

COMPARATIVE STUDY OF MIDDLE TIER CACHING SOLUTION

Sourabh Sethi*1, Sarah Panda2 and Ravi Kamuru3

1Infosys, USA; 2Microsoft, USA; 3New York Technology Partners, USA

ARTICLE INFO ABSTRACT

Caching is the practice of storing data in proximity or within a faster storage system for rapid retrieval.
This occurs at various locations, and in this paper, we will delve into the different areas where data
caching is possible. We will closely examine the challenges associated with caching and explore ways
to address them through a comparative study of middle-tier caching solutions. Additionally, we will
explore the range of caching solutions available in the computer science ecosystem.

Copyright©2023, Sourabh Sethi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

This article guides a stepwise walkthrough about how to use cache in
middle tier applications. What is caching? Caching can be described
as the process of storing data in close proximity to the client or within
a faster storage system to enable rapid retrieval. Caching are meant to
be used in Read heavy systems. Caching occurs at various levels,
with the initial level being the browser. The browser stores frequently
accessed data to expedite subsequent access. Let's explore the
different tiers of caching. In the case of in-browser caching, specific
IP addresses can be cached, reducing the need for the browser to
repeatedly query the DNS server for the same IP address. This form
of caching involves smaller, less frequently changing entries and is
known as in-browser caching. The browser caches DNS information
and static content, including images, videos, and JavaScript files. This
is why a website may take some time to load on the first visit but
subsequently loads quickly due to the browser's stored cache. CDN
Caching involves scenarios where your browser is located in one
region, such as India, and you need to retrieve files stored on servers
situated in another region, like the United States. When you attempt
to access these files from your browser, a request is sent to a load
balancer, which subsequently communicates with the application
server to fetch the required files from the file storage. It's well-known
that transferring data between machines within the same region is
typically faster, but when machines are geographically distant, data
transfer can be time-consuming.

The solution to this challenge lies in the use of CDNs, or Content
Delivery Networks. Examples of CDNs include well-known
companies like Akamai, Cloudflare, and Amazon's CloudFront.The
core function of these companies is to establish a global presence by
deploying machines in various geographic regions. They take on the
responsibility of storing your data, distributing it to all these regions,
and offering distinct CDN links for accessing data in specific areas.
Imagine you are requesting data from the US region; naturally, you'll
receive the HTML or code portion swiftly, as it is considerably
smaller compared to multimedia files. When it comes to multimedia
content, you are provided with CDN links to files located in your
nearest region. Accessing these files from the closest region
significantly enhances the speed of retrieval. It's important to note that
the usage of these CDN services typically incurs charges based on
your actual usage. To prevent the cache from becoming outdated,
stale or inconsistent with database, one proposed solution is to
implement a Time-to-Live (TTL). Additionally, maintaining
synchronization between the cache and the database can be
accomplished using strategies such as Write-through cache, Write-
back cache, or Write-around cache.

TTL (Time to Live)

In this approach, this strategy can be employed when a short-lived
cache is acceptable, allowing for periodic refresh. Cached entries
remain valid for a limited duration, after which they must be fetched
anew. For instance, if you cache an entry t0 at timestamp T with a
time-to-live (TTL) of 60 seconds, any requests for entry t0 made

ISSN: 2230-9926

International Journal of Development Research
Vol. 13, Issue, 11, pp. 64225-64229, November, 2023

https://doi.org/10.37118/ijdr.27449.11.2023

Article History:

Received xxxxxx, 2019
Received in revised form
xxxxxxxx, 2019
Accepted xxxxxxxxx, 2019
Published online xxxxx, 2019

Available online at http://www.journalijdr.com

Citation: Sourabh Sethi, Sarah Panda and Ravi Kamuru. 2023. “Comparative study of middle tier caching solution”. International Journal of
Development Research, 13, (11), 64225-64229.

