

Full Length Research Article

PERCEPTRON MODEL AND ITS APPLICATION IN INTELLIGENT SYSTEMS

*Arnab Acharyya, Suranjan Dhar and Sayani Bose

Computer Science and Technology, Technique Polytechnic Institute, Panchrokhi, Sugandhya,
Hooghly, Pin-712102, West Bengal, India

ARTICLE INFO ABSTRACT

This paper is basically a review paper on Perceptron Model in Machine Learning and Intelligent
Systems. This paper expands on the formative years of neural networks, going back to the
pioneering work of McCulloch and Pitts in 1943. It also focuses on the perceptron convergence
theorem. This theorem proves convergence of the perceptron as a linearly separable pattern
classifier in finite number time-steps. We have also covered the basic area of machine learning,
different learning techniques and application of perceptron in different problem solving.

Copyright © 2016, Arnab Acharyya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

To solve a problem on a computer, we need an algorithm. An
algorithm is a sequence of instructions that should be carried
out to transform the input to output. For example, one can
design an algorithm for sorting. The input is a set of
unorganized numbers and the output is their ordered list. For
the same task, there may be various algorithms and we may be
interested in finding the most efficient one, requiring the least
number of instructions or memory or both. For some tasks,
however, we do not have an algorithm for example, to tell
spam emails from legitimate emails. We know what the input
is: an email document that in the simplest case is a file of
characters. We know what the output should be: a yes/no
output indicating whether the message is spam or not. We do
not know how to transform the input to the output. What can
be considered spam changes in time and from individual to
individual. What we lack in knowledge, we make up for in
data. We can easily compile thousands of example messages
some of which we know to be spam and what we want is to
“learn” what constitutes spam from them. In other words, we
would like the computer (machine) to extract automatically the
algorithm for this task. There is no need to learn to sort
numbers, we already have algorithms for that; but there are
many applications for which we do not have an algorithm but

*Corresponding author: Arnab Acharyya,
Computer Science and Technology, Technique Polytechnic Institute,
Panchrokhi, Sugandhya, Hooghly, Pin-712102, West Bengal, India.

do have example data. With advances in computer technology,
we currently have the ability to store and process large
amounts of data, as well as to access it from physically distant
locations over a computer network. Most of the application in
now days are database oriented. These applications take the
data input from a structured data set and process it and store
the data in the same structured database. But machine learning
is not just a database problem; it is a part of artificial
intelligence. To be intelligent, a system that is in a changing
environment should have the ability to learn. If the system can
learn and adapt to such changes, the system designer need not
foresee and provide solutions for all possible situations.
Machine learning helps us to find solutions in many problems
like vision, speech recognition, and robotics. In this paper we
are trying to explore the area of application of a perceptron in
the field of machine learning and intelligent systems.
Therefore we have to start with the basic ANN model to gather
the prerequisite knowledge about a perceptron and how it
works.

Basics of artificial neural network

A neural network is basically a model structure and an
algorithm for fitting the model to some given data. The
network approach uses a generic nonlinearity and allows all
the parameters to be adjusted. In this way it can deal with a
wide range of nonlinearities. Learning is the procedure of
training a neural network to represent the dynamics of the
problem, for instance in accordance with Fig. 1.

ISSN: 2230-9926

International Journal of Development Research
Vol. 6, Issue, 04, pp. 7417-7420, April, 2016

International Journal of

DEVELOPMENT RESEARCH

Article History:

Received 27th January, 2016
Received in revised form
16th February, 2016
Accepted 19th March, 2016
Published online 27th April, 2016

Available online at http://www.journalijdr.com

Key Words:

Perceptron, Machine learning,
Neural network, Pattern,
Cluster, Intelligent system.

Fig. 1. A Block Diagram of ANN with learning capability

The inputs enter in to the neuron of the neural network and it
generates an output. Between the generated output of the
system and the target outputs, the error e, is used as the
training signal. Neural networks have a potential for intelligent
control systems because they can learn and adapt, they can
approximate nonlinear functions, they are suited for parallel
and distributed processing, and they naturally model
multivariable systems.

