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ARTICLE INFO  ABSTRACT 
 
 

In this paper, the moving grids method based on the method of lines is used to simulate the Saint 
Venant-Exner coupled system where we focus on the water depth evolution. To illustrate the 
efficiency and accuracy property of the present method, we compare the computed solutions with 
a reference one obtained using a very fine mesh. The calculations give good agreement between 
reference solutions and numerical solutions. 
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INTRODUCTION 
 
Water needs require the recovery of surface water, which is why the 
construction of drainage channels, bridges and dams is very 
important. It is so necessary to provide for the evolution of the water 
flow depth and study the interaction between flow, transport 
dynamics and how those relationship influences changes. The 
changes in water flow sometimes affects crop fields, cause flooding, 
erosion and other damages like erosion, structures stability, so, to 
know effects of the water depth evolution process is very important 
[1]. The study of water depth evolution focuses on understanding the 
relationship that exists between the movement of water and the 
movement of sedimentary materials transported. It is therefore 
appropriate to develop an approach capable of follow water depth 
evolution in order to take the necessary steps. In the numerical 
simulation of water flow evolution problems, the mathematical model 
includes a hydrodynamical component coupled with a 
morphodynamical component [2, 4]. The Saint-Venant equations are 
used to predict the hydrodynamic behavior of water flows while the 
Exner equation is used to model sediment transport [3, 5]. Numerical 
simulation Saint Venant- Exner system involves different physical 

 
 
 
mechanisms, hence, having robust numerical schemes for the 
numerical simulation of this type of problem is need to accurately 
resolve both hydrodynamic and morphodynamic problem. However, 
most morphodynamical flows involve important features like moving 
fronts, stiff fronts, shock waves, discontinuities which are significant 
challenge to the accuracy and stability of numerical models. The 
principal aim is to find a stable, reliable, and accurate numerical 
method able to approximate solution of water depth evolution in time 
and space. But, in the zones where spatial activity moves in time such 
as, stiff moving fronts, shocks, we need to have a very fine grid to 
resolve those problems. In such cases, moving grids method can be a 
technique to improve efficiency and accuracy of numerical solutions. 
This work is devoted on numerical simulation water depth evolution 
phenomenon by the moving grid method under the method of lines.  
 
The paper is organized as follow: Section 2 is consecrated to the 
review the Saint Venant-Exner equation system, Section 3 is a recall 
of moving grids method and the numerical schemes for the 
simulation, in Section 4, we present numerical results for three test 
problems to assess both the efficiency and accuracy of the schemes. 
The paper ends with concluding remarks in Section 5. 
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Governing Saint-Venant-Exner system 

Description of Saint-Venant-Exner system: The Saint Venant 
equation is one of the hyperbolic systems of the conservation law that 
is used to solve water flow problems. The water flow is generally 
accompanied by sediment transport phenomenon. To model this 
system, one considers a coupled model constituted by a 
hydrodynamical component and a morphodynamical component [6, 
7]. The hydrodynamic model is described by the Saint-Venant 
equation and the morphodynamic model is described by the Exner 
equation which includes a conservation law related to the evolution of 
the bottom topography due to the fluid action [8, 9]. The governing 
equations are obtained under Saint-Venant system conditions and 
includes equations for the conservation of water mass and momentum 
of the water phase. 
 
Hydrodynamic Component: For an inviscid and incompressible flow, 
Saint-Venant system can be expressed as follow [10]: 
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where 𝜏 is bottom frictional terms. 
 
Morphodynamic Component: The equation that describes sediment 
transport phenomenon is a continuity equation. In the bed load 
transport, mass conservation law called the Exner equation is used to 
follow the bed elevation and the equation is: 
 
𝜕𝐵

𝜕𝑡
+ 𝜉

𝜕𝑄௦

𝜕𝑥
= 0                                (3) 

 
Governing system: For a fixed bed, by neglecting viscous and 
Coriolis effects, The Saint Venant-Exner system in one dimension is: 
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whereℎ is the water depth, 𝑢 is the velocity component, 𝑔 is the 
acceleration due to gravity, 𝐵 represent the thicknessof sediment 

layer, 𝑆 = −
డ

డ௫
 is the bed slope, discharge 𝑄௦ is the 

volumetricbedload sediment transport rate per unit time and width 

𝜌 =
ଵ

ଵିఊ
, where 𝛾is the porosity of the sediment layer, the 

conservative variable ℎ𝑢 is also called water discharge and noted by 
𝑞[10, 11,12]. Many different formulae for predicting and estimating 
bedload transport rate have been developed and one of them is 
proposed by Grass [13]. Expression proposed by Grass considers 
𝑄௦as a function of the flow velocity and a coefficient which depends 
on soil properties. The expression is 𝑄௦ = 𝐴𝑢|𝑢|ିଵ where1 ≤

𝑚 ≤ 4 and 0 ≤ 𝐴 ≤ 1. The parameter 𝐴 is the coefficient to 
control the interaction between the bed and the water flow [14, 15]. 
 
