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countably semi-R-compact are introduced and the relationship between these concepts are
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INTRODUCTION

A.S.Mashhour, M.E Abd El.Monsef and S.N.El-Deeb [6] introduced a new class of semi-open sets in 1982. R.Selvi and
M.Priyadarshini introduced a new class of semi-L-open sets in 2016(October). In this paper semi-L-compact, semi-R-
compact,semi-L-locally compact, semi-R-locally compact, sequentially semi-L-compact, sequentially semi-R-compact, countably
semi-L-compact, countably semi-R-compact are defined and their properties are investigated.

2. Preliminaries

Throughout this paper
1( ( ))f f A

is denoted by *A and
1( (B))f f  is denoted by *B .

Definition 2.1

Let A be a subset of a topological space (X, ).Then A is called semi-open if A cl(int(A)) and semi-closed if int(cl(A))A;
[1].

Definition 2.2

Let f: (X, )(Y, ) be a function. Then f is semi-continuous if f -1(B) is open in X for every semi-open set B in Y. [1]
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Definition: 2.3

Let f: (X, ) (Y, ) be a function. Then f is semi-open (resp. semi-closed) if f(A) is semi-open(resp. semi-closed) in Y for
every semi-open(resp. semi-closed) set A in X. [1]

Definition: 2.4

Let f: (X, )Y be a function. Then f is

 S-L-Continuous if *A is open in X for every semi-open set A in X.

 S-M-Continuous if *A is closed in X for every semi-closed set A in X. [2]

Definition: 2.5

Let f: X(Y, ) be a function. Then f is

 S-R-Continuous if *B is open in Y for every semi-open set B in Y.

 S-S-Continuous if *B is closed in Y for every semi-closed set B in Y. [2]

Definition: 2.6

Let f: (X, ) (Y, ) be a function, then f is said to be

 S-irresolute if
1( )f V

is semi-open in X, whenever V is semi-open in Y.

 S-resolute if ( )f V is semi-open in Y, whenever V is semi-open in X. [4]

Definition: 2.7

Let ( , )X  is said to be

 Finitely S-additive if finite union of semi-closed set is semi-closed.
 Countably S-additive if countable union of semi-closed set is semi-closed.
 S-additive if arbitrary union of semi-closed set is semi-closed. [6]

Definition: 2.8

Let ( , )X  be a topological space and xX .Every semi-open set containing x is said to be a  S-neighbourhood of x.[3]

Definition: 2.9

Let A be a subset of X. A point xX is said to be semi-limit point of A if every semi-neighbourhood of x contains a point of A
other than x.  [3]

Definition: 2.10

Let A be a subset of a topological space (X,  ), semi-closure of A is defined to be the intersection of all semi-closed sets
containing A. It is denoted by pcl(A).[2]

Definition: 2.11

Let A be a subset of X. A point xX is said to be semi-limit point of A if everysemi-neighbourhood of x contains a point of A
other than x. [5]

Definition: 2.12

A collection  of subsets of X is said to have finite intersection property if for every sub collection {C1, C2...........Cn} of  the
intersection C1C2..........Cn is nonempty.[7]

Definition: 2.13

A collection {U } of semi-open sets in X is said to be semi-open cover of X if X=  U . [11]

Definition: 2.14

A topological space (X,  ) is said to be semi-compact if every semi-open covering of X contains finite sub collection that also
cover X. A subset A of X is said to be semi-compact if every covering of A by semi-open sets in X contains a finite subcover[10]
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Definition: 2.15

A subset A of a topological space (X,  ) is said to be countably semi-compact, if every countable semi-open covering of A has a
finite subcover.[11]

Example: 2.16

Let (X,  ) be a countably infinite indiscrete topological space. In this space {{x}/ xX } is a countable semi-open cover which
has no finite subcover. Therefore it is not countably semi-compact.[11]

Definition: 2.17

A subset A of a topological space (X,  ) is said to be sequentially semi-compact if every sequence in A contains a subsequence
which semi-converges to some point in A.[9]

