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ARTICLE INFO                                       ABSTRACT 
 
 

In this paper, we utilize the CLRS and JCLRST properties to prove some existence theorems of 
common fixed point for contractive mappings in fuzzy metric spaces. Our results generalize and 
extend the result of Saurabh Manror and Calogero vetro [28]. An example and some applications 
are given to show the usability of the presented results.  
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INTRODUCTION 
 

 

 

In 1975, Kramosil and Michalek, (1975) introduced the notion of fuzzy metric space which could be considered as generalization 
of probabilistic metric space due to Menger (1975), see also (Khan, 2012). Fixed point theory in fuzzy metric spaces has been 
developed starting with the work of Heilpern (Gopal, 2012). In (George and Veeramani, 1994 and George and Veeramani, 1997). 
George and Veeramani modified the notion given by Kramosil and Michalek, in order to introduce a Hausdorff topology on fuzzy 
metric spaces. Many authors have contributed to the development of this theory and its applications, for instance (Bhatia, 2010; 
Cho, 2009 Di Bari, 2003; Di Bari and Vetro, 2015; Gopal, 2011; Gopal, 2012 Imdad,, 2012; Imdad, 2009; Jain, 2012; Manro, 
2012; Mishra, 1994; Regan, 2009; Schweizer, 1983; Singh and Chauhan, 2000; Vetro, 2010; Vetro, 2011; Sintunavarat, 2011 and 
Vetro, 2011). In 2002, Aamri and El Moutawakil (Aamri, 2002), defined the property (E.A.) for self-mappings whose class 
contains the class of noncompatible as well as compatible mappings.  
 
It is observed that the property (E.A.) requires the containment and closedness of ranges for the existence of fixed points. In 2009, 
Abbas et al. (2009) introduced the notion of common property (E.A). Later on, Sintunavarat and Kumam (Sintunavarat, 2011) 
coined the idea of “common limit in the range property” which does not require the closedness of the subspaces for the existence 
of fixed point for a pair of mappings. In 2012, Manro et al. (Manro, 2014), defined the notion of CLRS property which does not 
require completeness or closedness of subspaces but only requires containment of any one pair of ranges, see also (Aydi, 2013). 
Recently, Chauhan et al. (Chauhan, 2012), defined the notion of JCLRST property which does not require closedness of subspaces 
for the existence of fixed points for two pairs of mappings. In this paper, we utilize the CLRS and JCLRST properties to prove  
some existence results of common fixed points for contractive mappings in fuzzy metric spaces (in the sense of Kramosil and 
Michalek or of George and Veeramani). An example and some applications are given to show the usability of the presented 
results.  
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Preliminaries 
 
The following definitions and results will be needed in the sequel. 
 

Definition 2.1. ([31]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (t-norm) if it satisfies 
the following conditions: 
 

(i) ∗ is associative and commutative; 
(ii)∗ is continuous;  
(iii)a ∗ 1 = a for all a ∈ [0, 1]; 
(iv)a∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].  

 

Three basic examples of continuous t-norms are a ∗1 b = min{a, b}, a ∗2 b = ab and a ∗3 b = max{a + b − 1, 0}. 
 

Definition 2.2. ([22]) A fuzzy metric space is a triple (X,M, ∗), where X is a non-empty set, ∗ is a continuous t-norm and M is a 
fuzzy set on X × X × [0, +∞), satisfying the following properties:  
 
(K1) M(x, y, 0) = 0 for all x, y ∈ X;  
(K2) M(x, y, t) = 1 for all t > 0 iff x = y; 
(K3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and for all t > 0;  
(K4) M(x, y, ·) : [0, +∞) → [0, 1] is left continuous for all x, y ∈ X;  
(K5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all x, y, z ∈ X and for all t, s > 0. 
 

We denote such space as KM-fuzzy metric space. 
 

Lemma 2.1. ([22]) In a KM-fuzzy metric space (X,M, ∗), M(x, y, ·) is non-decreasing for all x, y ∈ X. If, in the definition of 
Kramosil and Michalek [22], M is a fuzzy set on X × X ×(0, +∞) and (K1), (K2), (K4) are replaced, respectively, with (G1), (G2), 
(G4) below, then (X,M, ∗) is called a fuzzy metric space in the sense of George and Veeramani [12].  
 
