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ARTICLE INFO  ABSTRACT 
 

Aluminum nanocomposites demonstrate improvements in mechanical properties, as well as in 
thermal and electric conductivity. The incorporation of multiwalled carbon nanotubes (MWCNT) 
in the aluminum matrix, using conventional melting methods, is a long-standing issue. In this 
paper, Aluminum nanocomposites were fabricated via conventional casting method, using a 
nanostructured stainless-steel (SS) powder. Carbon nanotubes were treatedwith hydrogen 
peroxide, which led toan attachment tothe metal matrix particles. In this sense, the SS powder, 
added as an element alloy, refinedthe grains, and the CNT led the electric conductive to a better 
performance. Given this, the best alloy analyzed presented an approximate 10% increase in all of 
its characterized properties, therefore presenting a microhardness of 48 HV, aUltimate Tensile 
Stress of 183 MPa, and an electrical conductivity of 67% of IACS. 
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INTRODUCTION 
 

Pure aluminum had a great level of electric conductivity (~61% 
IACS), however, its ultimate tensile strength is low (~170 MPa), 
which encouraged a reinforcement using a steel wire rope – an 
impractical, expensive, and prolonged process. Elements alloys 
increment the mechanical properties, but lessen the EC, making it 
unfeasible. Nanotechnology could provide solutions to this problem, 
e. g., carbon nanotubes (CNT) have outstanding mechanical and 
physical properties as low density, tensile strength (~110 GPa), yield 
module (0.6-5.5 TPa), thermal (6000 W m1K-1 -SCNT- and 3 000 W 
m1K-1 -MWCNT) and electric conductivity (107 to 109 A cm-2) 1,2; 
however, itsproduction in a large scale is already restrictive due its 
high cost of almost 1000 USD/kg.  
 

 
 
This price is estimated to drop in the next years, making feasible the 
use of CNT to substitute the conventional materials3. Currently, they 
are used as reinforcement of nanocomposites with metal matrices, 
such as Nickel4,5, Cooper 6, Iron 7–10 and, mainly, Aluminum 11–14, due 
to their features of a nanofiber ideal 15,16. However, the difficulty in 
obtaining a uniform distribution and the CNTs agglomerations 
(clusters) in the matrix caused by Van der Waals forces, in addition to 
the density disparity between MWCNTs and the aluminum alloy, are 
long-standing issues in the fabrication of metal composites 7,8,24. 
Aluminum nanocomposites (ANC) are very promising; there are 
many techniques and research involving the inclusion of CNT in 
aluminum Metal Matrix (MM), e. g., powder metallurgy17,18, spark 
plasma sintering19, hot spark20, mechanical allowing21,9, and stirring 
casting, i. a., but almost all the processes are very expensive and 
complex. In addition, they do not avoid agglomeration nor reach 
structural integrity, and do not have a proper bonding with the MM 22.  
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The stirring casting is quite widespread given the possibility of a 
greater uniform dispersion of the reinforcement material in the 
matrix, as well as a lower working temperature, which limits 
uncontrolled chemical reactions and the appearance of carbide
high temperatures23, but the process is prolonged and more expensive 
than agitation casting24,25. It is necessary to incorporate CNT with 
conventional casting26, even though high temperatures can destroy the 
surface integrity of CNTs. This paper presents a methodology that 
allowed the incorporation of CNTs via conventional casting, 
increasing both the mechanical properties and electric conductivity.
 