Definition: 2.18

A topological space (X,  ) is said to be semi-locally compact if every point of X is contained in a semi-neighbourhood whose
semi-closure is semi-compact.[9]

Definition: 2.19

Let f: (X, )Y be a function and A be a subset of a topological space (X, ).Then A is called

 S-L-open if
* *(int( ))A cl A

 S-M-closed if
* *int(cl( ))A A [7]

Definition: 2.20

Let f: X(Y, ) be a function and B be a subset of a topological space (Y, ). Then B is called

 S-R-open if
* *(int(B     B)) cl

 S-S-closed if
* *B int(cl(B )) [7]

Example: 2.21

Let X = {a, b, c} and   Y = {1, 2, 3}. Let = { ,X ,{a}, {b}, {a, b} }. Let f: (X, )Y defined  by f(a)=2, f(b)=1, f(c)=3.
Then f is S-L-open and S-M-Closed. [7]

Example: 2.22

Let X = {a, b, c} and Y = {1, 2, 3}.  Let  ={ ,Y, {1},{2},{1,2} }.Let g : X(Y, ) defined by g(a)=2, g(b)=2, g(c)=3.
Then g is S-R-open and S-S-Closed. [7]

Definition: 2.23

Let f: (X, ) (Y, ) be a function, then f is said to be

 S-L-irresolute if
1( (A))f f

is semi-L-open in X, whenever A is semi-L-open in X.

 S-M-irresolute if
1( (A))f f

is semi-M-closed in X, whenever A is semi-M-closed in X.

 S-R-resolute if
1( (B))f f  is semi-R-open in Y, whenever B is semiz-R-open in Y.

 S-S-resolute if
1( (B))f f  is semi-S-closed in Y, whenever B is semi-S-closed in Y.[7]

Definition: 2.24

Let ( , )X  is said to be

 Finitely S-M-additive if finite union of S-M-closed set is S-M-closed.
 Countably S-M-additive if countable union of semi-M-closed set is semi-M-closed.
 S-M-additive if arbitrary union of semi-M-closed set is semi-M-closed. [7]
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Definition: 2.25

Let ( , )X  be a topological space and xX .Every semi-L-open set containing x is said to be a S-L-neighbourhood of x.[7]

Definition: 2.26

Let A be a subset of X. A point xX is said to be semi-L-limit point of A if every semi-L-neighbourhood of x contains a point of
A other than x.[7]

3. Semi -  -compact space

Definition: 3.1

 A collection {U } of semi-L-open sets in X is said to be semi-L-open cover of X if  X=  U .

 A collection {U } of semi-R-open sets in X is said to be semi-R-open cover of X if  X=  U .

Definition: 3.2

 A topological space ( , )X  is said to be semi-L-compact if every semi-L-open covering of X contains finite sub collection

that also cover X. A subset A of X is said to be semi-L-compact if every covering of A by semi-L-open sets in X contains a
finite subcover.

 A topological space ( , )X  is said to be semi-R-compact if every semi-R-open covering of X contains finite sub collection

that also cover X. A subset A of X is said to be semi-R-compact if every covering of A by semi-R-open sets in X contains a
finite subcover.

Theorem: 3.3

A topological space ( , )X  is

1) semi-L-compact compact 2) Any finite topological space is semi-L-compact.

Proof:

 Let { }A  be an open cover for X. Then each A is semi-L- open.Since X is semi-L-compact, this open cover has a

finite subcover. Therefore ( , )X  is compact.

 2) Obvious since every semi-L-open cover is finite.

Example: 3.4

Let ( , )X  be an infinite indiscrete topological space. In this space all subsets are semi-L-open. Obviously it is compact. But {x}x

X is a semi-L-open cover which has no finite subcover. So it is not semi-L-compact. Hence compactness need not imply semi-
L-compactness.

Theorem: 3.5 A semi-M-closed subset of semi-L- compact space is semi –L-compact .