(G1) M(x, y, t) > 0 for all t > 0;  
(G2) M(x, x, t) = 1 for all t > 0 and if M(x, y, t) = 1 for some t > 0, then x = y;  
(G4) M(x, y, ·) : (0, +∞) → [0, 1] is continuous for all x, y ∈ X. 
 We denote such space as GV -fuzzy metric space. 
 
Definition2.3. ([12]) Let (X,M, ∗) be a fuzzy metric space. Then a sequence {xn}n∈N is said to be convergent to x ∈ X, that is, 
limn→+∞ xn = x, if, for all t > 0, limn→+∞ M(xn, x, t)=1.  
 
Definition 2.4. ([8]) Two self-mappings f and g of a fuzzy metric space (X,M, ∗) are said to be compatible if limn→+∞ M(fgxn, 
gfxn) = 1 for all t > 0, whenever {xn} is a sequence in X such that limn→+∞ fxn = limn→+∞ gxn = z for some z ∈ X.  
 
Definition 2.5. ([8]) Two self-mappings f and g of a fuzzy metric space (X,M, ∗) are said to be non-compatible if there exists at 
least one sequence {xn} in X such that limn→+∞ fxn= limn→+∞ gxn = z for some z ∈ X, but for some t > 0, either limn→+∞ 
M(fgxn, gfxn) ≠ 1 or the limit does not exist. 
 
Definition 2.6. ([20]) A pair (f,g) of self-mappings of a non-empty set X is said to be weakly compatible (or coincidentally 
commuting) if they commute at their coincidence points, that is, if fz = gz for some z ∈ X, then fgz = gfz. 
 
If two self-mappings A and S of a fuzzy metric space (X,M, ∗) are compatible then they are weakly compatible but the converse 
need not be true. 
 
Definition 2.7. ([1]) A pair (f,g) of self-mappings of a fuzzy metric space (X,M, ∗) is said to satisfy the property (E.A) if there 
exists a sequence {xn} in X such that limn→+∞ fxn = limn→+∞ gxn = z, for some z ∈ X. 
 
 From Definition 2.7, it is easy to see that any two non-compatible self-mappings of a fuzzy metric space (X,M, ∗) satisfy the 
property (E.A) but the reverse need not be true. 
 
Definition 2.8. ([2]) Two pairs (A, S) and (B, T ) of self-mappings of a fuzzy metric space (X,M, ∗) are said to satisfy the common 
property (E.A) if there exist two sequences {xn}, {yn} in X such that 
 

���
� → +∞

Axn = 
���

� → +∞
Sxn = 

���
� → +∞

Byn = 
���

� → +∞
 T yn = z, for some z ∈ X.  

 

Definition 2.9.([34]) A pair of self-mappings (f,g) of a fuzzy metric space (X,M, ∗) is said to satisfy the common limit in the range 
of g property (CLRg, for short) if there exists a sequence {xn} in X such that limn→+∞ fxn = limn→+∞ gxn= gz, for some z ∈ X. 
 Inspired by Sintunavarat and Kumam (Schweizer, 1983) Manro et al. (2014) introduced the following notion:  
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Definition 2.10. ([25]) Two pairs (A, S) and (B, T ) of self-mappings of a fuzzy metric space (X,M, ∗) are said to share the 
common limit in the range of S property if there exist two sequences {xn}, {yn} in X such that 
 

���
� → +∞

Axn=
���

� → +∞
Sxn = 

���
� → +∞

Byn =
���

� → +∞
T yn = Sz, for some z ∈ X.  

 

Very recently, Chauhan et al. (2012) introduced the following property:  
 
Definition 2.11. ([7]) Two pairs (A, S) and (B, T ) of self-mappings of a fuzzy metric space (X,M, ∗) are said to satisfy JCLRST 
property if there exist two sequences {xn}, {yn} in X such that 
 

���
� → +∞

 Axn = 
���

� → +∞
Sxn = 

���
� → +∞

 Byn = 
���

� → +∞
 T yn = Tz= Sz, for some z ∈ X. 

 
Definition 2.12. ([17]) Two families of self-mappings {Ai} and {Sj} are said to be pairwise commuting if:  
 

1. AiAj = AjAi, i, j ∈ {1, 2,...,m},  
2. SiSj = SjSi, i, j ∈ {1, 2,...,n},  
3. AiSj= SjAi, i ∈ {1, 2,...,m}, j ∈ {1, 2,...,n}. 