 RESEARCH ARTICLE OPEN ACCESS

Article History:

Received 06th August, 2023
Received in revised form
08th September, 2023
Accepted 11th October, 2023
Published online 27th November, 2023

Key Words:

Caching, Web Caching, CDNs,
Spring Cache, Jcache,
DXPs Caching Layers.

*Corresponding author: Sourabh Sethi,

within 60 seconds of t0 will be served directly from the cache.
However, if a request for entry t0 is made at timestamp T+61, the
cached entry t0 expires, and you must retrieve it again.

Write through cache

When writing data to the database, the process involves initially
passing through the cache (which may involve multiple cache
machines). The data is stored in the cache (updating it), and then it's
subsequently updated in the database before returning a success
response. In case of a failure, the changes are rolled back in the cache.
While this approach might slow down write operations, it
significantly accelerates read operations. For systems with a high
volume of read requests, this method can prove to be quite effective.
Additional caching types include Local Caching, which optimizes
performance by caching data at the application server level, reducing
the necessity for repeated database queries. Conversely, Global
Caching, also known as In-memory caching, relies on systems like
Redis and Memcache to accelerate the retrieval of both raw and
processed data.In this article, we will evaluate various middle-tier
caching solutions available in the market while also examining their
integration with the abstraction layers such Spring Cache and Jcache
Specifications.

Issue related to caching

Caching comes with a set of challenges, including its size limitations.
Caches merely contain duplicates of the actual data, which resides
elsewhere, often referred to as the 'source of truth.' As time passes,
cached data can become outdated and diverge from the accurate data
in the database, as changes in the source of truth are not automatically
reflected in the cache. Additionally, the cache can reach its storage
capacity, causing it to become full. This raises the questions: What
measures can we implement to ensure data consistency across Cache
& Database? And how can we accommodate new entries when the
cache is already at its maximum capacity?

In this article, we have examined the diverse challenges linked to
caching and delved into potential solutions by implementing Cache
Invalidation Strategies and Cache Eviction Policies.

Cacheinvalidation strategy

Figure 1. Write through Cache

Write back cache

Initially, the write operation is recorded in the cache. Once the cache
write is successful, a success response is promptly returned to the
client. Subsequently, the data is synchronized with the database
asynchronously, without hindering ongoing requests. This method is
favored in scenarios where immediate data loss is not a critical
concern, such as in analytical systems where the precise data in the
database holds little significance. In this context, the occasional data
loss is tolerable, as it doesn't significantly impact analytical trend
analysis. While it may introduce some inconsistency, it offers the
advantage of achieving exceptionally high throughput and minimal
latency.

Figure 2. Write Back Cache

Write around cache

In this case, write operations are executed directly in the database,
and there may be a discrepancy between the cache and the database.
As a remedy, TTL or a similar mechanism can be employed to
periodically retrieve data from the database and synchronize it with
the cache.

Figure 3. Write Around Cache

Cache Eviction Policy

The selection of an eviction strategy should be determined by the data
most frequently accessed. The caching strategy should be carefully
crafted to maximize cache hits while minimizing cache misses. There
exist several eviction strategies aimed at freeing up space in the cache
for new data writes. A few of these strategies include:

FIFO (First In, First Out)

FIFO, an acronym for "First In, First Out," is a principle or method in
which the items that are first added or acquired are the first ones to be
utilized or processed, while the most recent items are addressed or
processed later in the sequence. In the realm of computing and data
structures, FIFO is commonly employed in scenarios like queue
management, where the order of arrival dictates the order of
processing or retrieval.

64226 Sourabh Sethi et al., Comparative Study of Middle Tier Caching Solution

LRU (Least Recently Used)

An LRU (Least Recently Used) Cache is a caching approach in which
the items accessed or used least recently are the first to be removed or
replaced when the cache reaches its capacity or encounters an
eviction policy trigger. The likelihood of retaining data in the cache is
determined by the order in which items are accessed or utilized in an
LRU Cache. This strategy prioritizes keeping the most recently used
items in the cache, ensuring that frequently accessed data is readily
available for quicker retrieval. LRU Caching finds common use in
scenarios where optimizing for recent usage patterns holds
significance.

