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ARTICLE INFO                                       ABSTRACT 
 
 

The aim of the present investigation is to study the peristaltic transport through the gap between 
coaxial tubes, where the inner tube is an endoscope and the outer tube has a sinusoidal wave 
travelling down to its wall. The necessary theoretical results such as viscosity, pressure gradient 
and friction force on the inner and outer tubes have been obtained in terms of magnetic field. Out 
of these theoretical results the numerical solution of pressure gradient, outer friction, inert friction 
and flow rate are shown graphically for the better understanding of the problem. 
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INTRODUCTION 
 

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid transport in many biological systems. 
In particular, a mechanism may be involved in swallowing food through the esophagus, in urine transport form the kidney to the 
bladder through the urethra, in movement of chyme in the gastro –intestinal tract, in the transport of spermatozoa in the ductus 
efferent of the male reproductive tracts and in the cervical canal, in movement of ovum in the female fallopian tubes, in the 
transport of lymph in the lymphatic vessels, and in the vasomotion of small blood vessel such as arterioles, venules and capillaries. 
In addition, peristaltic pumping occurs in many practical applications involving biomechanical system. Also, finger and roller 
pumps are frequently used for pumping corrosive or very pure materials so as to prevent direct contact of the fluid with the pump’s 
internal surfaces. A number of analytical (Shapiro et al., 1969; Zien and Ostrach, 1970; Elshehawey and Mekheimer, 1994; 
Ramachandra and Usha, 1995; Mekheimer Elsayed et al., 1998; Mekhemier, 2003 & 2002), numerical and experimental 
(Takabatake and Ayukawa, 1982 & 1988; Tang and Shen, 1993; Brown and Hung, 1977; Latham, 1966), studies of peristaltic 
flows of different fluids have been reported. A summary of most of the investigation reported up to the year 1983, has been 
presented by Srivastava   and Srivastava (Srivastava and Srivastava, 1984), and some imported contribution of recent year, are 
reference in Srivastava and Saxsen (Srivastava and Saxena, 1994). Physiological organs are generally observed have the form of a 
non-uniform duct (Lee and Hung, 1971; Wiedeman, 1963). In particular, the vas deferens in rhesus monkey is in the form of a 
diverging tube with a ration of exit to inlet dimensions of approximately four (Guh et al., 1975). Hence, peristaltic analysis of a 
Newtonian fluid in a uniform geometry cannot be applied when explaining the mechanism of transport of fluid in most bio-
systems. Recently, Srivastava et al., (1983) and Srivastava and Srivastava (Srivastava and Srivastava, 1988) studied peristaltic 
transport of Newtonian and non-Newtonian fluids in non-uniform geometries. In the view of above discussion the effect of 
magnetic fluid with variable viscosity through the gap between inner and outer tubes where the inner tube is an endoscope and the 
outer tube has a sinusoidal wave travelling down to its wall is the aim of present investigation. 
 

Formulation and analysis 
 

Consider the two-dimensional flow of an incompressible Newtonian fluid with variable viscosity through the gap between inner 
and outer tubes where the inner tube is an endoscope and the outer tube has a sinusoidal wave travelling down its wall. The 
geometry of the two-wall surface is given by the equation: 
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Where 
1

a is the radius of endoscope 
20

a  is the radius of the small intestine at inlet, b is the amplitude of the wave,   is the 

wavelength, t  is time and c is the wave speed. 
 

 
 

In the fixed coordinates ( ,r z ) the flow in the gap between inner and outer tubes is unsteady but if we choose moving coordinates 

( ,r z ) which travel in the z - direction with the same speed as the wave, then the flow can be treated as steady. The coordinate’s 

frames are related through: 
 

, ,z Z ct r R                              ……………………………………………………………………………. (2.3) 

 

, ,w W c u U                        ……………………………………………………………………………. (2.4) 