Learning process of an intelligent system

Machine learning is programming computers to optimize a
performance criterion using example data or past experience.
We have a model defined up to some parameters, and learning
is the execution of a computer program to optimize the
parameters of the model using the training data or past
experience. The model may be predictive to make predictions
in the future, or descriptive to gain knowledge from data, or
both. Learning process can be classified the following three
categories. They are – Supervised Learning, Unsupervised
Learning and Reinforcement Learning.

A. Supervised Learning

In supervised learning process the set of data (training data)
consists of a set of input data and correct responses
corresponding to every piece of data. Based on this training
data, the algorithm has to generalize such that it is able to
correctly (or with a low margin of error) respond to all
possible inputs. The algorithm should produce sensible outputs
for inputs that weren't encountered during training. This type
of learning can be applied to solve the following two types of
problems.

1) Regression Problem: Given some data, we assume
that those values come from some sort of function and try to
find out what the function is. We try to fit a mathematical
function that describes a curve, such that the curve passes as
close as possible to all the data points. So, regression is
essentially a problem of function approximation or
interpolation.

2) Classification Problem: Consists of taking input
vectors and deciding which of the N classes they belong to,
based on training from exemplars of each class. It is discrete
(most of the time) in nature. That is an example belongs to
precisely one class, and the set of classes covers the whole
possible output space. To solve this problem we find 'decision

boundaries' that can be used to separate out the different
classes. Given the features that are used as inputs to the
classifier, we need to identify some values of those features
that will enable us to decide which class the current input
belongs to.

B. Unsupervised Learning

The aim of unsupervised learning is to find clusters of similar
inputs in the data without being explicitly told that some data
points belong to one class and the other in other classes. The
algorithm has to discover this similarity by itself.

C. Reinforcement Learning

Basically it lies in the middle of supervised and unsupervised
learning. The algorithm is provided information about whether
or not the answer is correct but not how to improve it. The
reinforcement learner has to try out different strategies and see
which works best. The algorithm searches over the state space
of possible inputs and outputs in order to maximize a reward.

Perceptron Model

The perceptron is the basic processing element. It has inputs
that may come from the environment or may be the outputs of

other perceptrons. Associated with each input, jx R , j = 1, .

. . , d, is a connection weight, or synaptic weight jw R , and

the output, y, in the simplest case is a weighted sum of the
inputs.

0
1

d

j j
j

y x w w


 

... (1)

w0 is the intercept value to make the model more general; it is
generally modeled as the weight coming from an extra bias
unit, x0, which is always +1. We can write the output of the
perceptron as a dot product

Ty w x

... (2)

Where, w=[w0,w1, . . . , wd]

T and x=[1, x1, . . . , xd]
T are

augmented vectors to include also the bias weight and input.
During testing, with given weights, w, for input x, we compute
the output y. To implement a given task, we need to learn the
weights w, the parameters of the system, such that correct
outputs are generated given the inputs.

When d = 1 and x is fed from the environment through an

input unit, we have 0y wx w  which is the equation of a

line with w as the slope and w0 as the intercept. Thus this
perceptron with one input and one output can be used to
implement a linear fit. With more than one input, the line
becomes a (hyper) plane, and the perceptron with more than
one input can be used to implement multivariate linear fit.
Given a sample, the parameters wj can be found by regression.

7418 Arnab Acharyya et al. Perceptron model and its application in intelligent systems

Fig. 2. Diagram of a perceptron model

The perceptron as defined in equation (1) defines a hyperplane
and as such can be used to divide the input space into two: the
half-space where it is positive and the half-
negative. By using it to implement a linear discriminate
function, the perceptron can separate two classes by checking
the sign of the output. If we define f(.) as threshold function,
then we can write

�(�) = �
1, � > 0
0, 	�� ������

� .. (3)

Multilayer perceptron model

A perceptron that has a single layer of weights can
approximate linear functions of the input and cannot solve
problems like the XOR, where the discrimininant to be
estimated is nonlinear. Similarly, a perceptron cannot be used
for nonlinear regression. This limitation does not apply to
feedforward networks with intermediate or hidden layers
between the input and the output layers. If used for
classification, such multilayer perceptrons (MLP) can
implement nonlinear discriminants and, if used for regression,
can approximate nonlinear functions of the in
fed to the input layer (including the bias), the “activation”
propagates in the forward direction, and the values of the
hidden units zh are calculated. Each hidden unit is a perceptron
by itself and applies the nonlinear sigmoid function t
weighted sum:

The output yi are perceptrons in the second layer taking the
hidden units as their inputs

where there is also a bias unit in the hidden layer, which we
denote by z0, and vi0 are the bias weights. The input layer of x
is not counted since no computation is done there and when
there is a hidden layer, this is a two-layer network.
a regression problem, there is no nonlinearity in the output
layer in calculating y. In a two-class discrimination task, there
is one sigmoid output unit and when there are K > 2 classes,
there are K outputs with softmax as the output nonlinearity.
the hidden units’ outputs were linear, the hidden layer would

7419 International Journal of Development Research,

Diagram of a perceptron model

The perceptron as defined in equation (1) defines a hyperplane
and as such can be used to divide the input space into two: the

space where it is positive and the half-space where it is
negative. By using it to implement a linear discriminate
function, the perceptron can separate two classes by checking

f the output. If we define f(.) as threshold function,

.. (3)

A perceptron that has a single layer of weights can only
approximate linear functions of the input and cannot solve
problems like the XOR, where the discrimininant to be
estimated is nonlinear. Similarly, a perceptron cannot be used
for nonlinear regression. This limitation does not apply to

works with intermediate or hidden layers
between the input and the output layers. If used for
classification, such multilayer perceptrons (MLP) can
implement nonlinear discriminants and, if used for regression,
can approximate nonlinear functions of the input. Input x is
fed to the input layer (including the bias), the “activation”
propagates in the forward direction, and the values of the

are calculated. Each hidden unit is a perceptron
by itself and applies the nonlinear sigmoid function to its

are perceptrons in the second layer taking the

where there is also a bias unit in the hidden layer, which we
are the bias weights. The input layer of xj

is not counted since no computation is done there and when
layer network. As usual, in

a regression problem, there is no nonlinearity in the output
class discrimination task, there

one sigmoid output unit and when there are K > 2 classes,
there are K outputs with softmax as the output nonlinearity. If
the hidden units’ outputs were linear, the hidden layer would

be of no use: linear combination of linear combinations is
another linear combination. Sigmoid is the continuous,
differentiable version of thresholding. We need
differentiability because the learning equations we will see are
gradient-based. Another sigmoid (S
function that can be used is the hyperbol
tanh, which ranges from 1 to +1, instead of 0 to +1. In
practice, there is no difference between using the sigmoid and
the tanh. Still another possibility is the Gaussian, which uses
Euclidean distance instead of the dot product for s
The output is a linear combination of the nonlinear basis
function values computed by the hidden units. It can be said
that the hidden units make a nonlinear transformation from the
d-dimensional input space to the H
by the hidden units, and, in this space, the second output layer
implements a linear function. One is not limited to having one
hidden layer, and more hidden layers with their own incoming
weights can be placed after the first hidden layer with sigmoid
hidden units, thus calculating nonlinear functions of the first
layer of hidden units and implementing more complex
functions of the inputs. In practice, people rarely go beyond
one hidden layer since analyzing a network with many hidden
layers is quite complicated; but sometimes when the hidden
layer contains too many hidden units, it may be sensible to go
to multiple hidden layers, preferring “long and narrow”
networks to “short and fat” networks.

Fig. 3 Multilayer Perceptron Model

Conclusion

In the above discussion we have tried to cover the basic area
of perceptron model in the field of machine learning. It is a
survey paper based on the study of different learning methods
in machine learning. We are currently working on the
multilayer perceptron model to predict the weather conditions
by input of some given data. We will publish our experiment
results data along with the perceptron model in the upcoming
research paper.