LIFO (Last In, First Out)

A Last In, First Out (LIFO) Cache operates by removing or
processing the most recently added or inserted item first when the
cache reaches its capacity or when an eviction policy is enacted. In
this caching mechanism, the order of insertion dictates the order of
removal, with the latest entry being the first to be evicted. Often
referred to as a stack-based approach, LIFO Caching treats items in a
last-in, first-out manner, akin to stacking objects. This strategy is
utilized in scenarios where prioritizing the order of recent additions is
crucial.

MRU (Most Recently Used)

A Most Recently Used (MRU) Cache follows a caching strategy
where the most recently accessed or utilized items are given priority
and are the last to be removed when the cache reaches capacity or

when an eviction policy is enacted. In an MRU Cache, the likelihood
of retaining items is determined by the order in which they are
accessed or utilized. This strategy focuses on maintaining the
availability of the most recently used items for quicker retrieval,
placing emphasis on recent access patterns. MRU Caching is
frequently utilized in situations where optimizing for recent usage is
paramount. All cache eviction policy solutions are implemented using
the strategy design pattern by using the basic principle of
polymorphism & Interfaces i.e. Dependency Inversion Principle
(DIP). The concrete implementation of the algorithm is contingent
upon the interface, and our clients, who utilize the cache mechanism,
rely on the CacheStrategy Interface. Clients employing our caching
mechanism are unaware of the specific concrete implementation
details, Caches abstraction as shown in the above figure. Various
caching solutions implement JCache, an interface provided by the
Java community under the JSR 107: JCACHE - Java Temporary
Caching API or Spring Framework has also provided abstraction
interface which is implemented by various caching solutions available
in the market. This specification standardizes the in-process caching
of Java objects, offering an efficient implementation and relieving
programmers from the responsibility of handling cache expiration,
mutual exclusion, spooling, and cache consistency. It supports
caching objects with types unknown until runtime, but only those
implementing the serializable interface can be spooled.

Spring's caching abstraction seamlessly integrates with the JCache
standard (JSR-107) annotations, including @CacheResult,
@CachePut, @CacheRemove, and @CacheRemoveAll, as well as the
companions @CacheDefaults, @CacheKey, and @CacheValue.

Figure 4. Cache Strategy

Figure 5. Jcache JSR 107

64227 International Journal of Development Research, Vol. 13, Issue, 11, pp. 64225-64229, November, 2023

These annotations can be utilized even without migrating the cache
store to JSR-107. The internal implementation leverages Spring's
caching abstraction, providing default CacheResolver and
KeyGenerator implementations compliant with the specification. In
essence, if you are already using Spring's caching abstraction,
transitioning to these standard annotations is possible without altering
your cache storage or configuration. Various caching solutions,
including the JCache Reference Implementation (Concurrent
HashMap), Hazelcast, Oracle Coherence, Terracotta Ehcache,
Infinispan, and Redis, have implemented the JCache standard. In the
figure depicted below, our application relies on the JCache API,
adhering to the dependency inversion principle. Here, other Cache
Providers have implemented the JCache API provided by the Java
community. This approach simplifies the task for application
developers, allowing them to use any cache without delving into the
implementation details. As developers of the application, our
responsibility lies in providing the configuration to the
CacheManager for Cache Invalidation Strategy, Cache Eviction
Policy, Time to live, and creating the cache object based on that
configuration so that we can use it throughout application.

