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INTRODUCTION 
 

 
N   Levine [8] introduced the class of semi continuous functions using semi open sets. Balachandran et al in[2]introduced the 
concept of generalized continuous maps in a topological space.  Many authors introduced several generalized closed sets and 
generalized continuous maps.  The Authors [11] have already introduced (r*g*)* closed sets and investigated some of their 
properties.  In this paper we introduce a new class of maps called (r*g*)* continuous maps.  Also (r*g*)* irresolute map is 
introduced. 
 

Priliminaries  
 

Definition: 2.1  A subset A of a space X is called 
 

1. A generalized closed (g closed) [7] set if cl(A)  U whenever A  U and U is  open. 

2. A  Regular generalized closed (rg-closed) [15 ] set if  cl(A)  U whenever A  U and U is regular open. 

3. A generalized pre regular closed (gpr closed)[6]  if  pcl(A)  U whenever A  U and U is  regular open. 

4. A g* closed [18] if cl(A)  U whenever A  U and U  is  g-open. 

5. A regular weakly generalized semi closed (rwg closed) [12]  if  cl (int(A))  U whenever A  U and U is  regular open. 

6. A  g**closed[14]  if  cl(A)  U whenever A  U and U is  g*-open. 
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7. A g# closed [17] if  cl(A)  U whenever A  U and U is   g open. 

8. A  generalized semi-preclosed star closed ((gsp)* closed)[13]  if  cl(A)  U whenever A  U and U is  gsp open. 

9. A  gp* closed [7] if  cl(A)  U whenever A  U and U is  gp-open. 

10. A regular^ generalized closed (r^g closed)[16]  if gcl(A)  U whenever A  U and U is  regular open. 

11. A regular generalized b-closed (rgb closed)  [9] if  bcl(A)  U whenever A  U and U is  regular open. 

12. A ( r*g*)*closed set [11]  if  cl(A)  U whenever A  U and U is r*g*- open. 

 

Definition 2.2: A function  f : (X τ)  ),( Y  is said to be 

 
(i) rg- continuous  [15  ] if  f-1(V) is rg closed   in (  X,τ)  for every closed set V of (Y,σ). 
(ii) gpr- continuous  [ 6 ] if  f-1(V) is gpr closed in (  X,τ)  for every  closed set V of (Y,σ). 
(iii) rwg continuous  [ 12 ] if  f-1(V) is  rwg closed  in (  X,τ)  for every  closed set V of (Y,σ). 
(iv) r^g continuous  [ 16 ] if  f-1(V)  is    r^g  closed in (  X,τ)  for every  closed set V of (Y,σ). 
(v) rgb  continuous  [9  ] if  f-1(V)  is rgb closed  in (  X,τ)  for every  closed set  V of (Y,σ). 
(vi) g* continuous  [ 18 ] if  f-1(V)  is g* closed in (  X,τ)  for every  closed set  V of (Y,σ). 
(vii) g**continuous  [ 14 ] if  f-1(V) is  g** closed in (  X,τ)  for every  closed set  V of (Y,σ). 
(viii) g# continuous  [ 17 ] if  f-1(V) is  g# closed in (  X,τ)  for every  closed set  V of (Y,σ). 
(ix) (gsp)* continuous [13] if  f-1(V) is (gsp)* closed in (  X,τ)  for every  closed set V of (Y,σ). 
(x) (gp)*- continuous  [7 ]if  f-1(V)  is  (gp)* closed in (  X,τ)  for every  closed set V of (Y,σ). 
 
3.    (r*g*)* -CONTINUOUS  AND   IRRESOLUTE   MAPS 
 

Definition 3.1: A map f : (X,	�)	→ (Y,	�) is called (r*g*)*-continuous if the inverse image of every closed set in (Y,	�) is (r*g*)*-
closed in (X,	�). 
 

Theorem 3.2:  
 
Every continuous map is (r*g*)*-continuous. 
 
Proof: Let f : (X,	�)	→ (Y,	�) be a continuous map . Let F be a closed set in (Y,	�). Then  ���(�)	is closed in (X,	�).Since every 
closed set is (r*g*)*-closed ⇒ 	���(�) is (r*g*)*-closed set.Therefore  f  is (r*g*)*-continuous. 
 