 

RESULTS 
 
Our results involve the class Φ of all functions φ : [0, 1] → [0, 1] satisfying the following properties:  
 

(A) φ is continuous and non-decreasing on [0, 1]; 
(B) φ(x) > x for all x ∈ (0, 1). 
Clearly by using properties (A) and (B), we also have: 
(C) φ(1) = 1; 
(D) φ(x) ≥ x for all x ∈ [0, 1].  

 
The basic example of function φ ∈ Φ is φ(x) = √x, for all x ∈ [0, 1]. 
 
We begin with the following theorem: 
 

Theorem 3.1. Let A, B, S and T be four self-mappings of a KM-fuzzy metric space (X,M, ∗) satisfying the following conditions: 
(i)for all x, y ∈ X and t > 0 with 0 < M(Ax, By, t) < 1, there exists φ ∈ Φ such that 
 

M(Ax, By, t) ≥ φ({M(Sx, T y, t)*M(Ax, Sx, t) *M(By, Ty, t) * 
 

                   M(By, Sx, t) * M(Ax, T y, t)})*{
�(��	,			��,�)∗�(��,			��,			�)∗�(��,			��,			�)

�(��,			��,			�)∗�(��,			��,			�)
}  

 
(ii)(A, S) and (B, T ) share the CLRS property (or CLRT property);  
 
(iii)A(X) ⊂ T (X) or (B(X) ⊂ S(X)). 
 
Then, the pairs (A, S) and (B, T) have a coincidence point. Further if (A, S) and (B, T) are weakly compatible, then A, B, S and T 
have a unique common fixed point in X. 
 
Proof. Since the pairs (A, S) and (B, T) share the common limit in the range of S property, then there exist two sequences {xn} 
and {yn} in X such that  
 

���
� → +∞

Axn= 
���

� → +∞
Sxn= l

���
� → +∞

Byn = 
���

� → +∞
 T yn = Sz, 

 
for some z ∈ X. Firstly, we assert that Az = Sz, or equivalently, M(Az, Sz, t) = 1. Suppose not, that is 0 <M(Az,  Sz, t) < 1 for all t 
> 0. Then by using (i), we have 
 
M(Az, Byn, t) ≥ φ({M(Sz, Tyn, t) * M(Az,  Sz, t) * M(Byn, Tyn, t) *  
 

                    M(Byn, Sz, t) * M(Az, T yn, t)}*	
�(��	,��,			�)∗�(���,			��,			�)∗�(��,			�	��,			�)

�(��,			�	��,			�)∗�(���,�	��,			�)
}), and taking the limit as n → ∞, we get  

 

(3.1) M(Az,Sz, t) ≥ φ({M(Sz,Sz, t) * M(Az, Sz, t)* M(Sz ,Sz,  t) * 
 

                         M(Sz,Sz, t) * M(Az,Sz, t)}*	
�(��	,��,			�)∗�(��,			��,			�)∗�(��,			��	,			�)

�(��,			�	�,			�)∗�(��,			�	�,			�)
)  

 

                     =φ({1* M(Az, Sz, t) *1* 1* M(Az, Sz, t)}* 1 )  
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                     = φ(M(Az, Sz, t)). 
 
As we know, by definition of KM-fuzzy metric space, M(Az, Sz, ·) is left-continuous and by Lemma 2.1, M(Az, Sz, ·) is non-
decreasing. Thus, it has at most countable points of discontinuity. Since 0 <M(Az, Sz, t) < 1 for all t >0, then 0 <M(Az, Sz, t0) < 1 
for some t0> 0. Let t0 be a point where M(Az, Sz, ·) is continuous and thus by using the definition of φ, from (3.1), we get M(Az, 
Sz, t0) ≥ φ(M(Az, Sz, t0)) > M(Az, Sz, t0), which is a contradiction. Therefore, Az = Sz and hence z is a coincidence point of the 
pair (A, S). Since,  A(X) ⊂ T (X), there exists v ∈ X such that Az = T v. Secondly, we assert that Bv = T v. If not, that is 0 <M(Bv, 
Tv, t) < 1 for all t > 0, then by (i), we get 
 
(3.2)M(Tv, Bv, t) = M(Az, Bv, t)  
 
                       ≥ φ({M(Sz, Tv, t) * M(Az, Sz, t) * M(Bv, Tv, t) * 
 

                             *	
�(��	,��,			�)∗�(��,			��,			�)∗�(��,			��	,			�)

�(��,			�	�,			�)∗�(��,			��,			�)
 }) 

 

M(Bv, Sz, t), M(Az, T v, t)}) = φ({M(Tv, Tv, t) * M(Tv, Tv, t) * M(Bv, Tv, t) * 
 

                                             M(Bv, Tv, t) * M(Tv, Tv, t)*	
�(��,��,�)∗�(��,��,�)∗�(��,��,�)

�(��,��,�)∗�(��,��,�)
}) 

 

                                         =φ(M(Tv, Bv, t)).  
 