Cache Solutions

In this section, we will discuss different cache solutions available in
the market around Java ecosystem & spring framework. Caffeine is
an exceptionally high-performance caching library designed for near-
optimal performance. Operating as a local caching solution, it is non-
blocking in nature and is supported by Jcache and SpringCache.
Caffeine also features Time-to-Live (TTL) support and offers two
eviction strategies: FIFO and Weight-based eviction. The latter
involves assigning a weight to each entry, adhering to a custom
algorithm, and setting a weight limit for the cache. If a new entry
exceeds the maximum weight, the 'heaviest' entries are removed until
the sum of the weights falls below the defined threshold. Ehcache, an
open-source, standards-based cache, enhances performance, reduces
database load, and simplifies scalability. Widely used in Java
environments, Ehcache is robust, proven, and integrates seamlessly
with popular libraries and frameworks. Functioning as a local caching
solution, it is single-threaded and blocking, with support for JCACHE
and SPRING CACHE, along with TTL. Ehcache provides three
eviction strategies: LRU, LFU, and FIFO. Moreover, Ehcache allows
users to implement custom eviction policies. Terracota is the
enterprise version of Ehcache, providing distributed capabilities.
Infinispan, an open-source in-memory data grid, offers versatile
deployment options and robust capabilities for storing, managing, and
processing data. Supporting local/global distributed caching, it is
configurable and offers LFU as an eviction strategy. Coherence is a
scalable, fault-tolerant, cloud-ready distributed platform for
constructing grid-based applications and securely storing data. With
non-blocking behavior, it supports both local and distributed caching
mechanisms. Coherence supports Jcache, TTL, and implements LRU
and LFU as eviction strategies. Ignite, a distributed database designed
for high-performance computing with in-memory speed, features its
own asynchronous primitives. It is non-blocking, supports Jcache and
Spring Cache, and provides eviction policies such as TTL, LRU, and
FIFO. Apache Geode is a data management platform offering real-
time, consistent access to data-intensive applications across widely
distributed cloud architectures. Operating as an in-memory data
management system, Apache Geode supports Spring Cache and TTL,
with LRU as its sole eviction policy.

Hazelcast is a streaming and memory-first application platform for
fast, stateful, data-intensive workloads on-premises, at the edge or as
a fully managed cloud service. It is non-blocking in nature which
supports Jcache& Spring Cache. Redis provides a method for storing
key-value pairs in various data types like Lists, Sets, and Hashes. The
data is kept in memory, ensuring rapid retrieval when requested. This
characteristic makes Redis an ideal choice as a cache for applications
where quick data retrieval is crucial. Redis operates in a non-
blocking, single-threaded manner. Similar to Redis, Memcached is an
open-source solution for storing key-value pairs in memory, resulting
in swift data retrieval. This makes Memcached another effective

option for applications where speed is a priority. Memcached is also
multithreaded, potentially offering performance improvements by
utilizing multiple cores. While Redis functions as an in-memory
(mostly) data store and is non-volatile, Memcached operates as an in-
memory cache and is volatile. Additionally, Memcached is
constrained to the LRU (Least Recently Used) eviction policy,
whereas Redis supports six different eviction policies.No eviction,
resulting in an error when the memory limit is reached. All keys
LRU, removing keys based on the least recently used criterion.
Volatile LRU, removing keys with an expiration time set, based on
the least recently used criterion. All keys random, removing keys in a
random manner. Volatile random, removing keys with an expiration
time set randomly. Volatile TTL, removing keys with an expiration
time set based on the shortest time to live criterion. Redis supports
persistence, earning its classification as a data store, through two
distinct methods. The first is the RDB snapshot, which captures a
point-in-time snapshot of the entire dataset. This snapshot is stored in
a file on the disk and is taken at specified intervals, allowing the
dataset to be restored upon startup. Another method is the AOF
(Append Only File) log, which records all write commands executed
in the Redis server. Similar to the RDB snapshot, this log is stored on
disk, and the dataset can be reconstructed by re-executing the
commands in their chronological order during startup. The AOF log is
preferable when zero data loss is imperative, as it updates with every
command and avoids corruption issues due to its append-only nature.
However, it may lead to larger file sizes compared to an RDB
snapshot.

In this paper, we have evident the LRU policy evicts the least recently
used keys first using redis.

