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ARTICLE INFO  ABSTRACT 
 

In this paper, the data from piezometers, extensometer bases, plumblines and multiple-rod 
extensometers, used in the monitoring of a buttresses block of the Itaipu Dam, were treated and 
analyzed using a set of models and statistical techniques, with the objective of obtaining a 
statistical index that represents the global behavior of the block's responses, in relation to the 
oscillations in the environmental conditions of its surroundings. The joint monitoring index of the 
dam block responses was constructed based on the five factors identified through factor analysis, 
which together explained about 85% of the variability. The forecasts of the values of this index 
for the 48-month horizon were obtained through dynamic linear models, having as regressors the 
water level in the reservoir and the air temperature around the dam, considering the lags in 
relation to the dependent variable. The adjusted model passed all specification and adequacy tests, 
demonstrating a high quality of estimates (adjusted R² = 0.87) and good accuracy (RMSE = 0.22). 
The index proposed in this study can be used in real-time monitoring of the dam and assist in the 
decision-making process. 
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INTRODUCTION 
 

Assessing the safety of a dam is a complex task, as it involves 
monitoring the responses resulting from the interaction of its 
structures and foundations with the environment and other sources of 
disturbance. According to Cheng and Zheng (2013), the relationship 
between a concrete dam and the environment in which it is located 
can be represented by an input-output system, in which the inputs are 
the environmental conditions: ambient temperature around the dam, 
concrete temperature, water temperature, reservoir water level, 
downstream water level, rainfall, seismic activity, time (age of 
works), among others; and the outputs are the responses of the dam, 
such as: stresses, strains, displacements, uplift pressure, increased 
flow, and so on. Modeling the behavior of a dam structure is a 
fundamental action of a safety system, especially as regards assessing 
the behavior over time. This requires a combination of knowledge - 
especially in engineering, computing, mathematics and statistics - and 
prior experience of the technical personnel responsible for analyzing 
these data (Villwock, Steiner, Dyminski and Chaves Neto, 2013).   

 
 
In this work, the data from different instruments used in the structural 
monitoring of a concrete dam were treated and analyzed through a set 
of models and statistical techniques, in order to obtain an index that 
represents the global behavior of the responses of the concrete dam in 
relation to fluctuations in the environmental conditions of its 
surroundings. 
 
Factor Analysis: The set of measurements carried out in a given 
period by the various instruments used in monitoring dams makes up 
a multivariate sample. When the random measurement of these 
instruments are correlated with each other and subjected to factor 
analysis, it is possible to form a new set of unobservable independent 
variables, called factors. Factor analysis allows the exploratory 
description of matrices and the identification of the main relationships 
of an extensive set of instruments with each other or the relationships 
between samples and variables. We take ���� as a vector the 

elements of which are the instruments installed in a dam, with normal 
�-varied distribution, with covariance matrix���(�) = ���� and 
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vector of averages����. Generally, these instruments have sharp 

discrepancies between the variances, caused by different 
measurement units. In this case, performing a standardization takes all 
data to the same measurement scale, through the � = (��/�)��(� −

�) transformation, where����
�/�

 is the diagonal matrix of the 

instruments' standard deviations. In this way,���� will also have 

normal �-varied distribution, vector of averages �(�) = 0��� and 

covariance matrix ���(�) = (���/�)���(���/�)�� = ����. In this 

case,���� is the correlation matrix of the instruments. 

 
A presupposition for the application of factor analysis is that the 
instruments' measurements are correlated with each other. Bartlett's 
test of sphericity can be used to verify the significance of correlations 
(Johnson and Wichern, 2019). The adequacy of the sample for the 
adjustment of the orthogonal factorial model can be assessed using 
the Kaiser-Meyer-Olkin criterion, the values of which vary between 0 
and 1, where the closer to the unit, the greater the adequacy of the 
adjustment of the factorial model to represent the multivariate set 
(Johnson and Wichern, 2019). 
 