Acknowledgement

We are thankful to the Research & Devel
Technique Polytechnic Institute for their help and support. Our
departmental faculty members and our departmental In
Mr. P.K. Mitra helped us a lot to carry on this project. We also
express our heartiest gratitude to Prof. Dr. Bimal K

International Journal of Development Research, Vol. 06, Issue, 04, 7417-7420, April, 201

be of no use: linear combination of linear combinations is
ar combination. Sigmoid is the continuous,

differentiable version of thresholding. We need
differentiability because the learning equations we will see are

based. Another sigmoid (S-shaped) nonlinear basis
function that can be used is the hyperbolic tangent function,

1 to +1, instead of 0 to +1. In
practice, there is no difference between using the sigmoid and
the tanh. Still another possibility is the Gaussian, which uses
Euclidean distance instead of the dot product for similarity.
The output is a linear combination of the nonlinear basis
function values computed by the hidden units. It can be said
that the hidden units make a nonlinear transformation from the

dimensional input space to the H-dimensional space spanned
the hidden units, and, in this space, the second output layer

implements a linear function. One is not limited to having one
hidden layer, and more hidden layers with their own incoming
weights can be placed after the first hidden layer with sigmoid

n units, thus calculating nonlinear functions of the first
layer of hidden units and implementing more complex
functions of the inputs. In practice, people rarely go beyond
one hidden layer since analyzing a network with many hidden

ated; but sometimes when the hidden
layer contains too many hidden units, it may be sensible to go
to multiple hidden layers, preferring “long and narrow”
networks to “short and fat” networks.

Multilayer Perceptron Model

In the above discussion we have tried to cover the basic area
of perceptron model in the field of machine learning. It is a
survey paper based on the study of different learning methods
in machine learning. We are currently working on the
multilayer perceptron model to predict the weather conditions
by input of some given data. We will publish our experiment
results data along with the perceptron model in the upcoming

We are thankful to the Research & Development Cell of
Technique Polytechnic Institute for their help and support. Our
departmental faculty members and our departmental In-Charge

Mitra helped us a lot to carry on this project. We also
express our heartiest gratitude to Prof. Dr. Bimal Kr. Datta,

, 2016

H.O.D, CSE of BBIT for his excellent seminar on Artificial
Neural Network which motivates us for this project.

REFERENCES

Akaike, H. 1974. ‘A new look at the statistical model

identification’, IEEE Transactions on Automatic Control,
Vol. 19, No. 6, pp. 716–723.

Cavanaugh, J. E. 1997. ‘Unifying the Deriviations for the
Akaike and Corrected Akaike Information Criteria’,
Statistics & Probability Letters, Vol. 33, pp. 201–208.

Goldberg, D.E. 2001. “Genetic algorithms in search,
optimization, and machine learning”, Pearson Education.

Gupta, R. K., A. K. Bhunia, 2006. “An Application of real-
coded Genetic Algorithm for integer linear programming”,
AMO-Advanced Modeling and Optimization, Volume 8,
Number 1.

Hornik, K.., M. Stnchcombe and H White, 1989. Multilayer
Feedforward Networks are Universal Approximators,
Neural Network, 2:pg359- 366.

Hurvich, C. M. and C. Tsai, 1989. ‘Regression and Time
Series Model Selection in Small Samples’, Biometrika,
Vol. 76, pp. 297–307.

Kullback, S., and R. A. Leibler, 1951. ‘On Information and
Sufficiency’, The Annals of Mathematical Statistics, Vol.
22, No. 1, pp. 79–86.

Linhart, H. and W. Zucchini, 1986. Model Selection, John
Wiley and Sons.

Mak, B. L., H. Sockel, 2001. Info. & Mgmt, A confirmatory
factor analysis of IS employee motivation and retention.

Man Mohan, Gupta P.K. 1992. Operations research, Methods
and Solutions.Reading, Sultan Chand and Sons.

Poonam Garg, 2009. Advanced in Computer Science &
Engineering, MacMillan Publication.

Srinivas, V., G.L. Thompson, 1973. “Benefit-cost Analysis of
coding techniques for the Primal Transportation
Algorithm.”, Journal of the association for computing
machinery, Vol.20, April, pp194-213

Vijyalakshmi Pai, G. A. and Rajasekaran, S. 2004. Neural
networks, fuzzy logic and genetic algorithms, Synthesis
and applications. Reading, Prentice-Hall of India.

7420 Arnab Acharyya et al. Perceptron model and its application in intelligent systems