127.0.0.1:6379> CONFIG SET maxmemory-policy allkeys-lru
OK127.0.0.1:6379> CONFIG SET maxmemory 1mb
OK

Let us also set the maxmemory to 1MB.
127.0.0.1:6379> CONFIG SET maxmemory 1mb
OK

To test the LRU policy, the redis-cli’s capabilities are
limited. Hence, we will switch to a python script using the
redis-py library.
Let us first create an instance of the redis client.
fromredisimport Redis

instance = Redis(host=DEFAULT_HOST, port=DEFAULT_PORT)

Flush the database to remove any existing data.
instance.flushall()

Let’s test out creating a key-value pair.
instance.set('key', 'value')

Getting the value of the key.
instance.get('key')

>b'value'

Let us check the memory usage of the redis instance.
print(f"Used memory: {node.info()['used_memory_human']}")

> Used memory: 1.49M

To simulate the LRU policy, we will create some key-value pairs first
and then access a subset of them. Then, we will flood the redis
instance with a lot of key-value pairs. This will cause the redis
instance to reach the memory limit and start evicting keys. According
to the LRU policy, the least recently used keys will be evicted first.
Hence, the keys that we accessed earlier will not be evicted. Let us
first create a utility function to create a key-value pair and access it.

defsave_data(end: int, start: int = 0) -> None:
fori in range(start, end):

64228 Sourabh Sethi et al., Comparative Study of Middle Tier Caching Solution

instance.set(f"key-{i}",
f"value-{i}")

defread_data(end: int, start: int = 0) -> None:
fori in range(start, end):
instance.get(f"key-{i}")

Let us create the initial key-value pairs.
store_data(redis, end=5000)

Read a subset of the keys.
read_data(redis, end=1000)

Now, let us flood the redis instance with a lot of key
pairs.
store_data(redis, end=10000, start=5000)

Let us see if the keys that we accessed earlier are still
present.
instance.get('key-1')

>b'value-1'

instance.get('key-1000')

>b'value-1000'

You could also use the mget command to get multiple keys
at once.
instance.mget([f"key-{i}" for i in range(1, 1001)])

Now, plotting the distribution of the keys that were evicted
affirms the LRU policy using Redis Cluster.

Figure 6. LRU Policy

It is evident here in above Figure 6: Keys accessed earlier experience
fewer evictions, while the remaining keys in the initial set undergo a
higher rate of evictions. The keys in the second set are evicted in the
order of their creation, ensuring that the most recent keys are retained.

Use Case

In a banking application, when users log in to their online banking
portals via a web app or a mobile app, they anticipate finding a
comprehensive dashboard displaying all their
includes information about their checking and savings accounts,
mortgage loans, investment accounts, and/or retirement accounts.

64229 International Journal of Development Research,

Now, let us flood the redis instance with a lot of key-value

Let us see if the keys that we accessed earlier are still

You could also use the mget command to get multiple keys

{i}" for i in range(1, 1001)])

Now, plotting the distribution of the keys that were evicted

It is evident here in above Figure 6: Keys accessed earlier experience
fewer evictions, while the remaining keys in the initial set undergo a
higher rate of evictions. The keys in the second set are evicted in the

of their creation, ensuring that the most recent keys are retained.

In a banking application, when users log in to their online banking
portals via a web app or a mobile app, they anticipate finding a

 account data. This
includes information about their checking and savings accounts,
mortgage loans, investment accounts, and/or retirement accounts.

The alternative, logging in separately to distinct online portals for
each account, is inconvenient and may drive users to competitors with
more integrated banking systems.
accounts within a single bank, and this information is distributed
across different systems in the bank's network. Therefore, it is crucial
for banks to implement caching to consolidate diverse data belonging
to a single user and promptly present all account information upon
login. Moreover, caching ensures swift access for customers to their
account information, providing a positive user exp
enabling the bank to handle substantial online traffic without
compromising responsiveness. Connecting user information across
various banking channels, coupled with enhanced responsiveness, not
only elevates user satisfaction and loyalty but a
bank's ability to assess each user's assets and financial history
conveniently.

