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ARTICLE INFO  ABSTRACT 
 
This article presents a new method for robust control of aircraft dynamic models using linear 
matrix inequalities and pole placement. The models are written in the form of polytopes, that 
describes the dynamic system linearized around some operating point. By using ljnear matrix 
inequalities, different control requisites, such as pole placement at different regions of the complex 
plane and norm minimization, can be grouped in one structure. Results of application for helicopter 
and fighter aircraft models show that the methodology guarantees stability and performance 
robustness for both dynamic systems. 
 
 
 
 
 
 
 

 
Copyright©2023, Victor A F de Campos, Alain S Potts and Luiz R T da Silva. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 
 
 

INTRODUCTION 
 
Dynamic performance and robust control of dynamical systems are 
subjects of great importance in Engineering. Techniques like LQG / 
LTR (Loop Transfer Recovery), µ synthesis and Linear Quadratic 
Regulator were explored in many past researches. Nevertheless, the 
most flexible technique in terms of grouping different requisites 
involves the use of Linear Matrix Inequalities (LMIs). LMIs have 
been used in many control applications (Mackenroth, 2004). (Chilali, 
Gahinet and Apkarian, 1999) and (Chilali and Gahinet, 1996) apply 
LMIs to robust pole placement in generic systems, but the controllers 
generated are full order, and the formulation does not permit to define 
the structure of the controller. In (de Campos, Cruz and Zanetta, 
2012), robust pole placement is done together with minimization of 
the norm of controllers static gain matrix, with fixed order controllers. 
Aircrafts are dynamic systems. Generally, the flight control systems 
are designed using mathematical models, which are linearized around 
various operating points. The controller parameters are pre-
programmed or varied in terms of the flight conditions. In the area of 
robust control applied to helicopters, there are a predominance of H2 
and H∞ controllers. Two works that use H∞ method to the helicopters 
control are (Yoneyama and Kikuchi, 2002) and (Wang, Lu and 
Zhong, 2013). Another technique applied to control of helicopters is 
the Linear Quadratic Regulator (LQR). In (Shen et al, 2009), the LQR 
is applied to the design of a controller which stabilizes the 3 Euler 
angles of a helicopter. A robust – adaptive controller based on neural 
networks was proposed on (Razzaghian, 2018). 
 

In the area of robust control applied to fighter aircrafts, (Holhjem, 
2012) develops an adaptive control technique  for the longitudinal 
model of a F16 aircraft, linearized around an operating point. The 
longitudinal model of an aircraft was also used by (Xu et al, 2014) to 
design an adaptive-robust controller. Various robust techniques have 
been used for aircrafts controllers design, for example the linear 
quadratic regulator (LQR), the H∞ controller and the µ synthesis 
(structured singular value). In (Fravolini at al, 2015), a linear control / 
adaptive control mixed strategy is applied to the longitudinal model 
of a F16 aircraft, yielding good results of robustness and 
performance. A controller design methodology that uses multi-
objective optimization and LMIs for trajectory planning of aircrafts is 
developed in (Liao et al, 2002). Despite the different types of control 
strategies applied to aircrafts, the most flexible technique in terms of 
guaranteeing robustness and, at the same time, grouping different 
control strategies is the robust control through  LMIs. In the technique 
that is proposed, we use polytopic models to assure robustness; 
besides, we can allocate the closed loop system eigenvalues in a 
specified region of the complex plane, what will guarantee good 
performance to the system at various operating points. Moreover, this 
technique makes possible to choose a priori the controller structure, 
an important feature of this work. In this field, (de Campos, Cruz and 
Zanetta, 2014), (Trajano da Silva, de Campos and Potts, 2020) and 
(Andrade, de Campos, Potts and Garcia, 2017) applied LMIs to the 
control of aircrafts, considering fixed controller structure. The robust 
control algorithm that will be presented in this work is more complete 
than this 3 preceding works, adding more robust features to the 
problem structure. 
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Mathematical Model of the System and Closed Loop System: The 
dynamic system model to be described here is written in the state 
space form. The dynamic model is the following: 
 
