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INTRODUCTION

A.S.Mashhour, M.E Abd El.Monsef and S.N.El-Deeb [6] introduced a new class of semi-open sets in 1982. R.Selvi and
M.Priyadarshini introduced a new class of semi-L-open sets in 2016(October). In this paper semi-L-compact, semi-R-
compact,semi-L-locally compact, semi-R-locally compact, sequentially semi-L-compact, sequentially semi-R-compact, countably
semi-L-compact, countably semi-R-compact are defined and their properties are investigated.

2. Preliminaries
Throughout this paper T ~(f (A)) isdenoted by A" and f (f ™(B)) isdenoted by B' .
Definition 2.1

Let A be a subset of atopological space (X,t ).Then A is called semi-open if A cl(int(A)) and semi-closed if int(cl(A)) C A;
(1.

Definition 2.2

Letf: (X,t )= (Y,S ) beafunction. Then f is semi-continuousif f (B) isopen in X for every semi-openset Bin Y. [1]
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Definition: 2.3

Let f: (X,t) —(Y,S ) be afunction. Then f is semi-open (resp. semi-closed) if f(A) is semi-open(resp. semi-closed) in Y for
every semi-open(resp. semi-closed) set A in X. [1]

Definition: 2.4
Let f: (X,t )Y beafunction. Thenfis

e SL-Continuousif A isopenin X for every semi-open set A in X.
e SM-Continuousif A isclosedin X for every semi-closed set A in X. [2]

Definition: 2.5
Letf: X —>(Y,S ) beafunction. Thenfis

e SR-Continuousif B’ isopeninY for every semi-openset Bin'Y.
e SSContinuousif B isclosedin Y for every semi-closed set Bin Y. [2]

Definition: 2.6
Letf: (X,t ) = (Y,S ) beafunction, thenf issaidto be
o Simesoluteif f (V) issemi-openin X, whenever V issemi-openinY.
e Sresoluteif f (V) issemi-openinY, whenever V issemi-openin X. [4]
Definition: 2.7
Let (X,t) issaidtobe

e Finitely S-additive if finite union of semi-closed set is semi-closed.
e Countably S-additive if countable union of semi-closed set is semi-closed.
e S-additiveif arbitrary union of semi-closed set is semi-closed. [6]

Definition: 2.8
Let (X,t)beatopologica space and x € X .Every semi-open set containing x is said to be a S-neighbourhood of x.[3]
Definition: 2.9

Let A be asubset of X. A point x € X is said to be semi-limit point of A if every semi-neighbourhood of x contains a point of A
other than x. [3]

Definition: 2.10

Let A be a subset of a topological space (X, t ), semi-closure of A is defined to be the intersection of all semi-closed sets
containing A. It is denoted by pcl(A).[2]

Definition: 2.11

Let A be a subset of X. A point x € X is said to be semi-limit point of A if everysemi-neighbourhood of x contains a point of A
other than x. [5]

Definition: 2.12

A collection t of subsets of X is said to have finite intersection property if for every sub collection {C1, C2........... Cn} of t the
intersection C1MC2M\......... (MCn is nonempty.[7]

Definition: 2.13
A collection{Ug } g A of semi-open setsin X is said to be semi-open cover of X if X= Uea Ug . [11]
Definition: 2.14

A topologica space (X, t ) is said to be semi-compact if every semi-open covering of X contains finite sub collection that also
cover X. A subset A of X issaid to be semi-compact if every covering of A by semi-open setsin X contains a finite subcover[10]
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Definition: 2.15

A subset A of atopological space (X, t ) is said to be countably semi-compact, if every countable semi-open covering of A hasa
finite subcover.[11]

Example: 2.16

Let (X, t ) be a countably infinite indiscrete topological space. In this space {{x}/ x € X } isa countable semi-open cover which
has no finite subcover. Thereforeit is not countably semi-compact.[11]

Definition: 2.17

A subset A of atopological space (X, t ) is said to be sequentially semi-compact if every sequence in A contains a subsequence
which semi-converges to some point in A.[9]

