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ARTICLE INFO  ABSTRACT 
 

The work aimed to adjust Poisson models and their generalizations (Quasi-Poisson and Negative 
Binomial) to the behavior of the number of dengue cases grouped in Recife-PE. Weekly 
epidemiological records of dengue were used, from 2009 to 2018, and they were made available 
through the Citizen Information Service. Initially, Poisson models and their generalizations were 
applied, followed by a diagnostic analysis of the residuals, using influence measures, in order to 
analyze how much a specific observation affects some property of the studied model. The 
adjustment results indicated that the Negative Binomial model showed a satisfactory adjustment, 
compared to other models for description of the data, minimizing dispersions parameters more 
accurately. Regarding the analysis of the residuals, it can be stated that the assumptions of normal 
distribution and homogeneity of the residuals in the Generalized Linear Models (GLM) were 
provided. In addition, the existence of atypical and influential values was verified, which should 
be examined carefully. Therefore, it can be concluded that diagnosis is an important tool for 
researchers, in which they present basic premises for the reliability of the GLM, data set, and 
goodness of fit. Finally, we point out that more scientific studies are needed, in this context, to 
have more consistency in this application. 
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INTRODUCTION 
 
Dengue is an arbovirus that causes great impacts on public health. According to a survey produced by the World Health Organization (WHO), it 
is estimated that between 100 and 400 million infections occur annually, caused by the Aedes aegypti mosquito (WHO, 2020). Brazil, being a 
tropical country and endemic to dengue, has conditions that favor the development and proliferation of the main transmitter of the disease 
(WHO, 2012; Oliveira et al., 2018; Sobral and Sobral, 2019). Conditions such as high rainfall, high temperatures, high relative humidity, in 
addition to social aspects such as urban peripheries and low income are related to a higher probability of contracting the disease (Bhatt et al., 
2013; Ferreira et al., 2018; Sobral and Sobral, 2019). In Brazil, from 2010 to 2019, approximately 10 million cases of dengue were reported, with 
the Southeast and Northeast being the most affected Brazilian regions (Nunes et al., 2019; do Carmo et al., 2020). Analyzing a more specific 
interval for the Northeast (2013 to 2018), more than one million probable cases of dengue were registered (18.1% of the total cases in the 
country) and 707 deaths (22.3%). The state of Pernambuco obtained about 20.1% of the total probable cases and 19.4% of deaths in the Brazilian 
Northeast (do Nascimento et al., 2020). According to the epidemiological bulletin of the Department of Health Surveillance, there was an 
increase of 19.5% in the incidence of Dengue, in the state of Pernambuco, until Epidemiological Week (EW) 11 of 2019 compared to 2018 
(Freitas et al., 2020). In the literature, there are several methodologies that help in modeling the number of dengue cases, such as: Poisson 
multivariate regression prediction models (Hii et al., 2012; Sang et al., 2014), binomial multivariate linear regression analysis negative (Minh 
Na; Rocklöv, 2014), Poisson model and its generalizations (Freitas et al., 2020) and negative binomial regression approach and Poisson 
(Chandrakantha, 2019). However, not only the modeling of this phenomenon is important, but also the analysis of the residuals and diagnosis of 
the model. Thus, the residual examination is an approach that identifies possible general discrepancies between models and observations, and 
observations that are not accommodated by the models, that is, nonlinear effects, overdispersion, zero inflation and outliers (Scudilio; Pereira, 
2019; Feng, Sadeghpour, 2020). Thus, this study aims to analyze the adequacy of Poisson models and their generalizations in relation to the 
weekly behavior of dengue cases in Recife, from 2009 to 2018, based on the analysis of residuals and diagnosis of the model. 
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MATERIALS AND METHODS 
 
Data: The observations used for the development of the work refer to the weekly numbers of dengue cases and meteorological variables, to 
mention: Air Temperature, Air Humidity, Dew Point Temperature, Atmospheric Pressure, Wind Speed and Precipitation in Recife/PE, provided 
by the Citizen Information Service (CIS) and the National Institute of Meteorology, in the period January 2009 to December 2018. 
Meteorological variables are collected daily and transformed into weekly scales. 

 
Influence Measures: In Regression analysis there is a step known as residual diagnostic analysis. This analysis is important as it helps detect 
outliers that deserve further analysis. The verification of possible departures from the assumptions made for the model is a step that deserves a lot 
of attention when a model is adjusted to a data set, taking into account the random and systematic part of the model, as well as verifying the 
presence of observations with some influence disproportionate in the results of the adjustment. Influence measures are used to analyze how much 
a specific observation affects some property of the studied model (Paula, 2004; Cordeiro; Demétrio, 2008). After the elaboration and adjustment 
of the models, it is necessary to observe the existence of failures in the adjustment of the proposed models, based on the residual analysis and 
diagnosis of the generalized linear model. Some measures were used to evaluate, namely: Cook's distance, leverage point, Student Residues and 
half-normal, capable of evaluating whether an observation has an influence on parameter estimates and on the adjustment statistics (Hinde; 
Demetrius, 1998; Tedeschi, 2006). 
 