 
WhereU ,W  andu , w  are the velocity components in the radial and axial direction in the fixed and moving coordinates respectively. 
Equations of boundary condition in the moving coordinates is 
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And the Navier Stokes equation 
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p  is the pressure , ( )r  is the viscosity function,  is Electric conductivity and B0 is  applied magnetic field. The boundary 

condition are written 
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0 u a t r r                                                                 ………………………………………………. (2.8b) 

Introducing the non-dimensional variable, the Reynolds number (Re), and the wave number ( ) as follows: 
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where   is the radius ratio,   is the amplitude ratio and 0  is the viscosity on the endoscope. Equation of motion and boundary 

conditions in the dimensionless form become: 
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0 20M B a



  is Hartmann number ,  is Electric conductivity 

 
With the dimensionless boundary condition 
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(2.13b) 
 

Using the long wavelength approximation and neglecting the wave number ( 0  ), one can reduce eqs. (6.2.10) and (6.2.12) 
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The instantaneous volume flow rate in the fixed coordinate system is given by: 
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Where 1r  is a constant and 2r  is a function of Z and t . On substituting eqs. (2.3) and (2.4) into eqs. (6.2.16) and the integrating, 

one obtains: 
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Where 
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is the volume flow rate in the moving coordinate system and is independent of time. Here, 2r is a function of z alone and is 

defined through equ. (2.2). Using the dimensionless variable, eq. (2.18) becomes 
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The time- mean flow over a period T
c


  at a fixed Z position is defined as: 
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Using eqs. (2.17) and (2.18) in eq. (2.20) and integrating, we get: 
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Which may be written as: 
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On defining the dimensionless time-mean flow as: 
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Writing the eq. (6.2.21) as: 
 

2
21

(1 )
2 2

F


                                                  ………………….…………………………………………. (2.22) 

 
Solving eqs. (2.13) - (2.15) we obtain: 
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Using eq. (2.19), obtain the relationship between dp

dz
 and F as follows: 
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Solving eq. (2.26) for
dp

dz
, we obtain: 
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The pressure rise P and friction force on inner and outer tubes 
( )iF and

( )oF , in their non-dimensional forms, are given by: 
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The effect of viscosity variation on peristaltic transport can be investigated through eq. (2.29) - (2.31) for any given viscosity 
function ( )r . 

For the present instigation, assume that the viscosity variation in the dimensionless form followed by Srivastava et al. (1984) is 
given by: 
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Or 
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where  is viscosity parameter. The assumption is reasonable for the following physiological reason. Since normal person or 
animal or similar size takes 1 to 2L of fluid every day. On the fact of that, another 6 to 7L of fluid received by the small intestine 
daily as secretion from salivary glands, stomach, pancreas, liver and the small intestine itself. This implies that concentration of 

fluid is dependent on the radial distance. Therefore, the above choice of ( ) arr e  is justified. 
 

Substituting eq. (2.33) into eqs. (2.24), (2.25) and (2.27), and using eq. (2.28), we obtain: 
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Substituting eq.(2.34) in eq.(2.29)-(2.31) yield: 
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RESULTS, DISCUSSIONS AND CONCLUSION 
 

The dimensionless pressure rise ( P ) and the friction forces on the inner and outer tube for different given values of the 

dimensionless flow rate , amplitude ratio  , radius ratio , Hartmann number M and viscosity parameter  are computed 

using the equation (2.35) to (6.2.37). As the integrals in equation. (2.35) to (2.37) are not integrable in the closed form so they are 

evaluated using a20=1.25cm   a/ =0.156 
 
The values of viscosity parameter  as reported by  Srivastava et al. (1984) are  =0.0,  =0.1 Furthermore, since most routine 
upper gastrointestinal endoscopes are between 8-11 mm in diameter as reported by Cotton and Williams [17] and radius ratio 
1.25cm reported by   Srivastava and Srivastava (1984). Fig. (1) Shows the pressure rise against the flow rate here it is observed 

that the pressure increases with the increase of flow rate for different values of radius ratio 0.32, 0.38 0.44and      and 

pressure decreases for the viscosity α=0.0 and α=0.1. Fig (2) shows that as the viscosity α increases the pressure is decreases. And 

for the different values of amplitude ratio  =0.0 and =0.4 the pressure is decreases.  