By definition of KM-fuzzy metric space, M(Tv, Bv, ·) is left-continuous and by Lemma 2.1, M(Tv, Bv, ·) is non-decreasing. Thus, 
it has at most countable points of discontinuity. Since 0 <M(Tv, Bv, t) < 1 for all t > 0, then 0 < M(Tv, Bv, t0) < 1 for some t0> 0. 
Let t0 be a point where M(Tv, Bv, ·) is continuous and thus by using the definition of φ in (3.2), we get M(Tv, Bv, t0) ≥ φ(M(Tv, 
Bv, t0)) > M(Tv, Bv, t0), which is a contradiction. Therefore, Bv = T v and hence v is a coincidence point of the pair (B, T ). Thus, 
we have u = Tv =Bv =Az = Sz.  Since the pairs (A, S) and (B, T ) are weakly compatible, this gives Au = ASz =SAz = Su and Bu 
=BTv= TBv = T u. Finally, we assert that Au = u. Again suppose not, that is 0 <M(Au, u, t) < 1 for all t > 0. Then by (i), we get  
(3.3) M(Au, u, t) = M(Au, Bv, t)  
 
                     ≥φ(M(Su, T v, t) * M(Au, Su, t) * M(Bv, Tv, t) *  
 

                        M(Bv, Su, t) * M(Au, T v, t)*	
�(��,��,�)∗	�(��,��,�)∗�(��,�	�,�)

�(��,�	�,�)∗�(��,��,�)
)  

 

                    =φ(M(Au, u, t) * M(Au, Au, t) * M(u, u, t) * 
 

                       M(u, Au, t) * M(Au, u, t)*	
�(��,			��,			�)∗			�(�,			��,			�)∗	�(��,			�,			�)

�(��		,�		,�)∗�(�		,�,			�)
 ) 

 

                    =φ(M(Au, u, t)).  
 

Again, by definition of KM-fuzzy metric space, M(Au, u, ·) is left-continuous and by Lemma 2.1, M(Au, u, ·) is non-decreasing. 
Thus, it has at most countable points of discontinuity. Since 0 <M(Au, u, t) < 1 for all t > 0, then 0 < M(Au, u, t0) < 1 for some t0> 
0. Let t0 be a point where M(Au, u, ·) is continuous and thus by using the definition of φ in (3.3), we get  
 
M(Au, u, t0) ≥ φ(M(Au, u, t0)) > M(Au, u, t0),  
 
which is a contradiction. Therefore Au = u = Su, which gives u is a common fixed point of A and S. Similarly, one can easily 
prove that Bu = u = T u, that is u is a common fixed point of B and T  Therefore u is a common fixed point of A, S, B and T . 
Uniqueness of the common fixed point is an easy consequence of condition (i) and hence we omit details. Now we attempt to drop 
containment of subspaces by using weaker condition JCLRST in Theorem 3.1.  
 

Theorem 3.2. Let A, B, S and T be four self-mappings of a KM-fuzzy metric space (X, M,∗) satisfying the following conditions:  
(i)for all x,  y ∈ X and t> 0 with 0 < M(Ax, By, t) < 1, there exists φ ∈ Φ such that  
 
M(Ax, By, t) ≥ φ(M(Sx, T y, t) * M(Ax, Sx, t), M(By, Ty, t) *  
 

                         M(By, Sx, t) * M(Ax, T y, t)*(	
�(��,��,�)∗			�(��,��,�)∗	�(��,�	�,�)

�(��,�	�,�)∗	�(��,��,�)
).  

 

(ii)(A, S) and (B, T) share the JCLRST property. 
 

Then, the pairs (A, S) and (B, T) have a coincidence point. Further if (A, S) and (B, T ) are weakly compatible, then A, B, S and T 
have a unique common fixed point in X.  
 