CONCLUSION

As Digital Experience Platforms (DXPs) rapidly progress, relying
solely on a basic cache, like storing data in a hashmap, may prove
insufficient as the volume of data coursing through your company's
systems expands. The demands of processing such extensive data will
eventually outstrip the modest benefits offered by a simple cache's
data storage mechanism. It becomes apparent that evolving data
requirements necessitate a more advanced caching solution, such as a
Redis cluster.We have gone through the eviction policy & cache
invalidation strategies which is supported by various caching
solutions such as Redis, EhCache and many more using interface
JCache in Java.

ACKNOWLEDGMENT

We extend our appreciation to all the developers we've partnered
with. Their valuable contributions have played a crucial role in
identifying caching solutions in the market and implementing diverse
caching solutions across various enterprise applications
years.

REFERENCES

Altınel, Mehmet, Christof Bornhövd, Sailesh Krishnamurthy,

Chandrasekaran Mohan, Hamid Pirahesh, and Berthold Reinwald.
"Cache tables: Paving the way for an adaptive database cache."
In Proceedings 2003 VLDB Conference, pp.
Kaufmann, 2003.

Bornhövd, Christof, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and
Berthold Reinwald. "Adaptive Database Caching with
DBCache." IEEE Data Eng. Bull.

Carlson J. Redis in action. Simon and Schuster; 201
Li, Songhuan, Hong Jiang, and Mingkang Shi. "Redis

server cluster session maintaining technology." In
International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC
2017.

Liu, Qian, and Haolin Yuan. "A High Performance Memory Key
Value Database Based on Redis."
170-183.

Website : https://redis.io/docs/reference/eviction/

International Journal of Development Research, Vol. 13, Issue, 11, pp. 64225-64229, November, 2023

The alternative, logging in separately to distinct online portals for
nvenient and may drive users to competitors with

. Typically, users maintain multiple
accounts within a single bank, and this information is distributed
across different systems in the bank's network. Therefore, it is crucial
for banks to implement caching to consolidate diverse data belonging
to a single user and promptly present all account information upon
login. Moreover, caching ensures swift access for customers to their
account information, providing a positive user experience and
enabling the bank to handle substantial online traffic without
compromising responsiveness. Connecting user information across
various banking channels, coupled with enhanced responsiveness, not
only elevates user satisfaction and loyalty but also streamlines the
bank's ability to assess each user's assets and financial history

As Digital Experience Platforms (DXPs) rapidly progress, relying
solely on a basic cache, like storing data in a hashmap, may prove

t as the volume of data coursing through your company's
systems expands. The demands of processing such extensive data will
eventually outstrip the modest benefits offered by a simple cache's
data storage mechanism. It becomes apparent that evolving data
equirements necessitate a more advanced caching solution, such as a

Redis cluster.We have gone through the eviction policy & cache
invalidation strategies which is supported by various caching
solutions such as Redis, EhCache and many more using interface

ACKNOWLEDGMENT

We extend our appreciation to all the developers we've partnered
with. Their valuable contributions have played a crucial role in
identifying caching solutions in the market and implementing diverse
caching solutions across various enterprise applications over the

Altınel, Mehmet, Christof Bornhövd, Sailesh Krishnamurthy,
Chandrasekaran Mohan, Hamid Pirahesh, and Berthold Reinwald.
"Cache tables: Paving the way for an adaptive database cache."

Proceedings 2003 VLDB Conference, pp. 718-729. Morgan

Bornhövd, Christof, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and
Berthold Reinwald. "Adaptive Database Caching with

IEEE Data Eng. Bull. 27, no. 2 (2004): 11-18.
Carlson J. Redis in action. Simon and Schuster; 2013 Jun 17.
Li, Songhuan, Hong Jiang, and Mingkang Shi. "Redis-based web

server cluster session maintaining technology." In 2017 13th
International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD), pp. 3065-3069. IEEE,

Liu, Qian, and Haolin Yuan. "A High Performance Memory Key-
Value Database Based on Redis." J. Comput. 14, no. 3 (2019):

https://redis.io/docs/reference/eviction/

November, 2023