𝑥̇ = 𝐴. 𝑥 + 𝐵. 𝑢 
𝑦 = 𝐶. 𝑥                                                                                            (1) 
 
where x is the state vector, y is the output vector and u is the input 
vector. The i-th controller to be used has a pre defined structure: 
 

𝐾௜(𝑠) =
௔೔.௦మା௕೔.௦ା௖೔

(௦ା௣భ)(௦ା௣మ)…(௦ା௣೙)
                                                               (2) 

 
where the poles p1, … ,  pn are pre-determined. Another structures 
for the controllers are also possible. In this scheme, we have to obtain 
the gain and the zeros (given by the values of ai , bi and ci) of the 
controller. 
 
Our control policy consists on applying an output feedback to the 
system. K(s) is the controllers transfer function matrix, and G(s) is the 
transfer function matrix of the nominal system. The controllers matrix 
K(s) can be rewritten in state space form as: 
 
𝐱 ̇𝐂 = 𝐀𝐂. 𝐱𝐂 + 𝐁𝐂. 𝐲 

𝐮 = 𝐂𝐂. 𝐱𝐂 + 𝐃𝐂. 𝐲                                                                                                        (3) 
 
Matrices AC and CC are pre defined, once the poles of the 
controllers are also pre defined. Matrices BC and DC are the 
variables of the control problem. Applying the controller (3) to the 
system described by (1), we have the closed-loop dynamical system. 
 
In order to simplify the formulation, we apply a transformation that 
turns the dynamic controller adjustment problem into a static 
controller problem. This method is the same presented in (Scavoni et 
al, 2001). We define the following matrices: 
 

𝐴௠ = ൤
𝐴 𝐵. 𝐶஼

0 𝐴஼
൨       𝐵௠ = ቂ

𝐵 0
0 𝐼

ቃ       𝐶௠ = [𝐶 0]                   (4) 

 

The static controller gain matrix is:  𝐾஼ = ൤
𝐷஼

𝐵஼
൨                              (5) 

 
The modified system, which is equivalent to the closed loop system, 
is: 
 
𝑥̇௠ = 𝐴௠𝑥௠ + 𝐵௠𝑢௠ 
𝑦 = 𝐶௠𝑥௠                                                                                        (6) 

 
where 𝐱𝐦 = [x  xC]𝐓 and the control law um = KC  y. The variable of 
the problem is the static output feedback gain matrix KC. 
 
Pole placement through linear matrix inequalities with pre-
defined structure controllers: Linear Matrix Inequalities (or 
simply LMIs) are mathematical tools that have applications in 
robust control theory. For pole placement purposes, we apply the 
concept of LMI regions. 
 
A real matrix A is D-stable, that is, has all of its eigenvalues in the 
LMI region D if and only if a real symmetric matrix Q exists such 
that (Boyd et al, 1994): 
 
L ⊗ 𝐐 + 𝐑 ⊗ (𝐀. 𝐐) + 𝐑𝐓 ⊗ (𝐐. 𝐀𝐓) < 0 

 
𝐐 > 0                                                                                                                   (7) 
 

where L and R are matrices that define the LMI region.  
 
LMI regions of interest in control applications are the conic 
sector, the semiplane and the region inside a semicircle, whose 
intersection can be seen in Figure 1. 

 
 

By placing the dynamic system poles in the intersection of these 3 
regions, we can guarantee that the closed loop system will have a 
minimum decay rate α, a minimum damping ζ = cos θ, and a 
damped natural frequency of ωd = r.sin θ, besides of an undamped 
natural frequency of ωn ≤ r. That puts limits on the overshoot, the 
settling time and the rise time of the system. Therefore, to place the 
closed loop system poles in this region guarantees an adequate 
performance for the system. 
 