Proof. Since the pairs (A, S) and (B, T) satisfy the JCLRST property, there exist two sequences {xn} and {yn} in X such that 
 

���
� → +∞

Axn=
���

� → +∞
 Sxn = 

���
� → +∞

 Byn = 
���

� → +∞
 T yn = T z = Sz,  
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for some z ∈ X. Firstly, by using the same arguments in Theorem 3.1, we can easily show that Az = Sz and hence z is a 
coincidence point of the pair (A, S).   
 
Now, we assert that Bz = T z. Suppose not, that is 0 <M(Bz, Tz, t) < 1 for all t > 0. Then by (i), we get  
 

(3.4) M(Tz, Bz, t) = M(Az, Bz, t)  
 

                        ≥φ(M(Sz, Tz, t) * M(Az, Sz, t) * M(Bz, Tz, t) *  
 

                           M(Bz, Sz, t) * M(Az, T z, t)*	
�(��,��,�)∗				�(��,��,�),�(��,�	�,�)

�(��,��,�)∗	�(��,��,�),
)  

 

                        =φ(M(Tz,Tz, t) * M(Tz, Tz, t) * M(Bz, Tz, t) *  
 

                           M(Bz, Tz, t) * M(Tz,Tz, t)*	
�(��,��,�)∗	�(��,��,�)∗�(��,��,�)

�(��,��,�)∗	�(��,��,�),,
)  

 

                        =φ(M(Tz,Bz, t)). 
 
As we know, by definition of KM-fuzzy metric space, M(Tz,Bz,·) is left-continuous and by Lemma 2.1, M(Tz, Bz, ·) is non-
decreasing. Thus, it has at most countable points of discontinuity. Since 0 <M(Tz, Bz, t) < 1 for all t > 0, then 0 < M(Tz,Bz, t0) < 1 
for some t0> 0. Let t0 be a point where M(Tz, Bz,·) is continuous and thus by using the definition of φ in (3.4), we get 
 
M(Tz, Bz, t0) ≥ φ(M(Tz, Bz, t0)) > M(Tz, Bz, t0), 
 
which is a contradiction. Therefore, Bz = Tz and hence z is a coincidence point of the pair (B, T). Thus, we have T z = Bz = Az = 
Sz. The rest of the proof is the same of Theorem 3.1 and hence we omit details.  
  
Remark 3.1. The conclusions of Theorems 3.1 and 3.2 remain true if (X, M,∗) is a GV-fuzzy metric space instead of a KM-fuzzy 
metric space. Precisely, in the proofs of analogous of Theorems 3.1 and 3.2 in a GV-fuzzy metric space, we have only to consider 
the fact that the fuzzy set M is a continuous function instead of a left continuous function.  
 
The following example illustrates some hypotheses of Theorem 3.1.  
 
Example 3.1. Let (X,M, ∗) be a KM-fuzzy metric space, where X = [1, 15) with the t-norm defined by a ∗ b = min{a, b} and the 
fuzzy set M given by  
 

M(x, y, t) =   �
1		
0

� ��	���	���		���
���������.

      

 

Also define A, B, S, T :X→X by 
 

��	 = {	
1								��	�	�	{1} ∪ (3,15),

� + 6				��	�	�(1,3],																							
Bx={

		1									��	�	�{1} ∪ (3,15),																					

� + 5			��	�	�(1,3],																																			
 

           S={

1							��	� = 1,																																																

6								��	�	�	(1,3],																																										
���

�
					��	�	�(3,15),																																										

Tx ={

1								��	� = 1,

11							��	�	�(1,3],

� − 2		��	�	�(3,15).

 

 

 If we choose two sequences in X as {xn} = {yn} =  {3 + 
�

�
}, then the pairs (A, S) and (B,T ) satisfy the CLRS property since 

 

���
			� → +∞

Axn = 
���

� → +∞
 Sxn = 

���
� → +∞

 Byn = 
���

� → +∞
 T yn = S(1) = 1 ∈ X.  

 

We note that A(X) = {1} ∪ (7, 9], B(X) = {1} ∪ (6,8], S(X) = [1, 4) ∪ {6} and T (X) = [1, 13) and so A(X) ⊂ T (X) but B(X) ⊄ 
S(X). Finally, in view of the definition of M, the contractive condition of Theorem 3.1 need not to be checked in our case. Thus, 
we conclude that u = 1 is the unique common fixed point of the pairs (A, S) and (B,T), which also remains a point of coincidence 
as well. Moreover, it should be noted that A(X), B(X), S(X) and T (X) are not closed subspaces of X. Further, by putting A = B 
and S = T in Theorem 3.1, we deduce the following result for two self-mappings.  
 