In the factorial model,  

 

 
 
the standardized � instruments (����) are linearly dependent on 

unobservable random �variables (� < �), called common factors 
(����) and other sources of variation, called specific factors (����). 
Correlations between factors and instruments are measured by �factor 
loadings and can be estimated by the maximum likelihood method 
(Johnson and Wichern, 2019), which consists of maximizing the 
likelihood function defined by,  
 

 
 
The maximization of the maximum likelihood function is done by 
numerical procedures, from a random sample of the �size of the 
�vector, for a fixed value of�, which can be obtained using Horn's 
Parallel Analysis Method (Çokluk and Koçak, 2016). Performing the 
varimax rotation, which is an orthogonal transformation, allows 
obtaining a factorial structure in which each factor has a group of 
instruments highly correlated with it and with negligible correlation 
with the other factors (Johnson and Wichern, 2019). This 
transformation consists of finding a certain �matrix, which 
maximizes�, such that��′ =  ���′�′ =  ����′, where 

 
For each of the �factors, the numerical values for each sample 
element are calculated, called factor scores (�� , with� = 1, ⋯ , �), 

which can be estimated by the weighted least-squares method, by this 
method (Johnson and Wichern, 2019): 

 

 
 
The measurements of each instrument also form a time-series, as 
these are observations accumulated sequentially over time in relation 
to a random variable (instrument), with the characteristic of serial 
dependence, and may present systematic components (trend, cycle 
and seasonality ) and non-systematic (random noises) (Box and 
Jenkins, 1976). The various types of components can act either 
independently or together, so that predictions based on time-series 
require that the properties of their components remain relatively 

stable during the time the prediction is made, that is, that the series be 
stationary (Barbão, 2007).  
 
A process is said to be stationary when it oscillates around a constant 
average and with a constant variance, such that its development in 
time does not depend on the choice of an origin of time. Generally, 
the time-series of instruments used in monitoring dams are not 
stationary (Li, Wang and Liu, 2013). Another relevant aspect is that a 
concrete dam responds with some delay to external requests 
(Lombardi, Amberg, and Darbre, 2008; Ribeiro, et. al, 2019). For 
these cases, the AutoRegressive Distributed Lag (ARDL) and Error 
Correction Model (ECM) dynamic linear models can be used to 
represent and predict time-series values. 
 
Dynamic models: The AutoRegressive Distributed Lag (ARDL) 
contains among the regressors the lagged values of the dependent 
variable and the current and lagged values of the independent 
variables. For example, an ARDL(r,s) model with only one 
independent variable,��, can be represented by: 

 

 
 
where: � represents the independent term, and the � and� indices 
represent, respectively, the maximum number of lag for the dependent 
variable,��, and the independent variable, ��. Like any linear model, 
ARDL assumes independent residuals, identically distributed and 
with constant variance. When specifying the model, using the Bounds 
Testing approach, two aspects are fundamental: the determination of 
lag orders (r and s) and the estimation of the coefficients. As for the 
determination of the lag order, some alternatives include the choice of 
the model that maximizes the determination coefficient or minimizes 
the error variance estimate, and the Akaike information criterion 
(AIC). As for the estimation, linear transformations are applied in the 
ARDL model in order to alleviate the problems of multicollinearity 
between the predictor variables, and the ordinary least-squares 
estimation method is used, which, in addition to being consistent, is 
invariant to these transformations (Arone, 2014). Using the lag 
operator and polynomial deductions, the unrestricted error correction 
model (ECM-I) is obtained as follows: 

 

 
 
This reparametrization consists of linear transformations applied to 
the ARDL model, without the imposition of any restrictions. This 
procedure offers advantages in estimation and the ordinary least-
squares estimator is invariant to linear transformations (Lopes, 1999). 
According to Hassler and Wolters (2006), this differentiation process 
transforms a linear combination of non-stationary variables into a 
model with stationary series. The estimation of the parameters of the 
ECM-I model can be done by ordinary least-squares, as follows: 

 
 
Generally, the adjusted model is submitted to some tests to verify the 
specification, adequacy, and quality of the estimates, among others.  
Godfrey (1978) suggests the application of diagnostic tests for the 
model, as some tests are sensitive to the presence of integrated 
variables. Among the tests that can be used for this purpose are: 
Regression Specification Error Test (Ramsey, 1969; Wooldridge, 
2015), that of the Breusch-Godfrey autocorrelation (Asteriou and 
Hall, 2015; Wooldridge, 2015), that of the Breusch-Pagan-Godfrey 
heteroscedasticity (Breusch and Pagan, 1979; Godfrey, 1978; Gujarati 
and Porter, 2011; Wooldridge, 2015) and the Variance Inflation 
Factor (Gujarati and Porter, 2011; Vu, Muttaqi and Agalgaonkar, 
2015). Segundo (Salazar et al., 2017), most predictive models for the 
behavior of dams do not mention which forecasting approach is used. 
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Predictions can be performed in or out of the sample. Dynamic 
forecasts (multi-step ahead), carried out outside the sample, have 
potential for application in the context of dam monitoring. In this type 
of forecast, previously predicted values of the dependent variable are 
used and not those observed (Noble, 2011). 
 

