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ARTICLE INFO                          ABSTRACT 
 
Although the application of materials produced in nanotechnology with a size of 1-100 nm in at 
least one of their dimensions at the molecular level opens new perspectives in the care of patients, 
the question of cost-effectiveness and the safety of nanotechnology still remain open. These have 
proven to be useful not only as prosthetic materials, but also for surface preparation of implants 
and prostheses, effective drug delivery systems for antibiotics, and chemotherapeutics, and drug 
eluting systems to combat implant-related infections, e.g.. The application of nanotechnology in 
vascular medicine firstly extends to both drug-eluting therapies for obstructive vascular diseases 
and prosthetic materials used for surgical revascularization. The novel nanomaterials can deliver 
the thrombolytic drugs directly to the lesion. 
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INTRODUCTION 

Although the application of materials produced in nanotechnology 
with a size of 1-100 nm in at least one of their dimensions at the 
molecular level opens new perspectives in the care of patients, the 
question of cost-effectiveness and the safety of nanotechnology still 
remain open (1). These have proven to be useful not only as 
prosthetic materials, but also for surface preparation of implants and 
prostheses, effective drug delivery systems for antibiotics, and 
chemotherapeutics, and drug eluting systems to combat implant-
related infections, etc. (2-4). The application of nanotechnology in 
vascular medicine firstly extends to both drug-eluting therapies for 
obstructive vascular diseases and prosthetic materials used for 
surgical revascularization. The novel nanomaterials can deliver the 
thrombolytic drugs directly to the lesion (5). 

 
Aim of the review: In the near future, new developments in 
nanotechnology will make it possible to therapeutically address the 
underlying mechanisms of atherosclerosis directly at their point of 
origin and to validly measure the success of therapy using the same 
method. In doing so, the complications to be feared from systemic 
therapy can be avoided and the therapeutic dose even reduced. The 
present work deals with the various facets of the new developments in 
nanotechnology in the diagnosis and therapy of vascular diseases, 
especially atherosclerosis. 

 
 
 

METHODS 

This   systematic   review was   performed   using available databases: 
PubMed, Medline, Cochrane Library, Embase, and Clinical 
Trials.gov. Unpublished data remained unconsidered.   The   
keywords  Key words entered were nanotechnology, vascular disease, 
molecular biology basis of atherosclerotic plaques, nanostents, 
nanoprostheses. Only studies that showed a clear result were 
considered. Pilot studies were not considered. 

DISCUSSION 

Our current drug therapies are characterized by poor target specificity 
and too low delivery efficiency (6-8).  By altering their shape, size, 
and surface chemistry, the site-specific delivery of nanoparticles can 
be specifically programmed (9,10). As a first particle, the use of 
Doxil, a liposomally encapsulated doxorubicin formulation for the 
treatment of Kaposi's sarcoma significantly reduced doxorubicin-
induced cardiotoxicity and heart failure typical of this treatment by 
cancer-specific toxicity (11,12). Other nanoparticle drug delivery 
systems developed on this basis are used in infections, chronic kidney 
disease, e.g. (13). In vascular medicine, nanoformulations of 
fenofibrate are used in patients with hypertriglyceridemia. This has 
completely abolished significant problems associated with the 
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ingestion of fenofibrates, such as solubility and absorption (14-16). 
Promising are the new developments with additional nanoparticles for 
treatment with Annexin A1 mimetic peptide and IL-10 bound to Type 
IV collagen-targeted copolymers of PLGA-PEG, superoxide 
dismutase mimetic agent and hydrogen peroxide-eliminating 
compound, bound to cyclodextrin-based polysaccharide, prednisolone 
bound to MRI-detectable liposomes, VCAM1, ICAM1 and 2, E- and 
P-selectin siRNA bound to PEI polymer as some examples (17-29). 
Appropriate nanoparticles are also being tested for supraselective 
thrombolytic therapy with streprokinase, urokinase, or thrombin 
inhibitors (30-35). 
 