RESULTS 
 
Figure 1 shows the scheme of the casting and solidification process in 
the cylindrical metallic mold. For the 0.05C alloy, only carbon 
nanotubes (0.05 wt.%) were inserted into the liquid metal, and then 
the mold was poured; it was expectedthat the carbon nanotube 
agglomerationwould occur, and as the density of CNT is lesser than 
that of aluminum, they tend to clump on top of the liquid metal
Posteriorly, the CNT wasdeposited in the mold alongside the first 
portion of the cast aluminum, and, as the solidification occurs 
quickly, there is not enough time for the CNT to move upwards in the 
mold, because the first part of the deposited metal,once solidified, 
holds the nanotubes at the bottom of the produced ingot
2SS0.1C alloy (2 wt.% SS-0.1 wt.% CNT) was poured into the mold, 
as shown in Figure 1.It was noted that part of the mixtu
the liquid metal, however, it is expected that the excess mixture will 
agglomerate at the bottom of the crucible, due to the excess 
nanostructured powder havinga higher density than liquid 
aluminum34. This behavior resulted in a little amou
of metallic powder and nanotubes beingdispersed in the molten metal, 
but almost all the elements’ alloys were at the bottom of the crucible, 
reducing the reinforcement effect and deteriorating the properties of 
the alloy. This decantation could occur due tothe limit of solubility of 
the alloy elements, combinedwith the low temperature and the 
melting time35. For the 1SS0.05C alloy (1 wt.% SS
the reinforcement tends to disperse in the matrix when the casting is 
performed, with a tendency to remain dispersed in the mold, 
generating the best reinforcement mechanism with an excellent 
performance34. 
 

 
Figure 1. (a) Schematic of the nanostructured powder of 304LSS
5wt.%CNT, with carbon nanotubes and stainless

(b) The schematic casting for the aluminum alloy with 0.05wt.% 
CNT (0.05C), (c) 2 wt.% SS-0.1wt.% CNT (2SS0.1C), and (d) 1 

wt.% SS-0.05wt.% CNT (1SS0.05C), as observed for the various 
nanotube inclusion mechanisms

 
The alloys obtained were microstructurally characterized using SEM 
with EDS; the electric conductivity was measured both electrically 
and mechanically through the microhardness test and the tensile 
strength test. Figure 2 shows the SEM micrographs and EDS mapping 
of the Fe to the various alloys, as the (a) showsthe typical 
microstructure of the pure aluminum with low Fe (f) impurity
addition of 0.05wt.% CNT (b, g) modified this microstructure, 
avoiding as egregation of iron to the contour of the dendrites, 
however, when 1wt. 
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Figure 1. (a) Schematic of the nanostructured powder of 304LSS-
5wt.%CNT, with carbon nanotubes and stainless-steel particle. 

The schematic casting for the aluminum alloy with 0.05wt.% 
0.1wt.% CNT (2SS0.1C), and (d) 1 

0.05wt.% CNT (1SS0.05C), as observed for the various 
nanotube inclusion mechanisms 

haracterized using SEM 
the electric conductivity was measured both electrically 

and mechanically through the microhardness test and the tensile 
strength test. Figure 2 shows the SEM micrographs and EDS mapping 

the (a) showsthe typical 
microstructure of the pure aluminum with low Fe (f) impurity36. The 
addition of 0.05wt.% CNT (b, g) modified this microstructure, 

egregation of iron to the contour of the dendrites, 

%SS was incorporated there was a higher precipitation of the alloy’s 
elements intothe solute24,37. The addition of the nanostructured 
powder (304LSS-CNT) with 1wt.%SS
the aluminum’s microstructures, creating elongated grains with a low 
segregation of the Fe and of theother elements in the 
dendrite’slimits37. This behavior could be associated with the 
combination of a decreasing of the grain size by effect to the 
stainless-steel particles, and a uniform distribution of the carbon 
nanotubes in the MM, which avoids a bigger movement of the atoms 
by the effect of the pinewith mainly Cr and Ni, whose carbon affinity 
is great10,24. When the percentage of SS increasesto2 wt.% (e, j), 
alongside 0.1wt.% CNT, the microstructurewas remarkably altered 
but no segregation was observed, as the temperature of the liquid 
aluminum was not enough to melt all the SS particles, which 
produced a deterioration of the properties of this sample
 

Figure 2. SEM micrographs (top) and EDS mapping (bottom) of 
the iron (Fe) element alloy for the various samples. (a, f) Pure Al 
[AlPure], (b, g) Al-0.05wt.%CNT [0.05C], (c, h) Al
(d, i) Al-1wt.%SS-0.05wt.%CNT [1SS0.05C], and (e, j) Al