Output feedback control and Pole Placement through LMI’s 
 
The general LMI for pole placement with fixed controller structure 
and output feedback is the following (de Campos, Cruz and Zanetta, 
2012): 

 
𝐿⨂𝑄 + 𝑅⨂(𝐴௠𝑄 + 𝐵௠𝑁𝐶௠) + 𝑅்⨂(𝑄𝐴௠

் + 𝐶௠
் 𝑁்𝐵௠

் ) < 0 
𝑄 > 0                                                                                                 (8) 
 
The variables are matrices Q and N. Once the LMI is solved, we can 
recover the controller (de Campos, Cruz and Zanetta, 2012): 
 
𝑀. 𝐶௠ = 𝐶௠𝑄                                                                                    (9) 
 
𝐾஼ = 𝑁. 𝑀ିଵ                                                                                    (10) 
 
LMI (8) has to be solved for the 3 regions (defined by matrices L and 
R) shown in figure 1 simultaneously. Doing so, the poles of a 
dynamical system will be allocated in this specific region of the 
complex plane. Substituting the values of matrices L and R for the 3 
regions of the complex plane, we have: 
 
Conic sector with inner angle θ (de Campos, Cruz and Zanetta, 2012): 
 

ቈ
𝑠𝑖𝑛𝜃𝐴௖௟𝑄 + 𝑠𝑖𝑛𝜃. 𝑄. 𝐴௖௟

் 𝑐𝑜𝑠𝜃𝐴௖௟𝑄 − 𝑐𝑜𝑠𝜃. 𝑄. 𝐴௖௟
்

∗ 𝑠𝑖𝑛𝜃𝐴௖௟𝑄 + 𝑠𝑖𝑛𝜃. 𝑄. 𝐴௖௟
் ቉ < 0          (11) 

 
where:  𝐴௖௟𝑄 = 𝐴௠𝑄 + 𝐵௠𝑁𝐶௠  , and * denotes symmetric term. 

 
Disc of radius r:   
 

൤
−𝑟. 𝑄 𝐴௠𝑄 + 𝐵௠𝑁𝐶௠

∗ −𝑟. 𝑄
൨ < 0                                                       (12) 

 
Semiplane Re(z) < α : 
 
2𝛼. 𝑄 + 𝐴௠𝑄 + 𝐵௠𝑁𝐶௠ + 𝑄. 𝐴௠

் + 𝐶௠
் 𝑁்𝐵௠

் < 0                      (13) 
 

Summarizing the procedure for pre-defined structure controller 
design and pole placement, we have the following algorithm: 
 

1. Firstly, evaluate matrices Am, Bm and Cm of the modified 
system and define the performance specifications for the closed-
loop system (that is, the values of θ, α and r). Solve the system 
of LMI’s given by (11), (12), (13) and Q > 0 in the variables Q 
and N; 

2. Compute the matrix M, using (9); 
3. Compute the static gain matrix KC using (10); 
4. Recover the controller matrices DC and BC, considering (5); 
5. Compute the transfer function of each controller, using AC, BC, 

CC and DC. 
 

The Robust Algorithm 
 
Dynamical systems like aircrafts are basically described by nonlinear 
models which are linearized around some operating points. The 
linearization is important, once the most powerful control techniques 
are applicable just for linear models. Having various operating points 
of the dynamical system, we have to guarantee that all of them are 
stable and present good performance. To assure it, we make use of 
polytopic models. 
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So, let the i-th system model linearized around an operating point be 
denoted by the triple (Ai , B , C). A polytope is the set Ω defined 
below (Boyd et al, 1994): 
 
Ω = {𝐴|𝐴 ∈ 𝑅௡௫௡, 𝐴 = ∑ 𝜆௜𝐴௜ , 𝜆௜ ≥ 0, ∑ 𝜆௜ = 1௠

௜ୀଵ
௠
௜ୀଵ }                (14) 

 
where n is the dimension of matrices Ai and m is the number of 
operating points. The matrices Ai are called vertices of the polytope. 
To ensure that the poles of any closed-loop system associated to 
a matrix A ϵ Ω will be in the region of the complex plane defined in 
figure 1, we have to solve m LMIs jointly in the same variables Q 
and N, that is: 
 
𝑚𝑖𝑛‖𝐺(𝑠)𝐾(𝑠)‖ଶ 
 
Subject to: 
 

