, D. 1996. How do we do it: A brief 
summary of the methods we use in developing near 
infrared calibrations, A.M.C. Daves, P.C. Williams Eds., 
Near infrared spectroscopy: The future wave as, NIR 
Publications, Chichester, UK. 

Workman Jr., J.J.,  Weyer, L. 2008. Practical Guide to 
Interpretive Near-Infrared Spectroscopy,CRC – Press, 
Boca Raton, USA. 

Wu, M.R.,   Schott, D.L.,  Lodewijks, G. 2011. Physical 
properties of solid biomass. Biomass and Bioenergy, v. 35, 
pp. 2093-2105. 

Zhang, K.,  Zhou, L.,  Brady, M.,  Xu, F.,  Yu, J.,  Wang, 
D.2017. Fast analysis of high heating value and elemental 
compositionsof sorghum biomass using near-infrared 
spectroscopy. Energy, v. 118, pp. 1353-1360. 

******* 

40920                                       International Journal of Development Research, Vol. 10, Issue, 09, pp. 40916-40920, September, 2020 
 