 
Fig (3) and (4) shows the friction force on the outer tube for different values of radius ratio and amplitude ratio, here  it is observed 
that as radius ratio increases the friction force also decreases and they are independent of radius ratio at certain values of the flow 
rate [for the values φ=0.4 and α=0.0 and α=0.1].  
 
In fig (5) and (6) it is noticed that the friction force on the inner tube (endoscope) and on outer tube is plotted against the flow rate 
for different values of amplitude  ratio φ and for different values radius ratio  0.32, 0.38 0.44and      and for the values of 

viscosity α=0.0 and α=0.1. It is noticed that as the amplitude ratio φ increases the friction force on the outer tube and inner tube 
decreases and as the viscosity increases the friction force on the outer tube and inner tube decreases. From Fig (7) it is noticed that 
the pressure rise increases for different values of applies magnetic field M=1, M=3, M=5. In (8) and (9) it is noticed that the 
friction force decreases on endoscope and on the outer tube as magnetic field M=1, M=3, M=5 increases.  
 
 

 11485                                   Asha, Effects of magnetic field with variable viscosity and n endoscope on peristaltic motion 

 



 

  
 

  
 

  
 

-1.0 -0.5 0.0 0.5 1.0

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

0.1 

0.0 

P
L

Q
Fig(1) The pressure rise versus flow rate for and 

and 

 
 
 

-1.0 -0.5 0.0 0.5 1.0

-150

-100

-50

0

50

100

150 0.1 

0.0

P
L

Q
Fig(2)The pressure rise versus flow rate for , and 

 
 

-1.0 -0.5 0.0 0.5 1.0

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

0.0

0.1 

F

(o)

Q
Fig(3)The friction force on the outer tube versus flow rate for 

and ,

 
 
 

-1.0 -0.5 0.0 0.5 1.0
-150

-100

-50

0

50

100

150

0.1 

0.0

F

(o)

Q
Fig(4)The friction force on the outer tube versus flow rate for

,,

 
 

-1.0 -0.5 0.0 0.5 1.0

-40

-20

0

20

40

60

0.0

0.1 

F
()

(i)

Q

Fig(5)The friction on the innner tube (endoscope) versus flow rate for 
,,

 
 
 

-1.0 -0.5 0.0 0.5 1.0

-15

-10

-5

0

5

10

15

20

0.0

0.1 

F

(i)

Q
Fig(6)The friction on the inner tube (endoscope) versus flow rate

for  and ,

 
 

 11486                                   International Journal of Development Research, Vol. 07, Issue, 02, 11480-11488, February, 2017 



  

 

 

REFERENCES 

Brown, T.D. and T.K. Hung, 1977. “Computational and Experimental Investigations of Two Dimensional Non-Linear Peristaltic 
Flows”, J.Fluid Mech., 83 p. 249. 

Cotton, P.B. and C.B. Williams, 1990. Practical Gastrointestinal Endoscopy, London: Oxford University Press Third Edition, 
Paper Received 18 March 2003, Revised 12 October 2003. 

Elshehawey, L.T. and Kh. S. Mekheimer, 1994. “Couple Stress in Peristaltic Transport of Fluids” J.Phys, D: Appl. Phys,. 27, 
p.1163. 

Guham S.K., Kaur and A. Ahmed, 1975. “Mechanics of Spermatic Fluid in the Vas Deferens”, Medical and Biological 

Engineering, Volume 13, Issue 4, pp 518–522 
Gupta, B.B. and V. Sheshadri, 1976. Peristaltic Pumping in Non-Uniform Tubes”, J.Biomech., pp. 105-109. 
Latham T.W. 1966. “Fluid Motion in a Peristaltic Pump”, M.Sc.Thesis, MIT, Cambridge  MA. 
Lee, J.S. and Y.C. Hung, 1971. “Flow in Non – Uniform Small Blood Vessel”, Microcir. Res., 3 pp. 272-279. 
Mekheimer Elsayed, S., L. El. Shehawey, and A.M. Elaw, 1998. “Peristaltic Motion of a Particle fluid Suspension in a Planar 