Proof:

Let A be a semi-M-closed subset of a semi-L-compact space ( , )X  and {U } be a semi –L-open cover for A , then {{U

 } , {X-A}} is a semi-L-open cover for X . Since X is semi-L-compact, there exists 1 2, .... n    such that

1 2...... ( )nX U U U X A       Therefore 1 2...... nA U U U     which proves A is semi-L-compact.

Remark: 3.6

The converse of the above theorem need not be true as seen in the following example(3.7).

Example: 3.7

Let X = {a, b, c, } and   Y = {1, 2, 3, }. Let f: (X, )Y defined  by f(a)=1, f(b)=2, f(c)=3. Let X={a,b,c}  ={ ,{a},X}-open

set,  closed set-{  , X, {b, c}}. Here SLO(X) = { , X, {a} {a,b},{a,c}} is semi-L-compact ,A={a,c} is Semi-L-compact but not

semi-M-closed
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Theorem: 3.8

A topological space ( , )X  is semi-L-compact if and only if for every collection Of semi-M-closed sets in X having finite

intersection property, c C of all elements of  is non empty.

Proof:

Let ( , )X  be semi-L-compact and  be a collection of semi-M-closed sets with finiteintersection property. Suppose c C =

 then ( )c C X C X   . Therefore { }c CX C  is asemi-L-open cover for X. Then there exists C1, C2,......Cn   such

that 1( )n
i iX C  =X

Therefore 1
n
i iC = which is a contradiction. Therefore c C  

Conversly assume the hypothesis given in the statement .To prove X is semi-L-compact.

Let {U } be a semi-L-open cover for X .then (X )U X U          By hypothesis 1 2, .... n   , there

exists such that 1(X )
i

n
i U    .  Therefore 1 i

n
i U X  .  Therefore X is semi-L-compact.

Corollary: 3.9

Let ( , )X  be a semi-L-compact space and let 1 2 1...... ....n nC C C C     be anested sequence of nonempty semi-M-

closed sets in X. then nn Z
C is nonempty.

Proof:

Obviously { }n n Z
C 

finite intersection property. By theorem (3.8) nn Z
C is nonempty.

Theorem: 3.10

Let ( , )X  , (Y, ) be two topological space and f: (X, ) (Y, )  be a bijection then

 f is semi- continuous and X is semi –L-compact  Y is compact.
 f is semi –L-irresolute and X is semi- L-compact  Y is semi-L- compact.
 f is continuous and X is semi-L-compact Y is compact.
 f is strongly irresolute and X is compact  Y is semi- L-compact.
 f is semi –L-open and Y is semi- L-compact  X is compact.
 f is open and Y is semi-L- compact  X is compact.
 f is pre- R-resolute and Y is semi-R-compact  X is semi- R-compact.

Proof:

1)Let {U } be a open cover for Y.

Therefore Y U . Therefore 1 1( ) ( )X f Y f U
    .

Then {f-1(U )} is a semi-L- open cover for X .

Since X is semi-L- compact,there exists 1 2, .... n   such that
i

1( )X f U
  .  Therefore

i
( ) ( )Y f X U   .

Therefore Y is compact.

Proof of (2) to (4) are similar to the above.

5)Let {U } be a open cover for X. then {f(U )} is a semi-L-open cover for Y.

Since Y is semi-L-compact ,there exists 1 2, .... n   such that ( )Y f U

Therefore 1(Y) ( )X f U 


   .  Therefore X is compact.
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Proof of (6) and (7) are similar.

Remark:3.11

From (3) and (6) it follows that “ Semi-L- compactness”  is a Semi-L- topological property.

Theorem:3.12(Generalisation of Extreme Value theorem)

Let f: XY be semi-L-continuous where Y is an ordered set in the ordered topology. If X is semi-L-compact then there exists c
and d in X such that f(c)  f(x)  f(d) for every xX.

Proof

We know that semi-L-continuous image of a semi-L-compact space is compact Bytheorem(3.10). Therefore A=f(X) is compact.
Suppose A has no largest element then{( , ) / }a a A  form an open cover for A and it has a finite subcover.