0.1wt.%CN
 
Raman spectroscopy analyses showed that the 
Degree (ACD) reduces with the chemical treatment (CT) with 
hydrogen peroxide, going from 8% for the CNT, as it was received,
4%10. The ID/IG rate changed from0.95 to 0.66, resulting in an 
increment of the crystallinity by effect of the 
MWCNT, the ID/IGinner and ID

respectively, varying between0.99 and 0.98 after selective oxidation, 
in that order. The high values of the outermost walls’ rate (I
for the MWCNT, revealed low level
defective layers, functionalization, and amorphous carbon close to the 
surface; indeed, the innermost walls had a low rate, indicating a good 
performance8,10,13. By applying the CT, the rates of both walls were 
similar, close to one, displaying an improvement of the crystalline.
There is a high redshift for the inner (11 cm
walls, indicated by the Ginner and G
suggested a tensile strain producing a photon softening (n
the external walls presenteda higher difference, suggesting a great 
interaction with the MM, which produces a bonding between the 
carbon nanoparticles and the stainless
was confirmed by the ∆Gposition 
(MWCNT) to 13 cm-1 (304LSS-CNT), with the low distance between 
the peaks indicating a high doping. All this information was 
supported by the Figure 3, S 01, and S 02. Figure 4 exhibited the 
XRD patterns for the carbon nanotubes, stainless
the nanostructured powder.  
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as seen in Figure 4. The nanostructured powder evidenced a reduction 
in the intensity of the austenitic plane (111), in part due tothe 
superposition with C(100) of the carbon nanotubes, and tothe high X
ray absorption capacity of the latter, while the pea
already benoted in the spectrum
nanostructured powder (304LSS-CNT) was introduced efficiently in 
the melting aluminum to supply elements alloys such as Fe, Cr, Ni, 
and Mn of the stainless-steel particles, an
improve both the mechanical properties andelectric conductivity
The nanostructured powder isobserved in the S 03, as the cluster of 
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interaction with the MM, which produces a bonding between the 
carbon nanoparticles and the stainless-steel particles8,10,13. This effect 
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supported by the Figure 3, S 01, and S 02. Figure 4 exhibited the 
XRD patterns for the carbon nanotubes, stainless-steel particles, and 

eature peaks for each material were observed for nanotubes -C(002), 
and 304LSS -γ(111), α(110), γ(200), and γ(220), 

as seen in Figure 4. The nanostructured powder evidenced a reduction 
in the intensity of the austenitic plane (111), in part due tothe 
superposition with C(100) of the carbon nanotubes, and tothe high X-
ray absorption capacity of the latter, while the peak C(002) can 
already benoted in the spectrum9,10,38. All of this proves that the 

CNT) was introduced efficiently in 
the melting aluminum to supply elements alloys such as Fe, Cr, Ni, 

steel particles, and nanofibers (MWCNT) to 
improve both the mechanical properties andelectric conductivity8,12. 
The nanostructured powder isobserved in the S 03, as the cluster of 

attached tothe SS particles. The structural changes by effect 

improvement of the electric conductive and mechanical properties of nanostructured aluminum alloy 



of the chemical treatment (CT) are exhibited in the TEM micrographs 
of the S 04, as the amorphous carbon disappeared after the CT.
 

Figure 3. Raman spectroscopy deconvolved showing the D
and G-band and their sub-bands DL, DR, DLO, D

Ginner e Gouter 

 

 

Figure 4. XRD of the (a) as received multiwalled carbon 
nanotubes, (b) 304L Stainless Steel particles, (c) 3

nanostructured powder 
 

The tensile properties are observed in Figure 5, alongsidethe dimple 
rate for each alloy. The curve reveals that the 1SS0.05C had the 
bestresults of ultimate tensile strength, toughness, and strain, out 
ofthe tested alloys, due to it being combined with the improved 
mechanical properties resulting from the stainless steel powder and 
small additions of CNT that, according to the literature, ensure greater 
homogeneity, consequently reducing the appearance of agglomerates 
and the accumulation of stress10,34. The 0.05C alloy presented lower 
results than the other alloys, due to the agglomeration of nanotubes 
and the low density of the CNT that makethem rise to the surface of 
the melting metal, as shown in Figure 1b24,34,8. CNT clusters produced 
an accumulation of punctual stresses, generating areas of failure and 
reducing the mechanical properties34,38. The dimples ratio, 
analyzedwith the Narayanasamy et al.42 method, in which the dimples 
ratio farther away for one more ductile is the material, showed the 
superior results of the 1SS0.05C alloy, justifying the reason as to 
whythis material had abetter performance ofitsmechanic
Otherwise, the 2SS0.1C alloy showedthe most fragile rate throughthe 
analyses of the dimples, coinciding with the results of the tensile 
strength and microstructural analyses34,38. 
 