Definition: 2.18

A topologica space (X, t ) is said to be semi-locally compact if every point of X is contained in a semi-neighbourhood whose
semi-closure is semi-compact.[9]

Definition: 2.19

Let f: (X,t ) > Y beafunction and A be a subset of atopological space (X,t ).Then A iscalled
e SL-openif A cd(int(A))
e SM-dosedif A Dint(cl(A)) [7]
Definition: 2.20
Letf: X —>(Y,S ) beafunction and B be a subset of atopological space(Y,S ). ThenB iscalled
e SRopenif B cd(int( B))
e SSdosadif B  2int(cl(B"))[7]
Example: 2.21

Lee X ={abctand Y={123}. Lett ={D X {a},{b},{a b} }. Letf: (X,t)—>Y defined by f(a)=2, f(b)=1, f(c)=3.
Then f is S-L-open and S-M-Closed. [7]

Example: 2.22

LeeX ={a,b,ctandY ={1,2,3}. Let S ={D Y, {1} {2} {12} }.Letg: X—>(Y,S ) defined by g(8)=2, g(b)=2, g(c)=3.
Then g is S-R-open and S-S-Closed. [7]

Definition: 2.23

Letf: (X,t) —(Y,S ) beafunction, thenf issaidto be

o SL-irresoluteif f(f(A)) issemi-L-openin X, whenever A is semi-L-openin X.

o SM-irresoluteif f(f(A)) issemi-M-closed in X, whenever A is semi-M-closed in X.
e SReresoluteif f(f *(B)) issemi-R-openin Y, whenever B is semiz-R-openin Y.

o SSresoluteif f(f *(B)) issemi-S-closed in 'Y, whenever B is semi-S-closed in Y .[7]
Definition: 2.24

Let (X,t) issaidtobe

e Finitely S-M-additive if finite union of S-M-closed set is S-M-closed.
e Countably S-M-additive if countable union of semi-M-closed set is semi-M-closed.
e S-M-additiveif arbitrary union of semi-M-closed set is semi-M-closed. [7]
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Definition: 2.25

Let (X,t)beatopological space and x € X .Every semi-L-open set containing x is said to be a S-L-neighbourhood of x.[7]

Definition: 2.26

Let A be asubset of X. A point x € X issaid to be semi-L-limit point of A if every semi-L-neighbourhood of x contains a point of
A other than x.[7]

3. Semi - r -compact space
Definition: 3.1
o Acollection{Ug }q e A Of semi-L-open setsin X is said to be semi-L-open cover of X if X="; . Ug .
o Acollection{Ug }q e A Of semi-R-open setsin X is said to be semi-R-open cover of X if X=\J; . Ug .
Definition: 3.2

A topological space (Xt )issaid to be semi-L-compact if every semi-L-open covering of X contains finite sub collection
that also cover X. A subset A of X issaid to be semi-L-compact if every covering of A by semi-L-open setsin X contains a
finite subcover.
A topological space (X,t)issaid to be semi-R-compact if every semi-R-open covering of X contains finite sub collection
that also cover X. A subset A of X issaid to be semi-R-compact if every covering of A by semi-R-open setsin X contains a
finite subcover.

Theorem: 3.3

A topological space (X,t)is

1) semi-L-compact = compact 2) Any finite topological space is semi-L-compact.
Proof:

o Let {A },.bean open cover for X. Then each A is semi-L- open.Since X is semi-L-compact, this open cover has a

finite subcover. Therefore (Xt ) is compact.
e 2) Obvious since every semi-L-open cover isfinite.

Example: 3.4

Let (X,t)beaninfinite indiscrete topological space. In this space all subsets are semi-L-open. Obviously it is compact. But {x} x

€ X is a semi-L-open cover which has no finite subcover. So it is not semi-L-compact. Hence compactness need not imply semi-
L -compactness.