Therefore 1 2( , ) ( , ) ..... ( , )nA a a a       . Let maxi ia a .

Then ( , )A a  which is a contradiction to the fact that a A

Therefore A has a largest element M. Similarly it can be proved that it has the smallest element m.

Therefore  c and d in X f(c) = m, f(d) = M and f(c)  f(x)  f(d)  xX.

4. Countably semi -  -compact space

Definition: 4.1

 A subset A of a topological space ( , )X  is said to be countably semi-L-compact, if every countable semi-L-open covering

of A has a finite subcover.
 A subset A of a topological space ( , )X  is said to be countably semi-R-compact, if every countable semi-R-open

covering of A has a finite subcover.

Example: 4.2

Let ( , )X  be a countably infinite indiscrete topological space.

In this space {{x}/ xX} is a countable semi-L-open cover which has no finite subcover . Therefore it is not countably semi-L-
compact.

Remark: 4.3

 Every semi-L-compact space is countably semi-L-compact.It is obvious from the definition.
 Every countably semi-L compact space is countably compact. It follows since open sets are semi-Lopen.

Theorem: 4.4

In a countably semi-L-compact topological space, every infinite subset has a semi-L-limit point.
Proof:

Let ( , )X  be countably semi-L-compact space. Suppose that there exists an infinite subset A which has no semi-L-limit point.

Let { / }nB a n N  be a countable subset of A.

Since B has no semi-L-limit point of B, there exists a semi-L-neighbourhood nU of na such that { }n nB U a .  Now { }nU

is a semi-L-open cover for B .Since cB is semi-L-open , { ,{ } }c
n n Z

B U 
is a countable semi-L-open cover for X. But it has no

finite sub cover, which is a contradicition, since X is countably semi-L-compact .Therefore every infinite subset of X has a semi-
L-limit point.

Corollary: 4.5

In a semi-L-compact topological space every infinite subset has a semi-L-limit point.
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Proof:

It follows from the theorem (4.4),   since every semi-L-compact space is countably semi-L-compact.

Theorem: 4.6

A semi-M-closed subset of countably semi-L-compact space is countably semi-L-compact.

Proof:

Let X be a semi-L-compact space and B be a semi-M-closed subsets of X

Let { / 1,2,3,... }iA i   be a countable semi-L-open cover for B. Then {{ },X B}iA 
Where 1, 2,3,....i   is a semi-L-open cover for X. Since X is countably semi-L-compact,

there exists 1 2 3 1, , ..... ( ) n
n k iki i i i X B A X   .

Therefore 1
n
k ikB A  and this implies B is countably semi-L-compact.

Definition: 4.7

In a topological space ( , )X  a point xX is said to be a semi-L-isolated point of A if there exists a semi-L-open set containing

x which contains no point of A other than x.

Theorem: 4.8

A topological space ( , )X  is countably semi-L-compact if and only if for everycountable collection  of semi-L-closed sets in

X having finite intersection property, c CC of all elements of  is nonempty.

Proof: It is similar to the proof of theorem(3.8).

Corollary: 4.9

X is countably semi-L-compact if and only if every nested sequence of semi-M-closednon empty sets 1 2 .....C C  .has a
nonempty intersection.

Proof:

Obviously { }n n Z
C 

has finite intersection property.  By theorem (4.8) nn Z
C isnonempty.

5. Sequentially semi-  L-compact space

Definition: 5.1

 A subset A of a topological space ( , )X  is said to be sequentially semi-L-compactif every sequence in A contains a

subsequence which semi-L-converges to some point in A.
 A subset A of a topological space ( , )X  is said to be sequentially semi-R-compactif every sequence in A contains a

subsequence which semi-R-converges to some point in A.

Theorem: 5.2

Any finite topological space is sequentially semi-L-compact.

Proof:

Let ( , )X  be a finite topological space and { }nx be a sequence in X. In this sequenceexcept finitely many terms all other terms

are equal. Hence we get a constant subsequencewhich semi-L-converges to the same point .