The converse need not be true as seen from the following example. 
 

Example 3.3 
 

Let      X  ={a,b,c}				�  = { �,X, {c},{b,c}}   Closed set of  X  = { �,X,{a,b},{a}}  
(r*g*)* closed sets are        { �,X, {a},{a,b},{a,c}} 
Let      Y ={a,b,c} , 				� = { �,Y, {b}}   Closed set of  Y = { �,Y,{a,c}} 
 
Let f be the identity mapping .{a,c} is closed in (Y,	�).Now f-1{a,c}={a,c} is not closed in (X,	�) Hence f is not continuous. But 
{a,c} is (r*g*)*closed set. Therefore f is (r*g*)* continuous. 
 
Theorem:3.4 
 
Every (r*g*)*-continuous map is rg-continuous. 
 
Proof :   Let f : (X,	�)	→ (Y,	�) be a (r*g*)*-continuous map .  Let V be a closed set in (Y,	�).  
 

Since f is (r*g*)*-continuous, 	��� (V) is (r*g*)*-closed in (X,	�). By proposition 3.7[11]  
 

	��� (V) is rg-closed in (X,	�).Therefore,   f is  rg-continuous. 
 

The converse need not be true  as seen from the following example. 
 

Example:3.5 
 

 Let  X  ={a,b,c}				�  = { �,X,{a},{b} {a,b}}   Closed set of  X  = { �,X,{b,c},{a,c},{c}}  
(r*g*)* closed sets are  { �,X, {c},{,b,c},{a,c}} 
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Let      Y ={a,b,c} , 				� = { �,Y, {c}},   Closed set of  Y = { �,Y,{a,b}} 
 

Let f  be defined as   f(a)=b , f(b)=a ,     f(c)=c. Now {a,b} is closed in Y. 
 

Now f-1{a,b}={a,b} is  rg closed in (X,	�) Hence f is rg continuous. But{a,b}is not (r*g*)*closed set. Therefore f is   not  (r*g*)* 
continuous. 
 
Theorem 3.6 
 
Every (r*g*)*-continuous map is gpr-continuous. 
 
Proof : Follows from proposition 3.9 [11]. 
 

The converse need not be true  as seen from the following example. 
 

 Example:3.7 
 

Let      X  ={a,b,c}				�  = { �,X, {a,b}}   Closed set of  X  = { �,X,{b,c}}   
 

(r*g*)* closed sets are  { �,X, {c},{,b,c},{a,c}}       
 

Let      Y ={a,b,c} , 				� = { �,Y, {b,c}}   Closed set of  Y = { �,Y,{a}} 
 

f : (X,	�)	→ (Y,	�) be the  map  and Let  f(a)=a , f(b)=c ,  f(c)=b. 
 

Now {a} is closed in Y. But f-1{a}={a} is  gpr closed but  not (r*g*)* closed in (X,τ).Hence f is  gpr continuous  but  not  (r*g*)* 
continuous. 
 
Theorem 3.8 
 

Every (r*g*)*-continuous map is rwg-continuous 
 

Proof:  Follows from proposition  3.11 [11]. 
 

The converse need not be true  as seen from the following example. 
 
Example: 3.9    
 
Let X =Y={a,b,c} , � = { �,X, {a,b}}, (r*g*)* closed sets are  { �,X, {c},{,b,c},{a,c}} , �	={	� , Y,{,a,c}}. Closed set of  Y = 
{�,Y,{b}}  f : (X,	�)	→ (Y,	�) is defined by f(a) =b ,f(b) =c , f(c) =a. Then f-1{b}={a}  is not (r*g*)*-closed in (X,	�). But {a} is   
rwg-closed .Hence f is rwg continuous but not (r*g*)* continuous.  
 
Theorem 3.10 
 
Every (r*g*)*-continuous map is r^g-continuous 
 

Proof :  Follows from proposition 3.21 [11]. 
 

The converse need not be true  as seen from the following example. 
 