Theorem: 3.5 A semi-M-closed subset of semi-L- compact space is semi —L-compact .
Proof:

Let A be a semi-M-closed subset of a semi-L-compact space (X,t )and{Ug } q < A beasemi —L-open cover for A , then {{U
altaeA . {X-A}} is a semi-L-open cover for X . Since X is semi-L-compact, there exists @,,a,...a, € A such that
X =Ua,ula,....ulUa, u(X — A) Therefore AcUa, ula,.......nUa,, which proves A is semi-L-compact.

Remark: 3.6
The converse of the above theorem need not be true as seen in the following example(3.7).

Example: 3.7

LeeX={ab,c,}and Y ={123,}.Letf: (X,t)—>Y defined by f(a)=1, f(b)=2, f(c)=3. Let X={ab,c} T ={f {a},X}-open
set, closed set-{ f , X, {b, c}}. Here SLO(X) ={f , X, {a} {ab} {ac}} issemi-L-compact ,A={a,c} is Semi-L-compact but not
semi-M-closed
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Theorem: 3.8

A topological space (X,t)is semi-L-compact if and only if for every collectiont Of semi-M-closed sets in X having finite

intersection property, M., C of al elementsof t isnon empty.

cet
Proof:

C =
f then U, (X —C)=X. Therefore { X —C} . is asemi-L-open cover for X. Then there exists C;, C2,.....Cn €t such
that U™, (X —C.) =X

Let (X,t)be semi-L-compact and t  be a collection of semi-M-closed sets with finiteintersection property. Supposeﬂ

cet

Therefore (7 ,C. =f  whichisacontradiction. Therefore (1., C # f

Conversly assume the hypothesis given in the statement .To prove X is semi-L-compact.

Let{Ug }a e A beasemi-L-open cover for X .then U, U, = X =,_,(X-U,)=f By hypothesisa,,a,...a,, there
existssuchthat(,(X—-U, ) =f . Therefore U7,U, = X . Therefore X is semi-L-compact.

Corollary: 3.9

Let (X,t)be a semi-L-compact space and let C, ©C, D...... DC,2C, ;... be anested sequence of nonempty semi-M-
closed setsin X. then ﬂne? C, isnonempty.

Proof:

Obviously {C,} . finiteintersection property. By theorem (3.8) ﬂnef C, isnonempty.
Theorem: 3.10

Let (X,t),(Y,S ) betwo topological spaceand f: (X,t ) —(Y,S ) beabijection then

e fissemi- continuousand X is semi —L-compact = Y is compact.

e fissemi —L-irresolute and X issemi- L-compact = Y issemi-L- compact.
e fiscontinuousand X is semi-L-compact=>Y is compact.

e fisstrongly irresolute and X iscompact = Y is semi- L-compact.

e fissemi —L-openandY issemi- L-compact = X is compact.

e fisopenandY issemi-L- compact = X iscompact.

e fispre- R-resoluteandY issemi-R-compact = X issemi- R-compact.

Pr oof:

DLet{Ugz }a e A beaopencoverforY.

Therefore Y =\ U, . Therefore X = f *(Y)=uf*(U,).

Then{f'l(Ua )} a e A isasemi-L- open cover for X .

Since X is semi-L- compact,there exists @,,8,...8 ,suchthat X =u f (U, ). Therefore Y = f (X)=U(U, ).
Therefore Y is compact.

Proof of (2) to (4) are similar to the above.

5Let{Ug }a e A beaopencover for X. then {f(Ug )} isasemi-L-open cover for Y.

Since Y is semi-L-compact ,there exists &,,.,...8 ,suchthat Y =Uf (U, )

Therefore X = f *(Y)=u,_, (U, ). Therefore X is compact.
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Proof of (6) and (7) are similar.

Remark:3.11

From (3) and (6) it follows that “ Semi-L- compactness” is a Semi-L- topological property.
Theorem:3.12(Generalisation of Extreme Value theorem)

Let f: X —Y be semi-L-continuous where Y is an ordered set in the ordered topology. If X is semi-L-compact then there exists ¢
and din X such that f(c) < f(x) < f(d) for every x € X.