Moving grids methodand numerical schemes 
 
Brief recall of moving grids method: Numerical techniques to solve 
PDEs evolving in time are most often based on a discretization of the 
spatial domain. The resulting mesh is generally fixed in time, but the 
needs of a given application may require the mesh itself to change as 
the system evolves, adapting to the physics problem [16]. The 
adaptive method is more efficient for numerical solution of partial 
differential equations (PDEs) that produces specific structures, such 
as stiff fronts, shock waves, or overflow, that are localized in space 
[17].  

Adapting the mesh can prove computationally efficient in that an 
adaptive mesh generally requires fewer points than a fixed mesh to 
attain the same level of accuracy. The main idea of moving grids 
method is to relocate grid points in a mesh having a fixed number of 
nodes in such a way that the nodes remain concentrated in regions of 
rapid variation of the solution. The fundamental principle of moving 
grids method is the equidistribution principle proposed by de Boor, 
principle which offer an excellent error estimation principle when 
formulating moving grids equations. The grid points are moved so 
that a specified quantity, also called the monitor function isequally 
distributed over the spatialdomain [18]. In the moving grids method, 
the monitor function connecting the mesh with the physical solution, 
is chosen to redistribute more grid points at critical regions where 
more accuracy is needed there by reducing errors introduced by the 
numerical scheme [19, 20, 21]. In this paper, we use arc-length 
monitor function for numerical simulation and for more details on 
moving grids method, see [22]. 
 
Numerical formulation of the moving grid method: We now utilize 
the moving grid technique to determine numerical schemes which 
used for solving Saint Venant-Exner system. Suppose that [𝑎;  𝑏] is 
the physical domain with a physical variable 𝑥 and [0;  1] is the 
computational domain for a computational variable 𝜉. The 
coordinates transform is expressed as follow: 
 

𝑥 =  𝑥(𝜉;  𝑡): [0, 1] ⟶ [𝑎, 𝑏], 𝑡 > 0, 𝑥 ∈ [𝑎; 𝑏], 𝜉 ∈ [0; 1] 
 

 
Thus, the solution ℎ, 𝑢, 𝐵are transformed as: 
 
ℎ(𝑥;  𝑡) = ℎ(𝑥(𝜉, 𝑡), 𝑡) 
𝑢(𝑥;  𝑡) = 𝑢(𝑥(𝜉, 𝑡), 𝑡)   (5) 
𝐵(𝑥;  𝑡) = 𝐵(𝑥(𝜉, 𝑡), 𝑡) 
 
The coordinate 𝑥 is rearranged as follows: 
 
𝑥(𝜉) = 𝑥(𝜉 , 𝑡), 𝑖 = 1, … , 𝑛 + 1. 

𝜉 =
(ିଵ)(ି)


 , 𝑖 = 1, … , 𝑛 + 1. 

 
The uniform mesh on [0, 1] is 𝜉 and 𝑎 = 𝑥ଵ < 𝑥ଶ < ⋯ < 𝑥 <
𝑥ାଵ = 𝑏 is the corresponding mesh on physical domain. Applying 
the chain rule of the method 
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and posing that 𝑞 = ℎ𝑢, 𝑄௦ = 𝑢ଷ, the Saint Venant-Exner system (4) 
can be written as follows: 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝜕ℎ

𝜕𝑡
−

ℎక

𝑥క
𝑥௧ +

𝑞క

𝑥క
= 0, (6)

𝜕𝑞

𝜕𝑡
−

𝑞క

𝑥క
𝑥௧ +

2ℎ𝑞𝑞క − 𝑞ଶℎక

ℎଶ𝑥క

+ 𝑔ℎ ቆ
ℎక

𝑥క
+

𝐵క

𝑥క
ቇ = 0, (7)

𝜕𝐵

𝜕𝑡
−

𝐵క

𝑥క
𝑥௧ +

3𝐴

1 − 𝛾
ቀ

𝑞

ℎ
ቁ

ଶ ℎ𝑞క − 𝑞ℎక

ℎଶ𝑥క

= 0, (8)

  

 

Employed method of lines approach and using central finite 
difference scheme for space variable discretization, the system of 
ODEs obtained is as follows: 
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We apply MATLAB-based Method of Lines (MATMOL) toolbox 
specially MATLAB solver ode15s and for the study case, we give 
summary computational statistics using the following notations: 
 
𝒏: moving grid node number, 
𝒏𝒓: grid fixe node number, 
𝑺𝑻𝑬𝑷𝑺: number of successful steps, 
𝑭𝑨𝑰𝑳: number of failed attempts, 
𝑭𝑵𝑺: number of function evaluations, 
𝑷𝑫𝑹: number of partial derivatives, 
𝑳𝑼: number of LU decompositions, 
𝑳𝑰𝑵: number of solutions of linear system, 
𝑪𝑷𝑼: CPU-time. 
 