MATERIALS AND METHODS 
 
The data set used in this study was made available by the Center for 
Advanced Studies in Dam Safety (Centro de Estudos Avançadosem 
Segurança de Barragens - CEASB), Itaipu Binacional, referring to the 
values measured by 61 instrumentation sensors installed in two 
buttress-type blocks of the right-bank lateral dam, in the period from 
January 1990 to December 2017. Table 1 shows the quantity of 
instruments taken into account in this study and the respective 
phenomena monitored by these. Data recorded in this period for the 
air temperature around the dam and the water level in the reservoir 
were also considered. Analyzes and implementations were carried out 
with the help of R and EViews software. Initially, a data matrix was 
constructed with the monthly averages of the observations of each 
instrument sensor, consisting of 336 lines (monthly averages) and 63 
columns (sensors). We chose to standardize the data due to the use of 
different kinds of instruments, with different values in terms of 
magnitude and measurement scale. 
 
Then, the standardized data from 61 sensors (except air temperature 
and reservoir water level) were subjected to factor analysis. The 
factor scores formed the input data-set used in modeling the Dam 
Blocks Joint Response Monitoring Index (IMCRB). The model for 
the IMCRB was created through the weighted average of the factors, 
with weights derived from the eigenvalues of the sensors' correlation 
matrix. The time-series originated by the IMCRB has dimensionless 
values. Several statistical models were investigated, considering the 
stationarity of the series and the time lag of the IMCRB and the 
hydrometeorological variables (air temperature and water level in the 
reservoir), and the ARDL model was chosen. As this model is 
sensitive to the presence of an outlier in the series, the period from 
January 2001 to December 2013 was selected for the adjustment. 
Data from January 2014 to December 2017 were left out of the 
sample, for the validation of the forecast results. Due to the presence 
of multicollinearity, reparametrization was performed and the 
unrestricted error correction model (ECM-I) was generated). 
Predictions were performed only with the selected model that passed 
all verification tests.Accuracy was evaluated using the root-mean-
square error (RMSE) measure as a reference).  
 
OUTCOMES 

 
The sensors were considered significantly correlated with each other 
by the Bartlett sphericity test, asT=53949.51 was above the critical 
value, at 95% confidence (Tc=1930.63). The data sample was 
considered adequate (KMO=0.92) for the application of factor 
analysis. Therefore, Horn's Parallel Analysis was performed, which 
pointed to the extraction of 5 factors. The resulting factorial model 
was able to explain approximately 85.21% of the variability observed 
in the sensor data set of the two buttress blocks considered in this 
study. Thus, there was a reduction in the dimension of the problem, 
with minimal loss of information, as the 5 factors came to represent 
the set of 61 sensors. The importance of each factor was measured 
through the eigenvalues and the respective proportion of the total 
explained variability (Table 2). The factors were interpreted 
according to the sensors most correlated with them, according to their 
respective factor loadings estimated by the maximum likelihood 
method.  

 

In the first factor, most of the multiple-rod extensometers were 
considered. In the second, the sensors of the extensometer bases that 
measure the gap between blocks were considered. Most piezometers 
had higher correlations with the third factor. The fourth factor 

included plumbline sensors that measure radial displacements. Only 
two piezometers were considered in the last factor. Thus, it can be 
stated that for the analyzed dataset, most of the variability came from 
foundation creep, measured by extensometers with high factor 
loadings in F1 (39.56%) and from the openings/closings of the 
contraction joints between blocks, measured by the extensometer 
bases strongly correlated with F2 (27.68%). The time-series of these 
two factors (Figure 1) showed seasonal movements resulting from 
thermal variation with maximum annual values in the winter period 
and minimum in the summer. In addition, F1 and F2 showed 
downward and upward trends, respectively, similarly to the sensors 
most correlated with each factor. The factor, being a latent variable, 
cannot be measured directly. Thus, the factor values, called factor 
scores, were estimated based on the factor loadings and sensor data. 
Considering the factors as quantitative variables, which jointly 
represent the variability of the dam's responses to the various 
phenomena acting on it, these were used as parameters for the 
generation of the Joint Response Monitoring Index of the Dam 
Blocks (IMCRB). The coefficients were estimated based on the 
proportion of variance explained by each factor, resulting in the 
following model 