 
Figure 5. True Strain vs True Stress curve

Dimples ratio for the alloys 
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Figure 6 shows the fractures after the traction test, together with the 
dimples’ size. Low magnification (80x) presented the characteristic of 
grabbing the ductile materials, as is the case of aluminum alloys
Thehigh magnifications (1000x), displaying the dimples, made it 
possible to obtain an average diameter through a Gaussian curve. The 
size of the dimples did notvary when comparing the Al
sample, indicating that the incorporation of carbon nanotubes has 
noinfluence over the dimples. 
particles were added, the size decreased meaningly in the three 
samples. For 1wt.% SS samples, the dimples’ size, in both samples, 
wasalmost the same (~5.6 µm), while with 2 wt% of SS the reduction 
was more noticeable (~4.7 µm), with a reduction of 23% and 35%, 
respectively. These results indicated that the SS had a higher effect 
over the dimples’ size than the carbon nanotubes, which was 
confirmed by the refinement of the grains observed in the 
macrostructures of the Figure 7. 

 

Figure 7 shows the Ultimate Tensile Strength (UTS), Vickers 
microhardness (HV0.3), electric conductivity (EC), and macrographs 
for the samples. AlPure had the behavior described elsewhere in all of 
itsproperties, while the incorporation of 0.05wt.% CNT decreased its 
performance in UTS, associated with the CNT clusters, acting as 
stress concentrations and reducing its toughness
density of the CNT, it mainly floated and roseto the surface, 
remaining only a low quantity inthe matrix
incremented around 10% to be in accordance with the Al
indicating changes in the properties of the Al matrix. With 1wt.% SS 
particles powder, the UTS slightly increases, due to the decreasing 
residual stresses of the alloy elements to the matrix
deformation and the EC (~5%). The 1SS0.05C sample had a better 
behavior in all its properties (UTS, strain, toughness, microhardness, 
and EC), almost 10% in each. It revealed the effect of the chemical 
treatment nanotubes and their capacity to be attachedtothe SS powder, 
effectivelyconnecting the alloy elements of the SSinside the 
aluminum matrix, maintainingtheir reinforcement effect
higher quantities of SS and nanotubes, the reinforcement is 
compromised, the properties decreasing when compared tothe 
1SS0.05C sample, but still already above the Al
of SS particles powder could not be melted in the aluminum casting, 
dueto low temperature and shorttime. 
 
The alloy 1SS0.05C showed better results regarding the evaluated 
properties. In thatsense, when compared to the literature, the electrical 
conductivity was higher than the commercial alloys Al6201 before 
and after the T81 heat treatment (48.9 %IACS, 50.6 %IACS), in the 
condition of wire with 3.00 mm in diameter, but the ultimate tensile 
stress was lower than that obtained in the literature both in the 
condition before and after the T81 (261.7 MPa and 275.9 MPa)
AlPure shows coarse equiaxial grains;0.05C start to refine the
grains, suggesting that the internal heat transfer was higher in the 
middle of the lingot41. The addition of 1% of SS particles 
significantly refinesthe grains by addition of the alloy elements
addition of 0.05wt.%CNTs refines themeven more
heat transfer from the CNT insertion, while the 2wt.%SS and 
0.1wt.%CNT exceed the limit of absorption of the aluminum in this 
temperature, deriving from a growth of the grains and from lower 
mechanical, microstructural, and electrical pro
 