Corollary 3.1.Let A and S be two self-mappings of a KM-fuzzy metric space (X,M,∗) satisfying the following conditions: 
  
(i)for all x, y ∈ X and t > 0 with 0 < M(Ax, Ay, t) < 1, there exists φ ∈ Φ such that 
 

M(Ax,  Ay, t) ≥ φ(M(Sx, Sy, t), M(Ax, Sx, t), M(Ay, Sy, t),  
 

                          M(Ay, Sx, t), M(Ax, Sy, t));  
 

(ii)(A, S) has the CLRS property. 
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Then, the pair (A, S) has a coincidence point. Further if (A, S) is weakly compatible, then A and S have a unique common fixed 
point in X. 
 

APPLICATIONS: 
 

In this Section we apply the results obtained in Section 3. To solve two special problems.  
 
4.1. Finite families of mappings 
 
As an application of Theorems 3.1 and 3.2, we prove a common fixed point theorem for four finite families of mappings on fuzzy 
metric spaces. While proving our result, we utilize Definition 2.12 which is a natural extension of commutativity condition to two 
finite families.  
 
Theorem 4.1.Let {A1, A2,...,Am}, {B1, B2,...,Bn}, {S1, S2,...,Sp} and {T1, T2,...,Tq} be four finite families of self-mappings of a 
KM-fuzzy metric space (X,M, ∗) such that A = A1A2 ··· Am, B = B1B2 ··· Bn, S = S1S2 ··· Sp and T = T1T2 ··· Tq satisfy the 
conditions of Theorem 3.1 (or Theorem 3.2). Then  
 
(a) the pairs (A,S) and (B,T ) have a point of coincidence each;  
(b) {Ai}, {Bj}, {Sk} and {Tr} have a unique common fixed point provided that the pairs of families ({Ai}, {Sk}) and ({Bj}, {Tr}) 
commute pairwise, for all i = 1,...,m, j = 1,...,n, k = 1,...,p and r = 1,...,q.  
 
Proof:Since the pairs of families ({Ai}, {Sk}) and ({Bj}, {Tr}) commute pair-wise, we first show that AS = SA. In fact, we have 
 
 AS = (A1A2 ··· Am)(S1S2 ··· Sp) 
 

       = (A1A2 ··· Am−1)(AmS1S2 ··· Sp) 
 

       = (A1A2 ··· Am−1)(S1S2 ··· SpAm) 
 

       = (A1A2 ··· Am−2)(Am−1S1S2 ··· SpAm) 
 

       = (A1A2 ··· Am−2)(S1S2 ··· SpAm−1Am) 
 

      = ... = A1(S1S2 ··· SpA2 ··· Am) 
 

      = (S1S2 ··· Sp)(A1A2 ··· Am) = SA.  
 

Similarly, one can prove that BT = T B; therefore the pairs (A, S) and (B, T) are weakly compatible. Now, using Theorem 3.1 (or 
Theorem 3.2), we conclude that A, S, B and T have a unique common fixed point in X, say z. Now, we need to prove that z 
remains the fixed point of all component mappings. To this aim, consider 
 
A(Aiz) = ((A1A2 ··· Am)Ai)z = (A1A2 ··· Am−1)(AmAi)z 
 

            = (A1A2 ··· Am−1)(AiAm)z = (A1A2 ··· Am−2)(Am−1AiAm)z 
 

            = (A1A2 ··· Am−2)(AiAm−1Am)z = ··· = A1(AiA2 ··· Am)z 
 

            = (A1Ai)(A2 ··· Am)z = (AiA1)(A2 ··· Am)z  
 

            = Ai(A1A2 ··· Am)z = AiAz = Aiz.  
 

Similarly, one can prove that A(Skz) = Sk(Az) = Skz,S(Skz) = Sk(Sz) = Skz, S(Aiz) = Ai(Sz) = Aiz,B(Bj z) = Bj (Bz) = Bj z, B(Trz) = 
Tr(Bz) = Trz, T (Trz) = Tr(T z) = Trz and T (Bjz) = Bj (T z) = Bjz, which show that (for all i, j, k and r) Aiz and Skz are other fixed 
points of the pair (A, S) whereas Bj z and Trz are other fixed points of the pair (B, T ). Since A, B, S and T have a unique common 
fixed point, then we get z = Aiz = Skz = Bjz = Trz, for all i = 1,...,m, j = 1,...,n, k = 1,...,p and r = 1,...,q. Thus z is the unique 
common fixed point of {Ai}, {Bj}, {Sk} and {Tr}.  
 