 

 
 
The IMCRB time-series showed combined characteristics of the 
factors, with similar seasonality to factors F1 and F2 and a slight 
downward trend until the year 2012. Observing the instruments that 
had a greater representation according to the factorial model, it was 
possible to list the phenomena that most influenced the behavior of 
the dam blocks represented by this index, namely: the variation in the 
level of the reservoir, environmental thermal influences and eventual 
strains in the rock-mass. To expand the contribution to the monitoring 
of the dam, a model was fitted to the IMCRB that would allow the 
forecast of values. At this time, it was decided to include the variables 
reservoir water level (Level) and air temperature (Temp) around the 
dam, considering that these were the main hydrometeorological 
conditions that influenced the behavior of the dam blocks in the 
period under study. The unit root test was applied to the IMCRB, 
Level and Temp time-series and indicated stationarity only for the 
two hydrometeorological variables, while the IMCRB series was 
considered to be integrated of order one. This miscellany of stationary 
and integrated series led to the use of the AutoRegressive Distributed 
Lag (ARDL) model, through the Bounds Testing approach. The 
selected model was ARDL (1, 2, 6), as represented by  
 

 
 
that is, an autoregressive model with a lag for the dependent variable 
IMCRB, two for the predictor variable reservoir water level (Level), 
six for the air temperature (Temp), with trend (t) and a constant term. 
This model was chosen from among the 2028 simulated ones, as it 
presented the lowest AIC (-1.67) and the highest coefficient of 
determination (0.95), being considered a parsimonious model with 
few parameters.  
 
The statistic F=0.003 (p-value = 0.97) was obtained in the first 
RESET test and F=1.19 (p-value = 0.31) in the second. As both tests 
resulted in a probability greater than 5%, the model was considered 
well specified. Two parameters presented VIF greater than 10 in the 
ARDL model (1, 2, 6), indicating the presence of multicollinearity. 
Therefore, we chose to use the ECM-I, with the estimation of the 
coefficients using the ordinary least-squares method. 
 
The reparametrized model, presented below, did not change the result 
of the AIC and presented an excellent coefficient of determination 
(0.87), in addition to a low RMSE (0.10), indicating excellent quality 
for the representation of the IMCRB data. 
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Table 1. Instruments taken into account in this study and respective monitored phenomena

 
Phenomenon 

Radial displacement 
Tangential offset 
Opening and closing of joints between blocks
Horizontal sliding between blocks 
Differential settlement between blocks
Rock-mass deformations 
Uplift 

 
Table 2. Eigenvalues and percentage of variability explained by each factor extracted

 
Table

Verification  

Residuals normality 
Independence of residuals 
Residuel homoscedasticity 
Model specification 

Long term relationship 

 

 

Figure 1. Time
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Instruments taken into account in this study and respective monitored phenomena

Instrument Sensors Unit of measurement

Plumblines 5 mm
Plumblines 5 mm

Opening and closing of joints between blocks Extensometer bases 6 10
 Extensometer bases 4 10

Differential settlement between blocks Extensometer bases 2 10
Multiple-rod extensometers 20 mm
Piezometers 19 m

Eigenvalues and percentage of variability explained by each factor extracted
 

Factor Eigenvalue Explained variation (%) 

F1 24.13 39.56 
F2 16.87 27.68 
F3 5.24 8.58 
F4 3.47 5.69 
F5 2.25 3.69 

Table 3. Test results applied to the ECM-I-Mod model 
 

Test Statistic 

Jaque-Berra 5.86 
Breusch-Godfrey Serial Correlation (LM) 0.67 
Breusch-Pagan-Godfrey 1.43  
RESET - quadratic term 2.87  
RESET - quadratic and cubic terms 1.90  
Wald (c1 = c2 = c3 = 0) 60.81 
Wald (c1 = 0) -12.37  

Figure 1. Time-series of factors and of the IMCRB 

 

Statistical modeling and prediction of the behavior of a buttress block at the itaipu dam

Instruments taken into account in this study and respective monitored phenomena 

Unit of measurement 

mm 
mm 
10-3mm 
10-3mm 
10-3mm 
mm 
m 

Eigenvalues and percentage of variability explained by each factor extracted 

Prob. 

