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ARTICLE INFO                                       ABSTRACT 
 
 

This paper is basically a review paper on Perceptron Model in Machine Learning and Intelligent 
Systems. This paper expands on the formative years of neural networks, going back to the 
pioneering work of McCulloch and Pitts in 1943. It also focuses on the perceptron convergence 
theorem. This theorem proves convergence of the perceptron as a linearly separable pattern 
classifier in finite number time-steps. We have also covered the basic area of machine learning, 
different learning techniques and application of perceptron in different problem solving.   
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INTRODUCTION 
 
To solve a problem on a computer, we need an algorithm. An 
algorithm is a sequence of instructions that should be carried 
out to transform the input to output. For example, one can 
design an algorithm for sorting. The input is a set of 
unorganized numbers and the output is their ordered list. For 
the same task, there may be various algorithms and we may be 
interested in finding the most efficient one, requiring the least 
number of instructions or memory or both. For some tasks, 
however, we do not have an algorithm for example, to tell 
spam emails from legitimate emails. We know what the input 
is: an email document that in the simplest case is a file of 
characters. We know what the output should be: a yes/no 
output indicating whether the message is spam or not. We do 
not know how to transform the input to the output. What can 
be considered spam changes in time and from individual to 
individual. What we lack in knowledge, we make up for in 
data. We can easily compile thousands of example messages 
some of which we know to be spam and what we want is to 
“learn” what constitutes spam from them. In other words, we 
would like the computer (machine) to extract automatically the 
algorithm for this task. There is no need to learn to sort 
numbers, we already have algorithms for that; but there are 
many applications for which we do not have an algorithm but  
 

*Corresponding author: Arnab Acharyya,  
Computer Science and Technology, Technique Polytechnic Institute, 
Panchrokhi, Sugandhya, Hooghly, Pin-712102, West Bengal, India. 

 

do have example data. With advances in computer technology, 
we currently have the ability to store and process large 
amounts of data, as well as to access it from physically distant 
locations over a computer network. Most of the application in 
now days are database oriented. These applications take the 
data input from a structured data set and process it and store 
the data in the same structured database. But machine learning 
is not just a database problem; it is a part of artificial 
intelligence. To be intelligent, a system that is in a changing 
environment should have the ability to learn. If the system can 
learn and adapt to such changes, the system designer need not 
foresee and provide solutions for all possible situations.  
Machine learning helps us to find solutions in many problems 
like vision, speech recognition, and robotics. In this paper we 
are trying to explore the area of application of a perceptron in 
the field of machine learning and intelligent systems. 
Therefore we have to start with the basic ANN model to gather 
the prerequisite knowledge about a perceptron and how it 
works. 
 

Basics of artificial neural network 
 

A neural network is basically a model structure and an 
algorithm for fitting the model to some given data. The 
network approach uses a generic nonlinearity and allows all 
the parameters to be adjusted. In this way it can deal with a 
wide range of nonlinearities. Learning is the procedure of 
training a neural network to represent the dynamics of the 
problem, for instance in accordance with Fig. 1. 

ISSN: 2230-9926 
 

International Journal of Development Research 
Vol. 6, Issue, 04, pp. 7417-7420, April, 2016 

 

International Journal of 
 

DEVELOPMENT RESEARCH 

Article History: 
 

Received 27th January, 2016 
Received in revised form 
16th February, 2016 
Accepted 19th March, 2016 
Published online 27th April, 2016 
 

Available online at http://www.journalijdr.com 

 

Key Words: 
 

Perceptron, Machine learning,  
Neural network, Pattern,  
Cluster, Intelligent system. 



 
 

Fig.  1. A Block Diagram of ANN with learning capability 
 
The inputs enter in to the neuron of the neural network and it 
generates an output. Between the generated output of the 
system and the target outputs, the error e, is used as the 
training signal. Neural networks have a potential for intelligent 
control systems because they can learn and adapt, they can 
approximate nonlinear functions, they are suited for parallel 
and distributed processing, and they naturally model 
multivariable systems. 
 
Learning process of an intelligent system 
 
Machine learning is programming computers to optimize a 
performance criterion using example data or past experience. 
We have a model defined up to some parameters, and learning 
is the execution of a computer program to optimize the 
parameters of the model using the training data or past 
experience. The model may be predictive to make predictions 
in the future, or descriptive to gain knowledge from data, or 
both. Learning process can be classified the following three 
categories. They are – Supervised Learning, Unsupervised 
Learning and Reinforcement Learning. 
 
A. Supervised Learning 
 
In supervised learning process the set of data (training data) 
consists of a set of input data and correct responses 
corresponding to every piece of data. Based on this training 
data, the algorithm has to generalize such that it is able to 
correctly (or with a low margin of error) respond to all 
possible inputs. The algorithm should produce sensible outputs 
for inputs that weren't encountered during training. This type 
of learning can be applied to solve the following two types of 
problems. 
 
1) Regression Problem: Given some data, we assume 
that those values come from some sort of function and try to 
find out what the function is. We try to fit a mathematical 
function that describes a curve, such that the curve passes as 
close as possible to all the data points. So, regression is 
essentially a problem of function approximation or 
interpolation. 
 
2) Classification Problem: Consists of taking input 
vectors and deciding which of the N classes they belong to, 
based on training from exemplars of each class. It is discrete 
(most of the time) in nature. That is an example belongs to 
precisely one class, and the set of classes covers the whole 
possible output space. To solve this problem we find 'decision 

boundaries' that can be used to separate out the different 
classes. Given the features that are used as inputs to the 
classifier, we need to identify some values of those features 
that will enable us to decide which class the current input 
belongs to. 