Conclusion 
 
This work showed a novel process in manufacturing a nanocomposite 
aluminum alloy with higher mechanical properties and electric 
conductive. The best aluminum alloy was the combination of 1 wt.% 
of stainless-steel particles and 0.05 wt.% of MWCNT, demonstrating 
10% of increment in all its properties. The mechanical performance is 
due to the SS powder and the electric conductive to the CNT. The 
bond between the SS powder matrix and the MWCNT, which comes 
from the chemical treatment applied, is fundamental to incorporate 
successfully incorporate the nanoparticles in the aluminum matrix.
The stress-strain curve of the 1SS0.05C alloy had the best results for 
tensile strength, toughness, and deformation, then the other alloys 
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Figure 6 shows the fractures after the traction test, together with the 
dimples’ size. Low magnification (80x) presented the characteristic of 
grabbing the ductile materials, as is the case of aluminum alloys39. 
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and after the T81 heat treatment (48.9 %IACS, 50.6 %IACS), in the 
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heat transfer from the CNT insertion, while the 2wt.%SS and 
0.1wt.%CNT exceed the limit of absorption of the aluminum in this 
temperature, deriving from a growth of the grains and from lower 
mechanical, microstructural, and electrical properties24,34.  
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conductive. The best aluminum alloy was the combination of 1 wt.% 
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tested. With 1% inweight of powdered SS particles and without the 
CNT, the UTS increases slightly, due to residual stresses arising from 
the alloying elements to the matrix, reducing strain and electrical 
conductivity (~5%). The 1SS0.05C sample had a better behavior in all 
its properties (UTS, deformation, tenacity, microhardness, and EC), 
an almost 10% increase in each one. This showed the effect of 
nanotubes with the SS powder, maintaining its reinforcing effect by 
effectively bonding within the aluminum matrix. 
 
Experimental Procedure 
 
Alloys elements preparation: MWCNT with 95.7% purity and 304L 
stainless-steel particles sifted until 44± 5 μm were the alloy elements. 
MWCNTwas the chemical treatment (CT) with Hydrogen Peroxide, 
inserted together with the SS 304L powder in an ultrasonic bath (55 
kHz, 120 W), with isopropyl alcohol for 10 min; afterwards, the 
mixture was dried at 130oC to evaporate the H2O2 and the isopropyl 
alcohol 10,11,14,27,28.  
The crystalline, doping, and amorphous carbon degree of the CNT 
used a Raman spectroscopy JovinIvon. An equipment Bruker, model 
8 Advance with Bragg-Brentane geometry, Lyns Eye detector, Cu 
tube, Kα1=1.541 and Ni filter Kβ performed the X-ray diffraction 
(XRD) analyses. Micrographs of the nanostructured powder were 
obtained using a Scanning Electron Microscope (SEM), being 
displayed in the S 04. TEM micrographs indicated the as-received 
CNT and the chemical treatment. 
 
Casting procedure: Aluminum was melted to 900 ºC for four hours. 
The operational system adopted for the solidification process was the 
mold in a cylindrical metallic keel consisting of a hollow steel 
cylinder to obtain a final product of 150 mm length x 25 mm 
diameter. MWCNT chemical treatment was added to 780 ºC, 
measured with a thermocouple, mixed in an inert atmosphere of pure 
Argon, rate of 0.2 l/s. In 720 ºC. The mixing process was interrupted, 
depositing the metal liquid in the mold. Figure 2 shows the 
solidification modes of the three main alloys, displaying the behavior 
of each alloy element when only carbon nanotubes, and the 
nanostructured powder in minor (1SS0.05C) and major amount 
(2SS0.1C) were added. Five alloys were prepared, AlPure as reference, 
and four with different content of alloy elements, with 0.05 wt.% 
CNT (0.05C), 1 wt.% SS (1SS), 1 wt.%SS-0.05 wt.% CNT 
(1SS0.05C), and 2 wt.%SS-0.1 wt.% CNT (2SS0.1C).  
 
Wire Characterization: A microhmmeter (Megabrás, MPK-2000 
model) evaluated the electric conductive of the wires of 3 mm, 
obtained after a lamination process; over standard ASTM B193-
1929.Tensile strength tests were made with a servo pulser Kratos, 
IKCL1 model, using the standard, ASTM E8/E8M-16a30, with three 
samples to each alloy. Failure area was analyzed with a SEM. 
AMitutoyo equipment performed the microhardness Vickers test, 
with a 3N load, over the standard ASTM E384 – 11. The micrographs 
and failure analyses utilized a Scanning Electron Microscope (SEM), 
voltage of 20 kV, with Energy-dispersive X-ray spectroscopy (EDS) 
for mapping the alloys’ elements. 
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