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ARTICLE INFO                                       ABSTRACT 
 
 

The known integrable models possess Schwarzian forms with M¨obious transformation 
invariance, it may be one of the best ways to find new inte grable models starting from some 
suitable Schwarzian forms. In this paper, with introducing the high dimensional Schwarzian 
derivatives, the general (n + 1)-dimensional systems are obtained from the usual (1+1)-
dimensional Schwartzian Boussinesq equation. A singularity structure analysis of the extension 
system is carried out and it is shown that arbitrary dimensional systems admit the Painlev´e 
property. The single soliton and the traveling wave solutions of the model are studied. 
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INTRODUCTION 
 

 
 

Modern soliton theory is widely applied in almost all the physics fields, such as field theory, condensed matter physics, plasma 
physics, optics, particle and nuclear physics, etc (Shukla et al., 2007 and Kamchatnov, 2008). However, most of the present 
studies of the soliton theory and soliton applications are restricted in (1+1) and (2+1)-dimensions due to lacking of known higher 
dimensional integrable systems. It is significant for nonlinear physics to find the high dimensional integrable systems. According 
to the fact that almost all the known integrable models can be transformed to the Schwarzian forms, some quite general conformal 
invariant equations in arbitrary dimension are found to be integrable under the meaning that they possess the Painlev´e property 
[3, 4, 5, 6, 7, 8, 9]. In this letter, the (n+1)-dimensional Painlev´e integrable Boussinesq systems are constructed with selecting the 
high dimensional Schwarzian derivatives. The single soliton and traveling wave solutions of the systems are obtained. 
 
 (n+1)-dimensional Boussinesq extension 
 

The Schwartzian Boussinesq equation form is (Weiss et al., 1983). 
 

 
 
where ϕ satisfy an equation formulated in terms of Schwartzian derivative 
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In order to get the high dimensional systems, the high Schwartzian derivative is introduced (Toda and Yu, 2000) 
 

 
 

which is invariant in the M¨obious transformation. To extend the Schwartzian Boussinesq equation (1) in high dimension, we may 
take many forms. Here, we take an (n + 1)-dimensional Boussinesq extension as 
 

 
 

where ai, bi and ci (i = 1, 2, · · · , n) are constants. (Lou, 1998) turns into the usual Boussinesq Schwartzian form with ai = bi = ci = 
0 (i = 2, 3, · · · , n). Meanwhile, (Lou, 1998) is invariant under the M¨obious transformation 
 

 
 

In order to make use of the Weiss-Tabor-Carnevale (WTC) approach (Weiss, 1983), we make the following transformations 
 

 
 

Substituting expressions (5) into (4), we get the following system 
 

 
 
where (6b) is the compatibility condition of transformations (5). We use the standard WTC approach to check the Painlev´e 
property of (6). The function ui expands 
 

 
where uij are analysis functions of (t, xi) and α is integer to be determined. According to the leading order analysis, we obtain 
 

 
 
Substituting (7) and (8) into (6), we have 
 

 
 
where f is a complicated function of (uik, i = 0, 1, · · · , n, k ≤ j  1) and the derivatives of the singularity manifold ϕ 1. The 
resonance points are located at 
 

 
The resonance at j = 1 corresponds to the arbitrary singularity manifold ϕ 1. At n + 1 resonances j = 1 and one resonance j = 2, 
there are corresponding n + 2 compatibility conditions 
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Fortunately, it is straightforward to see that the conditions (11) are satisfied identically using the results of (8). Therefore, the (n + 
1)-dimensional Schwartzian Boussinesq system is integrable in the sense of the Painlev´e analysis. 
 
Furthermore, one can prove the new generalized (n + 1)-dimensional Schwarzian Boussinesq type model 
 

 
 

 
 
with two and three dimensional Schwarzian derivatives (Zhang et al., 2002) 
 

 
 

is Painlev´e integrable. 
 
Exact solution for (n+1)-dimensional Boussinesq extension The investigation of the exact solutions of nonlinear evolution 
equations plays an important role in the study of nonlinear wave phenomena (Fan, 2002). Here, we shall study the single soliton 
and the traveling wave solutions of the (n+1)-dimensional Boussinesq extension system (4). 
 
It is straightforward to see that the model (4) possesses a simple single soliton 
 

 
 
with a is constant and c1 = 0. The traveling wave solution writes as 
 

 
where k and c are arbitrary constants to be determined. We can easily find that the equation (4) is fully satisfied with c1 = 0, ∑n

i =1 
ci = 0. Due to the solution (14) including an arbitrary function, we can obtain different forms of solution with selection arbitrary 
function ϕ. We shall select the arbitrary function to be Jacobian elliptic and hyperbolic functions as the explicit example. The 
motivation behind this choice stems from the fact that the limiting forms of these functions happen to be localized functions 
[15]. Here, we take (2+1)-dimensional extension system as example and choose the arbitrary function 
 

 
 
where m is the modulus of the Jacobi elliptic function. In the left panel of Fig.1, we show the solution (15) with the parameters k = 
c = 1 and m = 0.2. The solution ϕ is selected 
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The corresponding solution (16) is plotted with the parameters k = c = 1 in the right panel of Fig.1. Solution (16) describes a kind 
of periodic-kink interaction solitary wave which has been studied (Ren, 2009 and Lou et al., 2005). 
 

 

 
 

Figure 1. Evolution of the solution ϕ (15) and (16) at t = 0, respectively 
 

Conclusion 
 
In summary, we have extended the (1+1)-dimensional Schwartzian Boussinesq equation to the arbitrary dimensional system with 
selecting the high dimensional Schwarzian derivatives. We have shown that the new system satisfies the Painlev´e property and 
invariant under the M¨obius transformation using the standard WTC method. The single soliton and the traveling wave solutions 
are obtained for the (n + 1)-dimensional system (6). The properties of the exact solutions are shown by some figures. In the 
meanwhile, the integrable properties for the arbitrary dimensional (12) are worthy to study further. 
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