 
B. Unsupervised Learning 
 
The aim of unsupervised learning is to find clusters of similar 
inputs in the data without being explicitly told that some data 
points belong to one class and the other in other classes. The 
algorithm has to discover this similarity by itself. 

 
C. Reinforcement Learning 
 
Basically it lies in the middle of supervised and unsupervised 
learning. The algorithm is provided information about whether 
or not the answer is correct but not how to improve it. The 
reinforcement learner has to try out different strategies and see 
which works best. The algorithm searches over the state space 
of possible inputs and outputs in order to maximize a reward. 

 
Perceptron Model 
 
The perceptron is the basic processing element. It has inputs 
that may come from the environment or may be the outputs of 

other perceptrons. Associated with each input, jx R , j = 1, . 

. . , d, is a connection weight, or synaptic weight jw R , and 

the output, y, in the simplest case is a weighted sum of the 
inputs. 
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w0 is the intercept value to make the model more general; it is 
generally modeled as the weight coming from an extra bias 
unit, x0, which is always +1. We can write the output of the 
perceptron as a dot product 

 
Ty w x            

................................................................... (2) 

 
Where, w=[w0,w1, . . . , wd]

T and x=[1, x1, . . . , xd]
T are 

augmented vectors to include also the bias weight and input. 
During testing, with given weights, w, for input x, we compute 
the output y. To implement a given task, we need to learn the 
weights w, the parameters of the system, such that correct 
outputs are generated given the inputs.  
 
When d = 1 and x is fed from the environment through an 

input unit, we have 0y wx w  which is the equation of a 

line with w as the slope and w0 as the intercept. Thus this 
perceptron with one input and one output can be used to 
implement a linear fit. With more than one input, the line 
becomes a (hyper) plane, and the perceptron with more than 
one input can be used to implement multivariate linear fit. 
Given a sample, the parameters wj can be found by regression. 
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Fig.  2. Diagram of a perceptron model
 
The perceptron as defined in equation (1) defines a hyperplane 
and as such can be used to divide the input space into two: the 
half-space where it is positive and the half-
negative. By using it to implement a linear discriminate 
function, the perceptron can separate two classes by checking 
the sign of the output. If we define f(.) as threshold function, 
then we can write 
 

�(�) = �
1, � > 0
0, 	�� ������

�            ............................................ (3)

 
Multilayer perceptron model 
 
A perceptron that has a single layer of weights can 
approximate linear functions of the input and cannot solve 
problems like the XOR, where the discrimininant to be 
estimated is nonlinear. Similarly, a perceptron cannot be used 
for nonlinear regression. This limitation does not apply to 
feedforward networks with intermediate or hidden layers 
between the input and the output layers. If used for 
classification, such multilayer perceptrons (MLP) can 
implement nonlinear discriminants and, if used for regression, 
can approximate nonlinear functions of the in
fed to the input layer (including the bias), the “activation” 
propagates in the forward direction, and the values of the 
hidden units zh are calculated. Each hidden unit is a perceptron 
by itself and applies the nonlinear sigmoid function t
weighted sum: 
 

 
The output yi are perceptrons in the second layer taking the 
hidden units as their inputs 
 

 
 
where there is also a bias unit in the hidden layer, which we 
denote by z0, and vi0 are the bias weights. The input layer of x
is not counted since no computation is done there and when 
there is a hidden layer, this is a two-layer network.
a regression problem, there is no nonlinearity in the output 
layer in calculating y. In a two-class discrimination task, there 
is one sigmoid output unit and when there are K > 2 classes, 
there are K outputs with softmax as the output nonlinearity.
the hidden units’ outputs were linear, the hidden layer would 
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are perceptrons in the second layer taking the 

where there is also a bias unit in the hidden layer, which we 
are the bias weights. The input layer of xj 

is not counted since no computation is done there and when 
layer network. As usual, in 

a regression problem, there is no nonlinearity in the output 
class discrimination task, there 

one sigmoid output unit and when there are K > 2 classes, 
there are K outputs with softmax as the output nonlinearity. If 
the hidden units’ outputs were linear, the hidden layer would 

be of no use: linear combination of linear combinations is 
another linear combination. Sigmoid is the continuous, 
differentiable version of thresholding. We need 
differentiability because the learning equations we will see are 
gradient-based. Another sigmoid (S
function that can be used is the hyperbol
tanh, which ranges from 1 to +1, instead of 0 to +1. In 
practice, there is no difference between using the sigmoid and 
the tanh. Still another possibility is the Gaussian, which uses 
Euclidean distance instead of the dot product for s
The output is a linear combination of the nonlinear basis 
function values computed by the hidden units. It can be said 
that the hidden units make a nonlinear transformation from the 
d-dimensional input space to the H
by the hidden units, and, in this space, the second output layer 
implements a linear function. One is not limited to having one 
hidden layer, and more hidden layers with their own incoming 
weights can be placed after the first hidden layer with sigmoid 
hidden units, thus calculating nonlinear functions of the first 
layer of hidden units and implementing more complex 
functions of the inputs. In practice, people rarely go beyond 
one hidden layer since analyzing a network with many hidden 
layers is quite complicated; but sometimes when the hidden 
layer contains too many hidden units, it may be sensible to go 
to multiple hidden layers, preferring “long and narrow” 
networks to “short and fat” networks.
 

Fig.  3 Multilayer Perceptron Model
 
Conclusion 
 
In the above discussion we have tried to cover the basic area 
of perceptron model in the field of machine learning. It is a 
survey paper based on the study of different learning methods 
in machine learning. We are currently working on the 
multilayer perceptron model to predict the weather conditions 
by input of some given data. We will publish our experiment 
results data along with the perceptron model in the upcoming 
research paper. 
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