ቈ
𝑠𝑖𝑛𝜃𝐴௖௟,௜𝑄 + 𝑠𝑖𝑛𝜃. 𝑄. 𝐴௖௟,௜

் 𝑐𝑜𝑠𝜃𝐴௖௟,௜𝑄 − 𝑐𝑜𝑠𝜃. 𝑄. 𝐴௖௟,௜
்

∗ 𝑠𝑖𝑛𝜃𝐴௖௟,௜𝑄 + 𝑠𝑖𝑛𝜃. 𝑄. 𝐴௖௟,௜
் ቉ < 0 

 

൤
−𝑟. 𝑄 𝐴௠,௜𝑄 + 𝐵௠𝑁𝐶௠

∗ −𝑟. 𝑄
൨ < 0 

 
2𝛼. 𝑄 + 𝐴௠,௜𝑄 + 𝐵௠𝑁𝐶௠ + 𝑄. 𝐴௠,௜

் + 𝐶௠
் 𝑁்𝐵௠

் < 0 
 

൤−𝑘ே . 𝐼 𝑁்

𝑁 −𝐼
൨ < 0 

 

൤
𝐶௠𝑄𝐶௠

் 𝐼
𝐼 𝑘ொ . 𝐼

൨ > 0 

 
Q  > 0 
 
for i = 1, 2, 3, ..., m, with: 
 

𝐴௠,௜ = ൤
𝐴௜ 𝐵. 𝐶஼

0 𝐴஼
൨ 

 
𝐴௖௟,௜𝑄 = 𝐴௠,௜𝑄 + 𝐵௠𝑁𝐶௠                                                            (15) 
 
Ai , i = 1, 2, … , m are the state space matrices that define the 
mathematical model of the system, at various operating points. By 
solving the system of LMIs (15), it can be guaranteed that the closed-
loop system poles will be in the region defined in Figure 1 for all the 
m operating points considered. At the same time, the minimization 
problem generates a feasible controller gain matrix, with minimum 
norm-2. Thus, this is the robust procedure for controllers design. 
 

 
 

Figure 1. Intersection of the 3 regions of the complex plane for 
pole placement (half plane, semicircle and conic sector) 

 

RESULTS 
 
We present 2 applications of the robust procedure: the F16 aircraft 
and the helicopter Lynx. 
 
F16 AIRCRAFT: The robust control algorithm was applied to a 
lateral dynamical model of a F16 aircraft, considering 3 operating 
points. These points are presented in Table 1. The linearized model of 
a F16 aircraft was obtained from (Stevens, Lewis and Johnson, 2015). 
The model has 7 states, 2 inputs and 4 outputs. The complete 
description of the model can also be found in (Andrade, de Campos, 
Potts and Garcia, 2017). 
 

Table 1. Operating points for the F16 aircraft mathematical 
model 

 
Operating points  

Condition 1 
Nominal 2 

 
We choose the following specifications for the robust control 
algorithm: 
 
1. Controllers poles: - 2000 
2. Damping factor: 0.5 
3. Decay rate: 1 
4. Radius: 2050 
 
In Figure 2, we can observe the results of the robust controller 
proposed. The open loop system eigenvalues were plotted together 
with the closed loop system eigenvalues. 
 
 

 
 

Figure 2. Eigenvalues of the open loop and closed loop systems 
(with robust controllers) – aircraft F16 

 
The controller static gain matrix obtained is the following: 
 

𝐾஼ =

⎣
⎢
⎢
⎢
⎢
⎡

0.4086000 0.0440000 −1.270000 0.200000
1.6367000 −0.0655000 −4.190000 −0.089000
−0.000019 0.0000016 −0.000199 0.000000
0.0384000 −0.0032000 0.375500 0.001300
0.0002596 −0.0000087 −0.001000 −0.000008
−0.495600 0.0167000 1.950000 0.015400 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
The features of the closed loop system are (considering all the 
operating points): 
 
Norm-2 (KC) = 5.11 
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Minimum damping ratio = 0.61 
Undamped natural frequency = 2000 rad/s 
Decay rate = 1.07 
 

The closed loop system response to initial conditions (all of them 
settled to the value of 50) can be seen in Figure 3. The settling time is 
near to 2.5 s for outputs 1, 2 and 3, and near to 4 s for output 4. 
 