The inflammation typical of atherosclerosis is maintained by a lack of 
programmed cellular clearance of apoptotic cells (36-38). Their 
suppression by canakinumab carries the risk of decreased innate 
immunity and increased mortality (39-41). Nanoparticles acting only 
on atherosclerotic plaques may minimize this risk (41). The principle 
of action of this procedure can be attributed to the specific function of 
type IV collagen, the release of which plays a central role in vascular 
injury and inflammation (42). Binding of annexin A1-derived peptide 
to a type IV collagen targeting peptide resulted in a 70% increase in 
nanoparticle selectivity for atherosclerotic lesions (43). A similar 
effect was achieved by binding anti-inflammatory cytokine IL 
(interleukin)-10 to type IV collagen-targeted copolymers of PLGA-
PEG (18). In addition, nanoparticles can be used theranostically 
(therapeutic-diagnostic). In animal studies, binding of prednisolosn to 
an MRI-detectable liposome prolonged its half-life, without systemic 
toxicity, and demonstrated a sustained decrease in plaque 
inflammation on 18F-FDG positron emission tomography/computed 
tomography (44-46). 
 
In another animal study, binding of small interfering RNA (siRNA) 
directed against multiple adhesion molecules to a polymer-based 
nanoparticle significantly reduced tissue damage and necrotic core 
formation after coronary ligation following an ischemic insult 
(47,48). Neointimal neovascularization significantly correlates with 
increased plaque instability and subsequent symptoms (49-51). This 
process is triggered by VEGF (vascular endothelial growth factor) 
and platelet-derived growth factor, among others. Anti-VEGF 
therapy, mainly by binding VCAM1, ICAM1 and 2, E- and P-selectin 
siRNA to a PEI polymer, reduced plaque development in apoE-/- 
mice. At the same time, the MRI-detectable nanoparticles allowed the 
T1-weighted MRI signal to be measured in the aorta as a parameter of 
inflammation and thus could be evaluated diagnostically (47,52-57). 
A central role in the pathogenesis of atherosclerosis beyond lesion 
initiation is played by macrophages, especially in misdirection of 
apoptotic cells in terms of efferocytic activity (58,59). Several 
nanotherapies target monocyte recruitment and infiltration in plaque, 
proliferation of macrophages with polarization to a less inflammatory 
M2 phenotype, and cholesterol metabolism (14-16,22,25,60).  
Nanoparticles were also shown to inhibit the uptake of oxidized LDL 
by macrophage SRs (scavenger receptors), resulting in a reduction of 
lipid load and thereby decreased reduced plaque occlusion in the aorta 
of ApoE-/-mice (24). 
 
Binding of TRAF6 inhibitors into recombinant high-density 
lipoprotein (HDL) nanoparticles (TRAF6i-HDL) blocked cluster of 
differentiation 40 (CD40)-induced TRAF6 (tumor necrosis receptor-
associated factor 6) in monocytes and macrophages, resulting in 
stable plaque phenotypes and no adverse immune responses 
(18,26,61). The combination of nanotherapy with phototherapy gave 
rise to controversial discussions. Phototherapy with near-infrared 
fluorophore of inflammatory monocytes and macrophages that have 
previously ingested iron oxide nanoparticles not infrequently results 
in ablation of macrophage-rich plaques in animal studies (62,63). This 
may increase the risk of plaque rupture (64). Precisely to avoid this 
highly dangerous side effect, cell-specific single-walled carbon 
nanotubes (SWNTs) that are highly selectively taken up by 
inflammatory Ly-6Chi monocytes are increasingly being developed 
(65). In this context, their natural photoacoustic contrast and a near-
infrared fluorescence signal open additional diagnostic possibilities of 
SWNTs (66). Anti-stenotic agents used for targeted inhibition of 