Leverage: For the detection, evaluation and understanding of influencing points, the study of the H matrix is used, which is known as the 
coefficient or regressor matrix or even the hat matrix (Majumbar; Pal, 2016).  A fundamental characteristic of the matrix H is intrinsic to the 

elements , of its diagonal. The element  measures how far an observation,  it's from the other  observations 
in the space defined by the explanatory variables of the model (Cordeiro; Neto, 2004). For linear models the matrix is given by (Dorier, et al., 
2020): 

 
 

In the context of generalized linear models (GLMs), observations can be identified by the element of the generalized hat matrix, defined by:  
 

 
 

in which is the value of W in (Cordeiro; Neto, 2004). If the input values of a hat matrix diagonal are large, the measurement has greater 
leverage or influence on the estimated states than others and can be called leverage points (Majumbar; Pal, 2016). 
  
Pearson Residuals 
 
Among the most common types of residues observed in GLMs, there is the Pearson residue, which is also the simplest, being defined by:  
 

 
 

in which   and  are the adjusted mean and adjusted variance function, respectively, of  (Clarice; Demétrio, 2008).  
  
Cook’s Distance: Cook's distance is a measure of influence for each observation on parameter estimates. It measures the distance between the 

estimate of the parametric vector using all observations ( ), but eliminating the i-th observation ( ) (Cook, 2000). Given a matrix X, with n x 
p known values (explanatory variables), β a vector n x p, unknown parameters, the Cook distance is defined as:  
 

 
 

in which   denotes the least squares estimate of  with the i-th deleted point,  the number of parameters and  

where , is the residual vector.  
 
In the context of GLMs, Cook’s distance is given by: 
 

 

in which  is the studentized residual,  the number of parameters, variation of the i-th predicted 

value and variance of the i-th residual (Cook, 2000; Jiménez, 2001, Justo; Pintarelli, 2019). So, the higher the value 

of  the greater will be the influence of observation i in the adjusted model. 
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Half-normal plot: After estimating, all information available for model verification is contained in the residuals. The distribution assumption for 
a generalized linear model is often verified by plotting the ordered absolute values of a diagnostic measure versus the corresponding expected 
values of the order statistics, in absolute value, of the half-normal distribution. The use of the half-normal plot with simulated envelope to verify 
the goodness of fit of the model, especially when the data present overdispersion (Mccullagh; Nelder, 2019; Hinde; Demetrius, 1998) 
 

RESULTS AND DISCUSSION 
 

Based on the significant parameters of the proposed models (Table 1), it was detected that the Poisson model presented overdispersion ( > 
1.00). According to Zeviani et al. (2014), overdispersion will affect parameter estimates, making them inefficient, with inconsistent errors and 
higher error rate for hypothesis testing applied to non-equidisperse data. Thus, to satisfactorily accommodate the overdispersion, other models 
were adjusted, such as Quasi-Poisson and Negative Binomial. 
 
Table 1. Significant parameters of the Poisson, Quasi-Poisson and Negative Binomial regression models for the number of dengue cases 

grouped weekly in Recife, Brazil, from 2009 to 2018 
 

  Parameters Models  
 Time   Poisson VIF Quasi-Poisson VIF Binomial Negativa VIF 
Period        

2009 a 2018 � -73.356 - 12.922 - 14.391 - 
�� 1.001 1.26 -0.081 1.13 0.103 1.14 
�� 0.154 1.13 - - - - 
�� -0.434 1.26 - - - - 
�� 0.053 1.17 - - - - 
�� -1.006 1.08 - - - - 
�� -8.10�� 1.15 5.10�� 1.13 7.10�� 1.14 

 � 139.8 212.1 1.79 

�= intercept; ��= Air humidity; ��= Temperature; ��= Dew point temperature; ��= Atmospheric pressure; ��= Wind speed; ��= Precipitation; 
� =Dispersion parameter; VIF = Variance inflation factor. 

Among the three models studied, the Negative Binomial model showed the best fit to the expected number of dengue cases in Recife, in which 

the dispersion parameter ( = 1.79) was lower compared to the Poisson and Quasi-Poisson models in the period from 2009 to 2018, 
corroborating the results found by Chandrakantha (2019), where the Negative Binomial model showed better accuracy due to the nature of the 

overdispersed data. The variables relative humidity ( ) and precipitation ( ) are the most frequent and significant predictors. Previously, 
Freitas et al. (2020) also demonstrated a direct relationship of dengue cases with meteorological factors, where they observed positive/negative 
estimates of temperature and adverse effects of precipitation with dengue cases in Recife.  The relative humidity of the air was one of the 
significant factors that most affected the incidence of dengue. For every 1 unit increment in relative air humidity, the log of expected change in 