Pr oof

We know that semi-L -continuous image of a semi-L-compact space is compact Bytheorem(3.10). Therefore A=f(X) is compact.
Suppose A has no largest element then{ (—o0,a) / a € A} form an open cover for A and it has a finite subcover.

Therefore AC (—0,8,) U(—0,8,) U....uU(—0,8,) . Let a=MaX; & .
Then A c (-0, a) which isacontradiction to the fact that a€ A

Therefore A has alargest element M. Similarly it can be proved that it has the smallest element m.
Therefore 3 canddin X 3f(c) =m, f(d) =M and f(c) < f(x) < f(d) V xEX.

I

4, Countably semi - -compact space

Definition: 4.1

A subset A of atopological space (X,t ) issaid to be countably semi-L-compact, if every countable semi-L-open covering
of A has afinite subcover.

A subset A of a topological space (X,t) is said to be countably semi-R-compact, if every countable semi-R-open
covering of A has afinite subcover.

Example: 4.2
Let (X,t) beacountably infinite indiscrete topological space.

In this space {{x}/ x € X} is a countable semi-L-open cover which has no finite subcover . Therefore it is not countably semi-L-
compact.

Remark: 4.3

e Every semi-L-compact spaceis countably semi-L-compact.lt is obvious from the definition.
e Every countably semi-L compact space is countably compact. It follows since open sets are semi-Lopen.

Theorem: 4.4

In a countably semi-L-compact topological space, every infinite subset has a semi-L-limit point.
Proof:

Let (X,t) be countably semi-L-compact space. Suppose that there exists an infinite subset A which has no semi-L-limit point.
Let B={a,/ne N} beacountable subset of A.

Since B has no semi-L-limit point of B, there exists a semi-L-neighbourhood U, of & suchthat BMU, ={a}. Now {U }

is a semi-L-open cover for B .Since B® is semi-L-open, {B°,{U o} ,+} 1S@countable semi-L-open cover for X. But it has no

finite sub cover, which is a contradicition, since X is countably semi-L-compact .Therefore every infinite subset of X has a semi-
L-limit point.

Corollary: 4.5

In a semi-L-compact topological space every infinite subset has a semi-L-limit point.
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Proof:
It follows from the theorem (4.4), since every semi-L-compact space is countably semi-L-compact.
Theorem: 4.6

A semi-M-closed subset of countably semi-L-compact space is countably semi-L-compact.

Proof:

Let X be asemi-L-compact space and B be a semi-M-closed subsets of X
Let {A/1=123,...00 beacountable semi-L-open cover for B. Then {{ A}, X—B}
Wherei =1,2,3,....0is a semi-L-open cover for X. Since X is  countably  semi-L-compact,

there exists i, i, i5....d, 3 (X =B)Up_; A, = X.
Therefore B =U,_, A, and thisimplies B is countably semi-L-compact.

Definition: 4.7

In atopological space (X,t) apoint x € X is said to be a semi-L-isolated point of A if there exists a semi-L-open set containing
X which contains no point of A other than x.

Theorem: 4.8
A topological space (X,t) iscountably semi-L-compact if and only if for everycountable collection t of semi-L-closed setsin

X having finite intersection property, ﬂceCC of all elementsof t isnonempty.

Proof: Itissimilar to the proof of theorem(3.8).

Corollary: 4.9

X is countably semi-L-compact if and only if every nested sequence of semi-M-closednon empty sets C1o>C2o..... .has a
nonempty intersection.

Pr oof:

Obviously {C,} . hasfiniteintersection property. By theorem (4.8) ﬂnef C,, isnonempty.

I

5. Sequentially semi- L -compact space
Definition: 5.1

e A subset A of atopologica space (X,t) issaid to be sequentially semi-L-compactif every sequence in A contains a

subsequence which semi-L-converges to some point in A.
e A subset A of atopological space (X,t) is said to be sequentially semi-R-compactif every sequence in A contains a

subsequence which semi-R-converges to some point in A.
Theorem: 5.2
Any finite topological spaceis sequentially semi-L-compact.
Proof:

Let (X,t) beafinite topological space and {)gq} be a sequence in X. In this sequenceexcept finitely many terms all other terms
are equal. Hence we get a constant subsequencewhich semi-L-converges to the same point .