restenosis after peripheral revascularization can act directly on the 
treated vascular bed by binding to nanoparticles (67,68). For example, 
supraselective endovascular delivery of albumin-bound rapamycin 
nanoparticles reduced luminal stenosis after balloon angioplasty of 
the femoral artery in a porcine model (69).  Similar results were 
obtained in another study using αvβ3-targeted paramagnetic 
nanoparticles for the delivery of rapamycin (70-72). In the new 
generations of drug-eluting stents, paclitaxel bound to nanoparticles is 
attached to surfaces of stents (73). This has already yielded promising 
results in animal studies (74-76). Thus, even much higher doses of 
paclitaxel could be tolerated (77-80). Similar results were obtained in 
animal studies as well as in clinical trials with liposomal formulation 
of the bisphosphonate alendronate. Although a significant difference 
in restenosis rate was found between the treatment and placebo 
groups, the rate of in-stent late loss was significantly lower in patients 
with an elevated monocyte count at baseline (81). One of the major 
challenges in interventional therapy is instenosis. The restenosis rate 
of 40% in the treatment of coronary artery disease with a drug-eluting 
stent and in the treatment of femoral artery stenosis after only 24 
months was not different from that of the pacebo group of 44% (82). 
In addition, the paclitaxel- and sirolimus-eluting stents exhibit 
significantly higher rates of thrombosis via slowed endothelialization, 
which can be lethal, especially with poly-n-butyl methacrylate- and 
polyethylene-vinyl acetate copolymer-eluting prostheses (83-85). 
Microfabricated drug-release reservoirs used in two new stents (the 
Janus CarboStent, Sorin Biomedica Cardio S.p.A., Via Crescentino, 
Italy, and the Conor Stent, Conor Medsystems, Inc, Menlo Park, 
California) are promising (86).  
 
In this context, neointima hyperplasia is affected more by a prolonged 
release phase than by the dose itself (87,88). Future directions include 
stents fabricated by microelectroerosion machining (μEDM) (89,90). 
A different manufacturing technique using sharp silicon microneedles 
with a height of 80 to 140 μm allow local accumulation of therapeutic 
agents by penetrating dense atherosclerotic lesions (91). Technical 
difficulties hamper the implementation of this development (92,93). 
As a new generation of medicinal agents as nanoscale texture 
hydroxyapatite and titanium oxide in development (94-98). 
Electrospun poly ε-caprolactone nanofiber scaffold (PCL), which is 
hydrophobic due to surface modification with gelatin and 
architecturally mimics ECM, represent new generation of vascular 
prostheses (99-105). The poor long-term results caused by lack of 
geometric alignment of previously used prostheses such as PTFE and 
Dacron could be compensated by the development of electrospun 
scaffolds (ES) (106-110). Endothelial injury induced during 
angioplasty represents one of the main initiators of intimal 
hyperplasia, which could be reduced in a dose-dependent manner by 
doxorubicin-loaded nanoparticles in a rat model (111,112). 
Polyhedral oligomeric silsesquioxane (POSS) and polyhedral 
oligomeric silsesquioxane poly (carbonate-urea)-urethane (POSS-
PCU) used to coat new generation prostheses are characterized by 
their antithrombogenic properties as well as stimulation of 
endothelialization (113-115). Also in valve replacement surgery, 
polymeric heart valves (PHVs) represent an alternative to existing 
prostheses whose use in routine clinical practice will certainly take 
years (116-119). Based on a functionalized graphene oxide (FGO) 
nanomaterials in a poly(carbonate urea) urethane (PCU) backbone, 
the nanotechnology-based prosthesis, Hastalex has shown good 
results in vivo trials (120). 

 
Conclusions 
 
The multiple developments in nanotechnology not only enable a new 
therapeutic approach to specifically modify atherosclerotic plaque at 
the molecular level, but at the same time allow verification of 
therapeutic efficacy. As a result, non-lower single therapeutic doses 
of drugs can be administered. The side effects occurring in the 
process can also be reduced to a minimum. The new generation of 
bioprostheses based on nanotechnology will revolutionize the long-
term results of vascular interventions. 
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List of abbreviations 
 
VCAM1: Vascular Cell Adhesion Protein 1 
ICAM1:  Intercellular Adhesion Molecule  
PEI polymer:  Polyethylenimin polymer 
PLGA-PEG: poly-Lactide-Co-Glycolide A-PpolyEthylene Glycol 
VEGF: Vascular Endothelial Growth Factor 
MRI: Magnet Resonance Imaging 
TRAF6: tumor necrosis receptor-associated factor 6 
SWNTs: single-walled carbon nanotubes  
μEDM: microelectroerosion machining  
PCL: poly ε-caprolactone nanofiber scaffold  
ECM: extracellular matrix 
PTFE: Polytetrafluorethylen 
ES: electrospun scaffolds  
POSS: Polyhedral oligomeric silsesquioxane 
POSS-PCU: polyhedral oligomeric silsesquioxane poly(carbonate-
urea)-urethane  
PHVs: polymeric heart valves  
FGO: functionalized graphene oxide 
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