Example:3.11  
 

Let X =Y={a,b,c}, � = {�,X,{a},{b}, {a,b}}, (r*g*)* closed sets  of  X are  φ,X,{c},{b,c},{a,c}.  �	={�, Y,{c}}. σ closed sets are 
	� , Y,{a,b}. 
 
f : (X,	�)	→ (Y,	�) is defined by f(a) =b ,f(b) =a , f(c) =c . Now and {a, b} is closed in Y. Here  
 
f-1{a,b}={a,b}  is  r^g closed  But  not (r*g*)*-closed in (X,	�). Hence f is not (r*g*)* continuous 
 
Theorem 3.12 
 

Every (r*g*)*-continuous map is rgb-continuous 
 

Proof : Follows from proposition 3.23  [11]. 
 

The converse need not be true  as seen from the following example. 

7404                                         International Journal of Development Research, Vol. 06, Issue, 04, 7402-7408, April, 2016 

 



Example: 3.13 
 
Let X =Y={a,b,c}  , � = { �,X,{a},{b}, {a,b}}, (r*g*)* closed sets are   φ,X,{c},{b,c},{a,c}  �	={	� , Y,{a,c}}.     σ closed sets 
are 	� , Y,{b}.  Let  f : (X,	�)	→ (Y,	�) is defined by f(a) =c ,f(b) =b , f(c) =a . Now is,{b} is closed in Y. Here f-1{b}={b}  is  rgb 
closed  But  not (r*g*)*-closed in (X,	�).Hence f is not (r*g*)* continuous. 
 
Theorem 3.14: 
 
Every g*-continuous map is (r*g*)*-continuous 
 
Proof : Follows from proposition 3.5  [11]. 
 

The converse need not be true  as seen from the following example. 
 

Example:3.15  Let X =Y={a,b,c}, �={�,X,{a}},(r*g*)* closed sets are { �,X,{b},{c} ,{a,b},{b,c},{a,c}}.g*closed sets are  
�,X,{b,c}.  �	={	� , Y,{b}}.  σ closed sets are 	� , Y,{a,c}.  Let  f : (X,	�)	→ (Y,	�) is defined by f(a) =c ,f(b) =b , f(c) =a.               
Now f-1{a,c}={a,c}Which is (r*g*)* closed but not g* closed. Hence f is (r*g*)*continuous but not g*c.ntinuous. 
 

Theorem :3.16 
 

Every g**-continuous map is (r*g*)*-continuous. 
 

Proof : Follows from proposition 3.13  [11]. 
 

The converse need not be true  as seen from the following example. 
 

Example:3.17    
 

Let X =Y={a,b,c}, � = { �,X,{a},{a,c}},  (r*g*)* closed sets = {�,X,{b} {a,b},{b,c}}, (r*g*)*closed sets  {�,X,{a},{b}, 
{a,b},{b,c},{a,c}}.  �	={	� , Y,{b}}.  σ closed sets are 	� , Y,{a,c},  f : (X,	�)	→ (Y,	�) is defined by f(a) =c,f(b) =b , f(c) =a.  
Now and {a,c} is closed in Y. Here  f-1{a,c}={a,c}  is  (r*g*)* closed  But  not g**-closed in (X,	�).Hence f is  (r*g*)*-continuous 
but  not  g** continuous. 
 
Theorem 3.18 
 
Every g#-continuous map is (r*g*)* continuous. 
 
Proof : Follows from proposition 3.15 [11]. 
 
The converse need not be true  as seen from the following example. 
 
Example 3.19 
 
Let X =Y={a,b,c}, � = {�,X,{a}},(r*g*)* closed sets are {�,X,{b},{c} ,{a,b},{b,c},{a,c}}  - closed sets 

{ �,X,{b,c} ,{c},{b}} g- closed sets { �,X,{b} ,{c},{ab},{bc},{ac}},  g- open sets { �,X,{a,c},{a,b} ,{c},{a},{b}}, �	={	� , 
Y,{a},{b},{a,b}}, σ closed sets are 	� , Y,{b,c},{a,c},{c} g : (X,	�)	→ (Y,	�) is defined by g(a)=b, g(b)=c,g(c)=a. 
 

g-1{b,c}={a,b}  is  (r*g*)* closed. g-1{a,c}={c,b}  is  (r*g*)* closed. g-1{c}={b}  is ( r*g*)* closed  g is (r*g*)* continuous.        