Theorem: 5.3

Any infinite indiscrete topological spaceis not sequentially semi-L-compact.

Proof:

Let (X,t) beinfinite indiscrete topological space and {Xn} be a sequencein X. Let x € X be arbitrary. Then U={x} is semi-L-

open and it contains no point of the sequence except x. Therefore {)gq} has no subsequence which semi-L-converges to x. Since
x isarbitrary, X isnot sequentialy semi-L-compact.
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Theorem: 5.4
A finite subset A of atopological space (X,t )issequentially semi-L-compact.
Proof:

Let {Xn} be an arbitrary sequence in X. Since A is finite, at least one element of thesequence say x, must be repeated infinite

number of times. So the constant subsequence X, X, ..... must semi-L-convergesto X;.
Remark: 5.5

Sequentially semi-L-compactness implies sequentially compactness, since allopen sets are semi-L-open. But the inverse
implication is not true as seen from(5.6).

Example: 5.6

Let (X,t)beaninfiniteindiscrete space is sequentially compact but notsequentially semi-L-compact.
Theorem: 5.7

Every sequentially semi-L-compact space is countably semi-compact.

Proof:

Let (X,t)be sequentialy semi-L-compact. Suppose X is not countably semi-L-compact. Thenthere exists countable pre-open

cover {U.} . which has no finite sub cover Then X =U _.U,. Choose
X,eU,X,elU,-U,X;eU,—U_, U, ...X €U -U"U,. Thisispossible since {Un} has no finite sub cover. Now
{X} isasequencein X. Let x € X bearbitrary .then x € Uk for some K .By our choice of {X.}, xi & Uk for al i > k. Hence

there isno subsequence of {X,} which can semi-L-converge to x. Since x is arbitrary the sequence { X} has no semi-L -convergent
subsequence which is a contradiction. Therefore X is countablysemi-L-compact.

Theorem: 5.8

Let f: (X,t ) = (Y,S ) beabijection, then

Df issemi-R-resolute and Y is sequentially semi -R-compact = X is sequentiallysemi -R-compact.

2)f issemi -L-irresolute and X is sequentially semi -compact =Y is sequentially semi -L-compact.

3)f is continuous and X is sequentially semi -L-compact = Y is sequentialy semi -L-compact.

A)f isstrongly semi -L-continous and X is sequentially semi -L-compact=> Y is sequentially semi -L-compact.

Pr oof:

1) Let {X.} beasequencein X .Then { f (X, )} isasequencein Y. It has asemi —R-convergent subsequence { f (X, )} such

that { f (X, )} —2=>Y,in Y. Then there exists X, € X such that f(X,) =Y, . Let U be semi -R -open set containing x0 then
f(U) isasemi -R-open setcontaining yO .Then there exists N such that f € f(U) for al k > N.

Therefore f o f(x,)e f o f(U). Therefore X, €U foral k> N.
This provesthat X is sequentiallysemi -R-compact. Proof for (2) to (4) is similar to the above.
Remark: 5.9

From theorem (5.8), (1) and (2) it follows that “Sequentially compactness” isa semi -r -topological property.

6.Semi - r -locally compact space
Definition: 6.1

A topological space (X,t )is said to be semi -L-locally compact if every point of X is contained in a semi -L-neighbourhood
whose semi -L-closure is semi -L-compact.
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Theorem: 6.2
Any semi -L-compact spaceis semi -L-locally compact.
Proof:

Let (X,t)besemi -L-compact, Let x € X then X is semi -L-neighbourhood of x and Scl(X)=X which is semi -L-compact.

Remark: 6.3
The converse need not be true as seen in the following example(6.4)

Example: 6.4

Let (X,t)be an infinite indiscrete topological space. it is not semi -L-compact. But for every x € X, {x} is a semi -L-
neighbourhood and { X} ={x} issemi -L-compact.Therefore it is semi -L-locally compact.
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