Channel”, Int.J. of Theor .Phys. (IJTP) , 37 (11),pp. 2895. 
Mekhemier, S. 2002. “Peristaltic Tranport of a Couple Stress fluid in a Uniform and  Non-Uniform Channels”, Biorheol., 39  pp 

755-765. 
Mekhemier, S. 2003. “Non Linear Peristaltic Transport a Porous Medium in an Inclined Planar Channel”, J. Porous Media, 6(3), 

pp. 189-201. 

-1.0 -0.5 0.0 0.5 1.0

-300

-200

-100

0

100

200

300

400

P
L

Q
Fig(7)The pressure versus flow rate for , and 

0.1 

0.0 

 M=1
 M=3
 M=5

-1.0 -0.5 0.0 0.5 1.0

-30

-20

-10

0

10

20

30

0.1 

0.0

F
L
(i)

Q
Fig(8)The friction on the inner tube (endoscope) verus flow rate 

  for different magnetic field for ,,and 

 M=1
 M=3

 M=5

-1.0 -0.5 0.0 0.5 1.0

-600

-400

-200

0

200

400

600

0.1 

0.0 

F

(o)

Q
Fig(9)The  friction on the outer tube versus flow rate for different 

magnetic field for ,,and  

 M=1

 M=3

 M=5

 11487                                   Asha, Effects of magnetic field with variable viscosity and n endoscope on peristaltic motion 

 



Mekhemier, S. 2003. “Non-Linear Peristaltic Transport of Magneto-Hydrodynamic Flow in an Inclined Planar Channel” AISE, 28 
(2A) pp 183-201. 

Ramachandra, R.A. and S. Usha 1995. “Peristaltic Transport of Two Immiscible Viscous Fluids in a Circular Tube”, J.Fluid 
Mech., 298, p.271 

Shapiro, A.H., M.Y. Jaffrin, and S.L. Weinberg, 1969. “Peristaltic pumping Long Wave at Low Reynolds Number” J.Fluid Mech., 
37, pp. 799-825 

Srivastava, L.M. and V.P. Srivastava, 1984. “Peristaltic Tranport of Blood Casson-II”, J. Biomech., 17p. 821-829. 
Srivastava, L.M. and V.P. Srivastava, 1988. “Peristaltic Transport of a Power-Law Fluid:  Application to the Ductus Efferentes of 

the Reproducative Tract” Rheo.Acta, 27, pp 428-433. 
Srivastava, L.M. and V.P. Srivastava, and S.K. Sinha, 1983. “Peristaltic Transport of a Physiological Fluid: Part I Flow in Non- 

Uniform Geometry” Biorheol., 20,  pp. 428-433. 
Srivastava, V.P. and M. Saxena, 1994. “A Two Fluid Model of Non-Newtonian Blood Flow Induced by Peristaltic Waves”. 

Rheol.Acta, 33 p.111. 
Takabatake, S. and K. Ayukawa, 1982. “Numerical Study of two Dimensional Peristaltic Flows”, J. Fluid Mech., 122 pp 439. 
Takabatake, S. and K. Ayukawa, 1988. “Peristaltic Pumping in Circular Cylindrical Tubes a Numerical Study of Fluid Transport 

and its Efficiency”, J. FluidMech., 193. 
Tang, D. and M. Shen 1993. Non Stationary peristaltic and transport of a heat conducting fluid, J.of Math. Anal. And Appl., 174 

(1) p 265. 
Wiedeman, M.P. 1963. “Dimension of Blood Vessel from Distributing Artery to Collecting  Vein” Circ. Res., 12 pp 375-381. 
Zien, T.T. and S.A. Ostrach, 1994. “A Long Wave Approximation to Peristaltic Motion”, J. Biomech, 3 (1970), p.63. 
 
 

******* 

 11488                                   International Journal of Development Research, Vol. 07, Issue, 02, 11480-11488, February, 2017 