Now g-1{b,c}={a,b}, Which is not g# closed. Hence g is not g# continuous.  
 
Theorem: 3.20 
 
Every (gsp)*-continuous map is (r*g*)*-continuous. 
 
Proof : Follows from proposition 3.17 [11]. 
 
The converse need not be true  as seen from the following example. 
 
Example: 3.21 
 
Let X={a,b,c} � = { �,X,{a}},(r*g*)* closed sets are { �,X,{b},{c} ,{a,b},{b,c},{a,c}}.gsp open sets are    
{ �,X,{a},{b}{c} ,{a,b},{a,c}} 
Let Y={a,b,c}  σ={	�,Y,{b}}  σ closed sets are 	� , Y,{a,c} 
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Let f : (X,	�)	→ (Y,		�) be defined by f(a)=b,f(c)=a f(a)=c.Now {a,c} is closed in Y. But  
f-1{a,c}={a,c}is  (r*g*)*closed but not (gsp)*closed .Hence f is (r*g*)*continuous but not (gsp)*continuous 
 
Theorem 3.22 
 
Every (gp)*-continuous map is (r*g*)*-continuous. 
 
Proof : Follows proposition from  3.19 [11]. 
 
The converse need not be true as seen from the following example. 
 
Example 3.23:   
 
Let X={a,b,c} � = { �,X,{c}{b,c}}, 
Let Y={a,b,c}  σ={	�,Y,{c}}  σ closed sets are 	� , Y,{a,b} 
Let f : (X,	�)	→ (Y,		�) be defined by f(a)=a ,f(b)=c  f(c)=b. Now {a,b} is closed in Y.But 
f-1{a,b}={a,c}is  (r*g*)*closed but not (gp)*closed .Hence f is (r*g*)*continuous but not (gp)*continuous. 
Thus we have the following Diagram. 
 

 
 

where   A  B represents A implies B and B need not imply A.   

 
Note  : (r*g*)*continuous is independent of pre continuous ,semi continuous , semipre continuous, wg continuous, α continuous, 
sg continuous, and gs continuous [11]. 
 
Proposition: 3.24 
 
Composition of two (r*g*)* continuous functions need not be (r*g*)*continuous. The following example supports the above 
proposition. 
 

Example 3.25: Let X={a,b,c}� ={�,X,{a},{b},{a,b}}, (r*g*)* closed sets are {�,X,{c}, {b,c},{a,c}}Y={a,b,c}, σ ={�, Y, {a}}, 
(r*g*)* closed sets are { �,Y,{b},{c} ,{a,b},{b,c},{a,c}}. Z={a,b,c}  η={φ,Z,{a,c}} 
 
Let  f : (X,	�)	→ (Y,	�) is defined by f(a) =b ,f(b) =a , f(c) =c.  Define  g : (Y,	�)	→ (Z,�	) by g(a)=c   g(b)=b   g(c)=a.                    
Here f-1{b,c}={a,c} which is (r*g*)* closed and  g-1{b}={b} which is (r*g*)*  closed and hence  they are( r*g*)* continuous.  
But (gοf)-1{b}=f-1{g-1{b}}=f-1{b}={a}  which is not (r*g*)* closed. 
 
Hence    (gοf)  is not  (r*g*)*continuous. 
 

Definition 3.26 
 

A map f : (X,	�)	→ (Y,	�) is said to be a  (r*g*)*-irresolute map  if ���(�)	 is a (r*g*)*-closed set in (X,	�) for every (r*g*)*-
closed set V of (Y,	�) . 
 

Example  3.27 
 
Let X={a,b,c}	, � = { �,X, {a}}  Closed set  = { �,X, {b,c}} 
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(r*g*)* closed set are {	�,X,{b},{a,b} {c},{b,c},{a,c} } 
σ = { �,Y, {a},{b},{a,b}} Closed set of Y  = { �,Y, {b,c},{a,c},{c}} 
(r*g*)* closed set of Y are {	�,Y, {c},{b,c},{a,c} } 
 
Here  Let f : (X,	�)	→ (Y,	�)  be defined by  f(c)=c, f(b)=a, f(a)=b f-1({c})={c} ,  f-1({b,c})={a,c} , f-1{a,c})={b,c} which  are 
(r*g*)* closed in(X,τ). Hence f is an irresolute map. 
        