0.05 
0.81 
0.18  
0.09  
0.15  
0.00  
0.00  

 

modeling and prediction of the behavior of a buttress block at the itaipu dam 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Normality was verified (p-value 0.09) using the Jaque-Berra statistic 
(4.74). Independence was confirmed with the serial autocorrelation 
test (Breusch-Godfrey) up to lag 15 (F=0.50), which were considered 
non-significant (p-value = 0.94). Finally, homogeneity was confirmed 
(p-value = 0.19) through the Breusch-Pagan-Godfrey test (F=1.37). 
When applying the RESET to the ECM-I model, with a quadratic 
term (p-value = 0.21) and a cubic term (p-value = 0.40), the results 
did not reject the hypothesis of good specification. The application of 
the Wald Test pointed to the significance (p-value=0) of the first 
three coefficients (θ1,θ2,θ3,) withF=34.18. The long-term relationship 
between the IMCRB and predictor variables (Level and Temp) was 
confirmed (p-value=0) by applying the Wald Test to the IMCRB lag 
coefficient (�1), witht=-9.53. The same two parameters of the ARDL 
model (1, 2, 6) presented VIF higher than 10 in the ECM-I model, 
indicating the continued existence of multicollinearity, which is 
detrimental to the realization of value predictions for the IMCRB. 
Therefore, new ECM-I models were performed, removing one term at 
a time and redoing the tests. The best result was obtained with the 
following specification for the model 
 

 
 
This model, called ECM-I-Mod, did not show multicollinearity 
between variables and passed all validation tests (Table 3), 
maintaining an excellent coefficient of determination (0.86) and low 
values for the AIC (-1.64) and RMSE (0.10), indicating excellent 
quality for the representation of IMCRB data. Figure 2 shows the 
graphics of the IMCRB (Actual) and the adjusted ECM-I model 
(Fitted), as well as the respective residuals. It is noted that, in general, 
the model is able to satisfactorily represent the behavior of the 
IMCRB series, with the largest errors occurring at the extreme points 
(local maximums and minimums) of the seasonality periods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The forecast for the 48-month horizon was made and is shown in 
Figure 3. In general, the model was able to well predict the behavior 
of the dam blocks in the medium term (four years), as it satisfactorily 
represented the seasonality. Regarding accuracy, predictions were 
more accurate in the short term, with a RMSE of approximately 0.11 
for the first 12 months, and greater errors the further away from the 
last reference value of the IMCRB (RMSE = 0.22).  Knowing that the 
dataset was quite heterogeneous - consisting of 156 values of 61 
observable variables, which were represented by 5 latent variables, 
which combined together gave rise to the IMCRB, taking into account 
the influence of the two environmental variables on this index, and 
the low magnitude of the errors - the model used for the forecast was 
considered valid. Thus, the ECM-I-Mod model was able to represent 
the medium-term variation in the responses of the dam blocks under 
the influence of the variation in the reservoir water level and the 
ambient temperature. 
 

CONCLUSION 
 

The joint monitoring index of the responses of the dam block, 
resulting from the factor analysis of data from piezometers, 
extensometer bases, plumblines and multiple-rod extensometers, was 
able to represent the global behavior of a buttress block, under the 
influence of variations in the reservoir water level and ambient 
temperature. This index can help in structural monitoring, as a single 
graph concentrates all instrumentation data and any change in 
behavior can be observed immediately, through the difference 
between what was planned and what happened (measured), speeding 
up the decision-making process on the part of the responsible 
personnel. 
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Figure 2. Graphic comparison of IMCRB with ECM-I-Mod model 

 
 

Figure 3. Monthly values predicted by the ECM-I-Mod model and actual values of the IMCRB, from 2014 to 2017 
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