NUMERICAL RESULTS 
 
In this section we present numerical results obtained for two 
examples. The exact solution is unknown, so we compare the 
computed solutions with a reference one obtained by using a very fine 
meshfor both ℎ, 𝑞 and 𝐵. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Example 1: We considera strong interaction between sediment layer 
and water flow in one-dimensional channel with flat bed along the 
interval [−10, 10] under the following initialconditions [7, 10, 24]: 
 
ℎ(𝑥, 0) = 2 − 0.1𝑒ି௫మ

 
 

𝑞(𝑥, 0) = 0 
 

𝐵(𝑥, 0) = 0.1 + 0.1𝑒ି௫మ
 

The boundary conditions are: 𝑞(𝑎, 𝑡) = 0; ℎ(𝑏, 𝑡) = 0 
 

The constants values are: 
 
𝛾 = 0.4; 𝐴 = 0.3;  𝑔 = 9.812;  𝑎 = −10;  𝑏 = 10. 
 
Like the exact solution is unknown, we compare the numerical 
solutions with 𝑛 = 300 to the reference one obtained by using a very 
fine mesh 𝑛𝑟 = 2150 cells. 
 
The following figures shows water depth evolution at 𝑡 =
0.3;  1 𝑎𝑛𝑑 1.5 
 
In Figure 1, it can be seen that, the numericalresults are in good 
agreement with corresponding reference solution and Table 1 show 
also that the results are satisfactory with this example.  
 
Example 2 
 
The example is a case of a transcritical flow with a shock over 
a parabolic bump [25, 26]. The initial conditions are given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ℎ(𝑥, 0) = ൝
    0.13 + 0.05(𝑥 − 10)ଶ, 𝑖𝑓 8 < 𝑥 < 12

0.33                                 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

  

 
𝑞(𝑥, 0) = 0.18 
 

𝐵(𝑥, 0) = ൝
3 − 0.05(𝑥 − 10)ଶ, 𝑖𝑓 8 < 𝑥 < 12

2.8                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 

 
Figure 1. Comparison of solutions obtained with a moving grid for 𝒏 = 𝟑𝟎𝟎 nodes and those of a uniform fixed grid for𝒏𝒓 = 𝟐𝟏𝟓𝟎 nodes 

 
Table 1. Saint Venant-Exner couple system with strong interaction: numerical statistics, moving grid with 𝒏 = 𝟑𝟎𝟎 nodes, uniform fixed 

grid with 𝒏𝒓 = 𝟐𝟏𝟓𝟎 nodes, respectively. 
 

 𝑆𝑢𝑐. 𝑆𝑡 𝐹𝑎𝑖𝑙. 𝑎𝑡 𝐹𝑢𝑛. 𝑒𝑣 𝑃𝑎𝑟𝑡. 𝑑𝑒𝑟 𝐿𝑈. 𝑑𝑒𝑐 𝑆𝑜𝑙. 𝑙𝑖𝑛 𝐶𝑃𝑈. 𝑡 
𝑛 = 300 115 5 188 1 20 1168 13.3260 

𝑛𝑟 = 2150 105 6 146 1 12 124 95.5842 
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The boundary conditions are given by: 
 
𝑞(𝑎, 𝑡) = 0.18;  ℎ(𝑏, 𝑡) = 0.33 
 
The constants values are: 
 
𝛾 = 0.4; 𝐴 = 0.1;  𝑔 = 9.812;  𝑎 = 0;  𝑏 = 25. 
 
We compute the numerical solution using 𝑛 = 400 points in the 
interval [0, 25] and compare the results with the reference solution 
computed on a fine grid with 𝑛𝑟 = 2000 points for small time. The 
water depth evolution at different times𝑡 = 0;  0.4 𝑎𝑛𝑑 0.8 are shown 
in Figure 2. In figure 2, we remark that when the mesh is very refined 
the numerical solutions converge to the reference solution. Table 2 
shows that the method gives satisfactory results. 
 

CONCLUSION 
 
In this paper, we have discussed on moving grids technique for 
numerical approximation solution of the coupled system Saint 
Venant-Exner equations that govern water flow depth and interactions 
with the other components of this system. We simulated numerically 
the coupled system Saint Venant-Exner with moving grids method by 
using two test problems. Since the exact solution is unknown, the 
computed solutions are compared with a reference one obtained using 
a very fine mesh. From the test problems, satisfactorynumerical 
accuracy and efficiency properties are observed. The results of the 
proposed scheme based on moving grid techniques in this paper 
shown that, numerical solutions obtained are in a good agreement 
with the reference solutions. 
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