Theorem 3.28 
 
Every (r*g*)* irresolute map is (r*g*)*-continuous. 
 
Proof:   Let f : (X,	�)	→ (Y,	�) be a (r*g*)*-irresolute map. 
 
Let F be a closed set in (Y,	�).But every closed set is (r*g*)* closed. 
Since f is irresolute map, 			⇒ ���(F) is (r*g*)*-closed set in (X,	�) 
 

		⇒  f is (r*g*)*-continuous 
 

Therefore , Every (r*g*)*-irresolute map is (r*g*)*-continuous map. The converse  need not be true  as seen from the following 
example. 
 
Example 3.29 
 

Let       X=Y={a,b,c},			� = { �,X, {a},{a,c}},   Closed set  = { �,X, {b,c},{b}} (r*g*)* closed set are  of X are{	�,X, 
{a}{b}{a,b},{b,c},{a,c} }σ = { �,Y, {a}}    Closed set  = { �,Y, {b,c}} (r*g*)* closed sets of Y are {	�,Y,{b},{a,b} 
{c},{b,c},{a,c} } Define a mapping   f:  (X,	�)	→ (Y,	�)  by    f(a)=a , f (b)=c, f  (c)  =b .Here f-1{b,c}={c,b} is (r*g*)*closed. 
Therefore f is (r*g*)*continuous. But f-1(b)={c}is not (r*g*)*closed in (X,τ).Therefore f is not (r*g*)*irresolute.    
 
Remark 3.30 
 
Every (r*g*)*-irresolute map is  rg-continuous, gpr-continuous,  rwg-continuous , rgb-continuous , r^g-continuous.  
 
Theorem 3.31 
 
Let  f : (X,	�)	→ (Y,	�) and g : (Y,	�)	→ (Z,	�) be two function. Then   
 

i. gοf  is (r*g*)*-continuous if g is continuous and f is (r*g*)*-continuous. 
ii. gοf is (r*g*)*-irresolute if both f and g are (r*g*)*-irresolute. 

iii. gοf  is (r*g*)*-continuous if g is (r*g*)*-continuous and f is  (r*g*)*-irresolute. 
 

Proof:     
 

i. Let  f : (X,	�)	→ (Y,	�) be (r*g*)*-continuous and g : (Y,	�)	→(Z,	�)  be continuous. Let  F be a closed set in (Z,	�).  Since g 

is continuous, 	���(F) is closed in (Y,	�). Since f is continuous, 	���(	���(F)) is (r*g*)*-closed in (X,	�)  Which  ⇒

(gοf)��(F) is (r*g*)*-closed.  Therefore gοf	 is (r*g*)*-continuous.  

ii. Let  f : (X,	�)	→ (Y,	�) be (r*g*)*-irresolute map and let  g :   (Y,	�)	→ (Z,	�) be  a (r*g*)*-irresolute map .  
Let F be a (r*g*)*-closed set in (Z,	�),   Since g is (r*g*)*-irresolute map, 	���(F) is (r*g*)*- closed in (Y,	�) ,   Since f is 

(r*g*)*-irresolute map , 	���(	���(F)) is (r*g*)*-closed  in   (X,	�)  Which      (gοf)��(F) is (r*g*)*-closed (X,	�).       

gοf	 is (r*g*)*-irresolute map. 

iii. Let  f : (X,	�)	→ (Y,	�) be (r*g*)*-irresolute  and g : (Y,	�)	→(Z,	�)  be (r*g*)*-continuous.  
Let F  be a closed set in (Z,	�).  Since g is (r*g*)*-continuous, 	���(F) is (r*g*)*-closed in (Y,	�).   Since f is (r*g*)*-

irresolute, 	���(	���(F)) is (r*g*)*-closed in (X,	�). 

⇒ (gοf)��(F) is (r*g*)*-closed.Which  ⇒ (gοf	) is (r*g*)*-continuous 
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