 
 

Figure 3. Response to initial conditions for the closed loop system 
model with robust controllers – aircraft F16 

 

Helicopter Lynx: We use the state space linearized model of Westland 
Lynx MK7 helicopter, whose model is available at (Padfield, 2008). 
The helicopter linearized model has 8 state variables, 4 inputs and 4 
outputs. The complete description of this model can also be found at 
(Trajano da Silva, de Campos and Potts, 2020). The original 
(nonlinear) equations were linearized around 3 operating points (Table 
2). The mechanical equations, for a 6 degree of freedom helicopter, can 
be found at (Luo et al, 2003). 
 

Table 2. Operating points for helicopter Lynx mathematical 
model 

 

Operating Point Flight Mode 
1 Hover 
2 Flight ahead 60 Knots 
3 Flight ahead 100 Knots 

 
We choose the following specifications for the robust control 
algorithm: 
 

• Controllers poles: - 3000 
• Damping factor (ξ): 0.1 
• Decay rate (α): 0.02 
• Radius (r): 3050 

 

 
 

Figure 4. Eigenvalues of the open loop and closed loop systems 
(with robust controllers) – helicopter Lynx 

In Figure 4, we can observe the results of the application of the robust 
controller proposed. The open loop system eigenvalues were plotted 
together with the closed loop system eigenvalues. 
 
The controller static gain matrix obtained is the following: 
 

𝐾஼ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.0154   
−1.64
0.3073

−0.1769   
−1.96

−0.1095

0.0049   
0.1271

0.15

−0.0139
−0.0109
−0.0339

12.11  
0.0293
−86.61

        12.53 
0.0361

   −105.74
 

−1.46
0.00076

−2.3

     6.3585
    0.00009

  −0.3
0.057

−168.4
0.002

0.041
     −120.3
      0.0013

    0.00014
   −0.4723

      0.00033
 
      0.00009

 −0.2541
0

−5.76
0.00014
−0.4296

 
−3.9172

     0.00017
−0.51

      −0.9364
0

0.0219
 

0.0328
−0.000047

0.1396 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The features of the closed loop system are (considering all operating 
points): 
 
Norm-2 (KC) = 246.92 
Minimum damping ratio = 0.98 
Undamped natural frequency = 3010 rad/s 
Decay rate = 0.02 
 

 
 

Figure 5. Response to initial conditions for the closed loop 
system with robust controllers – helicopter Lynx 

 
The closed loop system response to initial conditions (all of them 
settled to the value of 1) can be seen in Figure 5. The settling time is 
near to 20 s. 
 

DISCUSSION 
 
The results presented show that the robust control strategies increased 
the damping and guaranteed stability for the aircrafts, at all operating 
points. In the case of the helicopter, it was instable, and the controllers 
turned the system into stability at all operating points. At the same 
time, the norm of the controllers gain matrix was bounded, what 
minimizes the control effort. Then, the robust controller increased the 
performance and guaranteed stability at all operating points, being 
also an optimal controller. 
 

CONCLUSIONS 
 
We proposed a new robust controller design method for aircrafts, 
which uses pole placement and LMIs, and whose results guarantee 
stability and performance for various operating points. We have 
shown 2 applications (fighter aircraft and helicopter), in both the 
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robust stability and robust performance were guaranteed. At the same 
time, the norm-2 of the controller gain matrix was constrained, in 
order to avoid infeasible values for the controllers parameters. The 
controllers structure is totally free, and can be changed depending on 
the system demands. The results show that the performance of the 
aircrafts was greatly improved, and the robustness was also guaranteed.  
Some possibilities for further developments include the 
minimization of H infinity norm for the closed loop system, 
together with pole placement constraints, and the development of a 
nonlinear robust control strategy for the aircrafts. 
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