4.2. Product space  
 

As an application of Corollary 3.1, we prove a common fixed point theorem in the product space X × X. In 2006, Bhaskar and 
Lakshmikantham (2006) introduced the notion of coupled fixed point and proved coupled fixed point results with useful 
applications to the study of the existence and uniqueness of solution for periodic boundary value problems. Further to this, 
Lakshmikantham and Ciri´ ´ c in (2009) proved coupled coincidence and coupled common fixed point theorems for commuting 
mappings that extended the results in (Cho,  2009), Precisely, we have the following notions.  
 

Definition 4.1. ([5]) Let X be a non-empty set and F : X × X → X be a given mapping. We say that (x, y) ∈ X × X is a coupled 
fixed point of F iff F(x, y) = x and F(y, x) = y. 
 

 11761                                             Dr. Rajesh Shrivastava et al. Results in fuzzy metric spaces employing clrs and jclrst properties 



Definition 4.2. ([23]) An element (x, y) ∈ X × X is called a coupled coincidence point of two mappings F : X × X → X and g : X 
→ X if gx = F(x, y) and gy = F(y, x). Moreover, (gx, gy) is called a coupled point of coincidence. 
 

Definition 4.3. ([23]) An element (x, y) ∈ X × X is said to be a common coupled fixed point of two mappings F : X × X → X and 
g : X → X if F(x, y) = gx = x and F(y, x) = gy = y. 
 

In 2011, Aydi et al. [4] extended the concepts above as follows: 
 

Definition 4.4. ([4]) An element (x, y) ∈ X × X is called a b-coupled coincidence point of two mappings F, G : X×X → X if G(x, 
y) = F(x, y) and G(y, x) = F(y, x). Moreover, (G(x, y), G(y, x)) is called a b-coupled point of coincidence. 
 

Definition 4.5. ([4]) An element (x, y) ∈ X × X is called a b-common coupled fixed point of two mappings F, G : X × X → X if x 
= G(x, y) = F(x, y) and y = G(y, x) = F(y, x). 
 

Here, we state and prove the following theorem. 
  

Theorem 4.2. Let (X, M, ∗) be a KM-fuzzy metric space. Let F, G : X × X → X be two mappings satisfying the following 
conditions: 
 

(i)for all (x, y),(u, v) ∈ X × X and t > 0 with 0 < M(F(x, y), F(u, v), t) < 1, there exists φ ∈ Φ such that  
M(F(x, y), F(u, v), t) ≥ φ(min{M(G(x, y), G(u, v), t), M(F(x, y), G(x, y), t),  
 

                                     M(F(u, v), G(u, v), t), M(F(u, v), G(x, y), t), M(F(x, y), G(u, v), t)})  
 

(ii)for each y ∈ X, the pair (F(·, y), G(·, y)) has the CLRS property and is weakly compatible; 
 

(iii)for each z : X → X, the pair (F(z(y), y), G(z(y), y)) has the CLRS property and is weakly compatible. 
  
Then, there exists a unique point w such that F(z(w), w) = G(z(w), w) = z(w) = w. 
 
Proof. Fix y = v ∈ X and let A, S : X → X be such that F(x, y) = Ax and G(u, y) = Su, for all x, u ∈ X. Then, condition (i) of 
Theorem 4.2 reduces to condition (i) of Corollary 3.1 and so, applying Corollary 3.1, the pair (A, S) has a unique common fixed 
point z(y), that is f(z(y)) = z(y) = g(z(y)). Again, we can apply Corollary 3.1 to the self-mappings F(z(y), y) and G(z(y), y) on X 
and therefore we deduce that there exists a unique point w such that F(z(w), w) = G(z(w), w) = z(w) = w.  
 
4.3. Conclusion 
 
In view of their interesting applications, searching for fixed point theorems in fuzzy metric spaces has received considerable 
attention through the last decades. In particular, researchers are currently focusing on weaker form of contractive conditions. In 
this connection, the main aim of this paper is to present some fixed point results involving the so-called “common limit in the 
range property”. The new theory leads to further investigations and applications, for instance in the setting of intuitionistic fuzzy 
metric spaces.  
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