Theorem: 5.3

Any infinite indiscrete topological space is not sequentially semi-L-compact.

Proof:

Let ( , )X  be infinite indiscrete topological space and { }nx be a sequence in X. Let xX be arbitrary.Then U={x} is semi-L-

open and it contains no point of the sequence except  x.  Therefore { }nx has no subsequence which semi-L-converges to x. Since

x is arbitrary,  X is not sequentially semi-L-compact.
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Theorem: 5.4

A finite subset A of a topological space ( , )X  is sequentially semi-L-compact.

Proof:

Let { }nx be an arbitrary sequence in X. Since A is finite, at least one element of thesequence say x0 must be repeated infinite

number of times. So the constant subsequence 0x , 0x ….. must semi-L-converges to 0x .

Remark: 5.5

Sequentially semi-L-compactness implies sequentially compactness, since allopen sets are semi-L-open. But the inverse
implication is not true as seen from(5.6).

Example: 5.6

Let ( , )X  be an infinite indiscrete space is sequentially compact but notsequentially semi-L-compact.

Theorem: 5.7

Every sequentially semi-L-compact space is countably semi-compact.

Proof:

Let ( , )X  be sequentially semi-L-compact. Suppose X is not countably semi-L-compact. Thenthere exists countable pre-open

cover { }n n Z
U 

which has no finite sub cover .Then .nn Z
X U  Choose

1 1 2 2 1 3 3 i 1,2 i n 1, X , X U U .....X n
n i iX U U U U U         . This is possible since {Un} has no finite sub cover. Now

{ }nx is a sequence in X. Let xX bearbitrary .then xUk  for some K .By our choice of { }nx , xi  Uk for all i k. Hence

there isno subsequence of { }nx which can semi-L-converge to x. Since x is arbitrary the sequence { }nx has no semi-L-convergent

subsequence which is a contradiction. Therefore X is countablysemi-L-compact.

Theorem: 5.8

Let f: (X, ) (Y, ) be a bijection, then

1)f is semi-R-resolute and Y is sequentially semi -R-compact X is sequentiallysemi -R-compact.
2)f is semi -L-irresolute and X is sequentially semi -compact Y is sequentially semi -L-compact.
3)f is continuous and X is sequentially semi -L-compact  Y is sequentially semi -L-compact.
4)f is strongly semi -L-continous and X is sequentially semi -L-compact Y is sequentially semi -L-compact.

Proof:

1) Let { }nx be a sequence in X .Then { ( )}nkf x is a sequence in Y.  It has asemi –R-convergent subsequence { ( )}nkf x such

that 0{ ( )} pre
nkf x y in Y. Then there exists 0x X such that 0 0( ) yf x  . Let U be semi -R -open set containing x0 then

f(U) is a semi -R-open setcontaining y0 .Then there exists N such that f  f(U)  for all k  N.

Therefore 1 1( ) ( )nkf f x f f U   . Therefore nkx U for all k  N.

This proves that X is sequentiallysemi -R-compact. Proof for (2) to (4) is similar to the above.

Remark: 5.9

From theorem (5.8), (1) and (2) it follows that “Sequentially compactness” is a semi -  -topological property.

6.Semi -  -locally compact space

Definition: 6.1

A topological space ( , )X  is said to be semi -L-locally compact if every point of X is contained in a semi -L-neighbourhood

whose semi -L-closure is semi -L-compact.
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Theorem: 6.2

Any semi -L-compact space is semi -L-locally compact.

Proof:

Let ( , )X  be semi -L-compact, Let xX then X is semi -L-neighbourhood of x and Scl(X)=X which is semi -L-compact.

Remark: 6.3

The converse need not be true as seen in the following example(6.4)

Example: 6.4

Let ( , )X  be an infinite indiscrete topological space. it is not semi -L-compact. But for every xX, {x} is a semi -L-

neighbourhood and { } { }x x is semi -L-compact.Therefore it is semi -L-locally compact.
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