the number of cases increased by 10,84% ( = 1.108), maintaining the other variables constant. Extensive study by Naish et al. (2014), 
demonstrates that relative humidity and air temperature are the two most important predictors, with a potential impact on the life cycle of 
mosquitoes at different stages. It was observed that all model parameters have a VIF less than 5 indicating a low correlation between the 
predictors, that is, a measure that disturbs the GLM estimates (Walker; Birch, 1988). In Table 2, it can be seen that the Negative Binomial 
regression model has lower AIC, BIC and NDE compared to the other models, therefore, it is much more parsimonious and performed better to 
estimate the number of dengue cases in the region. However, it appears that the coefficient of determination of the Negative Binomial model is 
always lower than the Poisson and Quasi-Poisson model. 
 
Table 2: Information criteria, NDE and coefficient of determination of Poisson, Quasi-Poisson and Negative Binomial regression models 

for the number of dengue cases grouped weekly in Recife, Brazil, from 2009 to 2018 
 

 Recife Models: 2009 - 2018 

 Poisson Quasi-Poisson Negative Binomial 
AIC 8840.4 - 834.9 
BIC 8854.1 - 841.9 
NDE 160.9 226.27 1.06 
�� 0.68 0.55 0.50 

 
By means of the half-normal graph, in fact, it is verified that practically all points are outside the simulated envelope, with a confidence level of 
95%, showing that the Poisson model presented an unsatisfactory fit (Figure 1A). A result also observed in the Quasi-Poisson model (Figure 1B), 
since part of the residues are outside the simulated envelope. On the other hand, it was found that the Negative Binomial model (Figure 1C) had 
better performance; all points are within the simulated envelope except for one point at the end of the graph. And from the Shapiro-Wilk test, the 
null hypothesis was not rejected (Shapiro; Wilk, 1965), that is, the normality of the errors was achieved in the Quasi-Poisson and Negative 
Binomial models (p-value = 0.1387 and 0.094, respectively) adopting a significance level of 5%, allowing for more precise inferences and 
practical interpretations for the parameters of the model. 
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Figure 1: Half-normal graph for the Poisson (A), Quasi-Poisson (B) and Negative Binomial (C) model for the number of dengue cases 
grouped weekly in Recife, Brazil, in the period from 2009 to 2018 

 

According to Bruce and Bruce (2017), a data point has high leverage if the value of this statistic is above , in which  is the 

number of predictors and  is the number of observations. In Figure 2, graphs for projection H (Figure 2A), Cook's distance (Figure 2B) and 
Pearson's residual (Figure 2C) are shown for the Negative Binomial model. It can be seen in Figure 1A that there are three high leverage points 
in the data (EW 24, 26 and 32) which may have influenced against a regression line. Venables and Ripley (2013) demonstrate that transformation 
in the response variable can circumvent the effect of outliers in the model. The graph of Cook's Distance (Figure 2B) versus the order of 
observations (Epidemiological week) revealed the presence of two observations (EW 24 and 51) considered influential. The re-accommodation 
of the model to the data without the presence of these observations did not alter the inferential results. According to Paula (2004), the reason for 
finding atypical values in relation to the others does not necessarily imply in the elimination of such points, this being the last resource to be 
used. 
 

 

Figure 2. Results of diagonal elements of the projection matrix H (A), Cook's distance (B) and Pearson's residual (C) for the Negative 
Binomial model, for the number of dengue cases grouped weekly in Recife, Brazil, in 2009 to 2018. 

 

In Figure 2C, it can be seen that the residual graph does not present any adjusted pattern, in which the presence of a pattern may indicate a 
problem with some aspect of the linear model. Therefore, it was possible to assume a linear relationship between predictors and the response 
variable. Furthermore, as shown in Figure 2C, it is noted that the residues are satisfactorily distributed between -2 and 2, with the exception of 
EW 51 and 52. When relating the three graphs, it was observed that EW 51 is an influential point and EW 24 is the atypical data point, with EW 
24 located in the period with the highest rainfall in the municipality. According to Lowe et al. (2011), from the GLM there was an indication that 
the climatic covariates play a statistically significant role in the transmission of dengue. 

 
CONCLUSION  
 
Taking into account the criteria adopted in this work to verify the goodness of fit of the models, the Negative Binomial model was the most 
suitable for the data. When performing residual analysis and diagnostic techniques, it was observed the existence of atypical and influential 
values, in which the behavior of such events were impacted by other predictors and the dependence was captured using a regression structure. 
The diagnostic tools were able to identify a multicollinearity problem, requiring the removal of regressors in the modeling. Therefore, the 
diagnosis is essential for validating a model that aims to interpret and understand the results. 
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Finally, for future work, we will use georeference tools in order to map the other municipalities in the state of Pernambuco, applying a temporal 
delay in the precipitation variable. Thus, studying the relationship between rainfall and number of cases helps to guide public policies aimed at 
health in the state of Pernambuco. 
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